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Abstract—Clustering is one of the most fundamental problems
in data analysis and it has been studied extensively in the
literature. Though many clustering algorithms have been pro-
posed, clustering theories that justify the use of these clustering
algorithms are still unsatisfactory. In particular, one of the
fundamental challenges is to address the following question:

What is a cluster in a set of data points?

In this paper, we make an attempt to address such a question
by considering a set of data points associated with a distance
measure (metric). We first propose a new cohesion measure in
terms of the distance measure. Using the cohesion measure, we
define a cluster as a set of points that are cohesive to themselves.
For such a definition, we show there are various equivalent
statements that have intuitive explanations. We then consider
the second question:

How do we find clusters and good partitions of clusters under
such a definition?

For such a question, we propose a hierarchical agglomerative
algorithm and a partitional algorithm. Unlike standard hierar-
chical agglomerative algorithms, our hierarchical agglomerative
algorithm has a specific stopping criterion and it stops with a
partition of clusters. Our partitional algorithm, called the K-sets
algorithm in the paper, appears to be a new iterative algorithm.
Unlike the Lloyd iteration that needs two-step minimization, our
K-sets algorithm only takes one-step minimization.

One of the most interesting findings of our paper is the duality
result between a distance measure and a cohesion measure. Such
a duality result leads to a dual K-sets algorithm for clustering
a set of data points with a cohesion measure. The dual K-sets
algorithm converges in the same way as a sequential version of
the classical kernel K-means algorithm. The key difference is that
a cohesion measure does not need to be positive semi-definite.

Index Terms—Clustering, hierarchical algorithms, partitional
algorithms, convergence, K-sets, duality

I. INTRODUCTION

Clustering is one of the most fundamental problems in data
analysis and it has a lot of applications in various fields, includ-
ing Internet search for information retrieval, social network
analysis for community detection, and computation biology
for clustering protein sequences. The problem of clustering
has been studied extensively in the literature (see e.g., the
books [1], [2] and the historical review papers [3], [4]). For
a clustering problem, there is a set of data points (or objects)
and a similarity (or dissimilarity) measure that measures how
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similar two data points are. The aim of a clustering algorithm
is to cluster these data points so that data points within the
same cluster are similar to each other and data points in
different clusters are dissimilar.

As stated in [4], clustering algorithms can be divided
into two groups: hierarchical and partitional. Hierarchical
algorithms can further be divided into two subgroups: agglom-
erative and divisive. Agglomerative hierarchical algorithms,
starting from each data point as a sole cluster, recursively
merge two similar clusters into a new cluster. On the other
hand, divisive hierarchical algorithms, starting from the whole
set as a single cluster, recursively divide a cluster into two
dissimilar clusters. As such, there is a hierarchical structure
of clusters from either a hierarchical agglomerative clustering
algorithm or a hierarchical divisive clustering algorithm.

Partitional algorithms do not have a hierarchical structure
of clusters. Instead, they find all the clusters as a partition
of the data points. The K-means algorithm is perhaps the
simplest and the most widely used partitional algorithm for
data points in a Euclidean space, where the Euclidean distance
serves as the natural dissimilarity measure. The K-means
algorithm starts from an initial partition of the data points into
K clusters. It then repeatedly carries out the Lloyd iteration
[5] that consists of the following two steps: (i) generate a new
partition by assigning each data point to the closest cluster
center, and (ii) compute the new cluster centers. The Lloyd
iteration is known to reduce the sum of squared distance of
each data point to its cluster center in each iteration and thus
the K-means algorithm converges to a local minimum. The
new cluster centers can be easily found if the data points are
in a Euclidean space (or an inner product space). However, it
is in general much more difficult to find the representative
points for clusters, called medoids, if data points are in a
non-Euclidean space. The refined K-means algorithms are
commonly referred as the K-medoids algorithm (see e.g., [6],
[1], [7], [8]). As the K-means algorithm (or the K-medoids
algorithm) converges to a local optimum, it is quite sensitive to
the initial choice of the partition. There are some recent works
that provide various methods for selecting the initial partition
that might lead to performance guarantees [9], [10], [11], [12],
[13]. Instead of using the Lloyd iteration to minimize the sum
of squared distance of each data point to its cluster center, one
can also formulate a clustering problem as an optimization
problem with respect to a certain objective function and then
solve the optimization problem by other methods. This then
leads to kernel and spectral clustering methods (see e.g., [14],
[15], [16], [17], [18] and [19], [20] for reviews of the papers in
this area). Solving the optimization problems formulated from
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the clustering problems are in general NP-hard and one has to
resort to approximation algorithms [21]. In [21], Balcan et al.
introduced the concept of approximation stability that assumes
all the partitions (clusterings) that have the objective values
close to the optimum ones are close to the target partition.
Under such an assumption, they proposed efficient algorithms
for clustering large data sets.

Fig. 1. A consistent change of 5 clusters.

Though there are already many clustering algorithms pro-
posed in the literature, clustering theories that justify the use of
these clustering algorithms are still unsatisfactory. As pointed
out in [22], there are three commonly used approaches for
developing a clustering theory: (i) an axiomatic approach that
outlines a list of axioms for a clustering function (see e.g., [23],
[24], [25], [26], [27], [28]), (ii) an objective-based approach
that provides a specific objective for a clustering function
to optimize (see e.g., [29], [21], and (iii) a definition-based
approach that specifies the definition of clusters (see e.g, [30],
[31], [32]). In [26], Kleinberg adopted an axiomatic approach
and showed an impossibility theorem for finding a clustering
function that satisfies the following three axioms:

(i) Scale invariance: if we scale the dissimilarity mea-
sure by a constant factor, then the clustering function
still outputs the same partition of clusters.

(ii) Richness: for any specific partition of the data points,
there exists a dissimilarity measure such that the
clustering function outputs that partition.

(iii) Consistency: for a partition from the clustering func-
tion with respect to a specific dissimilarity measure,
if we increase the dissimilarity measure between
two points in different clusters and decrease the
dissimilarity measure between two points in the
same cluster, then the clustering function still outputs
the same partition of clusters. Such a change of a
dissimilarity measure is called a consistent change.

The impossibility theorem is based on the fundamental result
that the output of any clustering function satisfying the scale
invariance property and the consistency property is in a
collection of antichain partitions, i.e., there is no partition in
that collection that in turn is a refinement of another partition
in that collection. As such, the richness property cannot be
satisfied. In [29], it was argued that the impossibility theorem
is not an inherent feature of clustering. The key point in
[29] is that the consistency property may not be a desirable
property for a clustering function. This can be illustrated by
considering a consistent change of 5 clusters in Figure 1. The
figure is redrawn from Figure 1 in [29] that originally consists
of 6 clusters. On the left hand side of Figure 1, it seems

reasonable to have a partition of 5 clusters. However, after
the consistent change, a new partition of 3 clusters might be a
better output than the original partition of 5 clusters. As such,
they abandoned the three axioms for clustering functions and
proposed another three similar axioms for Clustering-Quality
Measures (CGM) (for measuring the quality of a partition).
They showed the existence of a CGM that satisfies their three
axioms for CGMs.

As for the definition-based approach, most of the definitions
of a single cluster in the literature are based on loosely defined
terms [1]. One exception is [30], where Ester et al. provided
a precise definition of a single cluster based on the concept
of density-based reachability. A point p is said to be directly
density-reachable from another point q if point p lies within
the ϵ-neighborhood of point q and the ϵ-neighborhood of
point q contains at least a minimum number of points. A
point is said to be density-reachable from another point if
they are connected by a sequence of directly density-reachable
points. Based on the concept of density-reachability, a cluster
is defined as a maximal set of points that are density-reachable
from each other. An intuitive way to see such a definition for
a cluster in a set of data points is to convert the data set into
a graph. Specifically, if we put a directed edge from one point
p to another point q if point p is directly density-reachable
from point q, then a cluster simply corresponds to a strongly
connected component in the graph. One of the problems for
such a definition is that it requires specifying two parameters,
ϵ and the minimum number of points in a ϵ-neighborhood. As
pointed out in [30], it is not an easy task to determine these
two parameters.

In this paper, we make an attempt to develop a clustering
theory in metric spaces. In Section II, we first address the
question:

What is a cluster in a set of data points in metric spaces?

For this, we first propose a new cohesion measure in terms of
the distance measure. Using the cohesion measure, we define
a cluster as a set of points that are cohesive to themselves. For
such a definition, we show in Theorem 7 that there are various
equivalent statements and these statements can be explained
intuitively. We then consider the second question:

How do we find clusters and good partitions of clusters
under such a definition?

For such a question, we propose a hierarchical agglomerative
algorithm in Section III and a partitional algorithm Section IV.
Unlike standard hierarchical agglomerative algorithms, our hi-
erarchical agglomerative algorithm has a specific stopping cri-
terion. Moreover, we show in Theorem 9 that our hierarchical
agglomerative algorithm returns a partition of clusters when it
stops. Our partitional algorithm, called the K-sets algorithm
in the paper, appears to be a new iterative algorithm. Unlike
the Lloyd iteration that needs two-step minimization, our K-
sets algorithm only takes one-step minimization. We further
show in Theorem 14 that the K-sets algorithm converges in a
finite number of iterations. Moreover, for K = 2, the K-sets
algorithm returns two clusters when the algorithm converges.



A MATHEMATICAL THEORY FOR CLUSTERING IN METRIC SPACES 3

TABLE I
LIST OF NOTATIONS

Ω = {x1, x2, . . . , xn} The set of all data points
n The total number of data points
d(x, y) The distance between two points x and y
d̄(S1, S2) The average distance between two sets S1 and S2 in (10)
RD(x||y) = d(x, y)− d̄({x},Ω) The relative distance from x to y
RD(y) = d̄(Ω, {y})− d̄(Ω,Ω) The relative distance from a random point to y
RD(S1||S2) = d̄(S1, S2)− d̄(S1,Ω) The relative distance from a set S1 to another set S2

γ(x, y) = RD(y)− RD(x||y) The cohesion measure between two points x and y
γ(S1, S2) =

∑
x∈S1

∑
y∈S2

γ(x, y) The cohesion measure between two sets S1 and S2

∆(x, S) = 2d̄({x}, S)− d̄(S, S) The triangular distance from a point x to a set S
Q =

∑K
k=1 γ(Sk, Sk) The modularity for a partition S1, S2, . . . , SK of Ω

R =
∑K

k=1 γ(Sk, Sk)/|Sk| The normalized modularity for a partition S1, S2, . . . , SK of Ω

One of the most interesting findings of our paper is the
duality result between a distance measure and a cohesion
measure. In Section V, we first provide a general definition
of a cohesion measure. We show that there is an induced
distance measure, called the dual distance measure, for each
cohesion measure. On the other hand, there is also an induced
cohesion measure, called the dual cohesion measure, for each
distance measure. In Theorem 18, we further show that the
dual distance measure of a dual cohesion measure of a distance
measure is the distance measure itself. Such a duality result
leads to a dual K-sets algorithm for clustering a set of data
points with a cohesion measure. The dual K-sets algorithm
converges in the same way as a sequential version of the
classical kernel K-means algorithm. The key difference is that
a cohesion measure does not need to be positive semi-definite.

In Table I, we provide a list of notations used in this paper.

II. CLUSTERS IN METRIC SPACES

A. What is a cluster?
As pointed out in [4], one of the fundamental challenges

associated with clustering is to address the following question:

What is a cluster in a set of data points?

In this paper, we will develop a clustering theory that
formally defines a cluster for data points in a metric space.
Specifically, we consider a set of n data points, Ω =
{x1, x2, . . . , xn} and a distance measure d(x, y) for any two
points x and y in Ω. The distance measure d(·, ·) is assumed
to be a metric and it satisfies

(D1) d(x, y) ≥ 0;
(D2) d(x, x) = 0;
(D3) (Symmetric) d(x, y) = d(y, x);
(D4) (Triangular inequality) d(x, y) ≤ d(x, z) + d(z, y).

Such a metric assumption is stronger than the usual dissimilar-
ity (similarity) measures [33], where the triangular inequality
in general does not hold. We also note that (D2) is usually
stated as a necessary and sufficient condition in the literature,
i.e., d(x, y) = 0 if and only if x = y. However, we only need
the sufficient part in this paper. Our approach begins with a
definition-based approach. We first give a specific definition
of what a cluster is (without the need of specifying any
parameters) and show those axiom-like properties are indeed
satisfied under our definition of a cluster.

B. Relative distance and cohesion measure
One important thing that we learn from the consistent

change in Figure 1 is that a good partition of clusters should be
looked at a global level and the relative distances among clus-
ters should be considered as an important factor. The distance
measure between any two points only gives an absolute value
and it does not tell us how close these two points are relative
to the whole set of data points. The key idea of defining
the relative distance from one point x to another point y is
to choose another random point z as a reference point and
compute the relative distance as the average of d(x, y)−d(x, z)
for all the points z in Ω. This leads to the following definition
of relative distance.

Definition 1 (Relative distance) The relative distance from a
point x to another point y, denoted by RD(x||y), is defined as
follows:

RD(x||y) =
1

n

∑
z∈Ω

(d(x, y)− d(x, z))

= d(x, y)− 1

n

∑
z∈Ω

d(x, z). (1)

The relative distance (from a random point) to a point y,
denoted by RD(y), is defined as the average relative distance
from a random point to y, i.e.,

RD(y) =
1

n

∑
z∈Ω

RD(z||y)

=
1

n

∑
z2∈Ω

d(z2, y)−
1

n2

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1). (2)

Note from (1) that in general RD(x||y) is not symmetric,
i.e., RD(x||y) ̸= RD(y||x). Also, RD(x||y) may not be
nonnegative. In the following, we extend the notion of relative
distance from one point to another point to the relative distance
from one set to another set.

Definition 2 (Relative distance) The relative distance from
a set of points S1 to another set of points S2, denoted by
RD(S1||S2), is defined as the average relative distance from
a random point in S1 to another random point in S2, i.e.,

RD(S1||S2) =
1

|S1| · |S2|
∑
x∈S1

∑
y∈S2

RD(x||y). (3)
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Based on the notion of relative distance, we define a
cohesion measure for two points x and y below.

Definition 3 (Cohesion measure between two points) De-
fine the cohesion measure between two points x and y, denoted
by γ(x, y), as the difference of the relative distance to y and
the relative distance from x to y, i.e.,

γ(x, y) = RD(y)− RD(x||y). (4)

Two points x and y are said to be cohesive (resp. incohesive)
if γ(x, y) ≥ 0 (resp. γ(x, y) ≤ 0).

In view of (4), two points x and y are cohesive if the relative
distance from x to y is not larger than the relative distance
(from a random point) to y.

Note from (1) and (2) that

γ(x, y) = RD(y)− RD(x||y)

=
1

n

∑
z2∈Ω

d(z2, y) +
1

n

∑
z1∈Ω

d(x, z1)

− 1

n2

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1)− d(x, y) (5)

=
1

n2

∑
z2∈Ω

∑
z1∈Ω

(
d(x, z1) + d(z2, y)

−d(z1, z2)− d(x, y)
)
. (6)

Though there are many ways to define a cohesion measure
for a set of data points in a metric space, our definition of
the cohesion measure in Definition 3 has the following four
desirable properties. Its proof is based on the representations
in (5) and (6) and it is given in Appendix A.

Proposition 4 (i) (Symmetry) The cohesion measure is
symmetric, i.e., γ(x, y) = γ(y, x).

(ii) (Self-cohesiveness) Every data point is cohesive to
itself, i.e., γ(x, x) ≥ 0.

(iii) (Self-centredness) Every data point is more cohesive
to itself than to another point, i.e., γ(x, x) ≥ γ(x, y)
for all y ∈ Ω.

(iv) (Zero-sum) The sum of the cohesion measures be-
tween a data point to all the points in Ω is zero, i.e.,∑

y∈Ω γ(x, y) = 0.

These four properties can be understood intuitively by
viewing a cohesion measure between two points as a “binding
force” between those two points. The symmetric property
ensures that the binding force is reciprocated. The self-
cohesiveness property ensures that each point is self-binding.
The self-centredness property further ensures that the self
binding force is always stronger than the binding force to the
other points. In view of the zero-sum property, we know for
every point x there are points that are incohesive to x and
each of these points has a negative binding force to x. Also,
there are points that are cohesive to x (including x itself from
the self-cohesiveness property) and each of these points has a
positive force to x. As such, the binding force will naturally
“push” points into “clusters.”

To further understand the intuition of the cohesion measure,
we can think of z1 and z2 in (6) as two random points that are
used as reference points. Then two points x and y are cohesive
if d(x, z1) + d(z2, y) ≥ d(z1, z2) + d(x, y) for two reference
points z1 and z2 that are randomly chosen from Ω. In Figure
2, we show an illustrating example for such an intuition in
R2. In Figure 2(a), point x is close to one reference point z1
and point y is close to the other reference point z2. As such,
d(x, z1) + d(z2, y) ≤ d(z1, z2) and thus these two points x
and y are incohesive. In Figure 2(b), point x is not that close
to z1 and point y is not that close to z2. However, x and y
are on the two opposite sides of the segment between the two
reference points z1 and z2. As such, there are two triangles
in this graph: the first triangle consists of the three points
x, z1, and w, and the second triangle consists of the three
points y, z2, and w. From the triangular inequality, we then
have d(w, z1) + d(x,w) ≥ d(x, z1) and d(y, w) + d(w, z2) ≥
d(y, z2). Since d(w, z1)+ d(w, z2) = d(z1, z2) and d(x,w)+
d(y, w) = d(x, y), it then follows that d(z1, z2) + d(x, y) ≥
d(x, z1)+d(y, z2). Thus, points x and y are also incohesive in
Figure 2(b). In Figure 2(c), point x is not that close to z1 and
point y is not that close to z2 as in Figure 2(b). Now x and y
are on the same side of the segment between the two reference
points z1 and z2. There are two triangles in this graph: the
first triangle consists of the three points x, y, and w, and the
second triangle consists of the three points z1, z2, and w. From
the triangular inequality, we then have d(x,w) + d(w, y) ≥
d(x, y) and d(w, z1) + d(w, z2) ≥ d(z1, z2). Since d(x,w) +
d(w, z1) = d(x, z1) and d(w, y)+d(w, z2) = d(z2, y), it then
follows that d(x, z1) + d(y, z2) ≥ d(z1, z2) + d(x, y). Thus,
points x and y are cohesive in Figure 2(c). In view of Figure
2(c), it is intuitive to see that two points x and y are cohesive
if they both are far away from the two reference points and
they both are close to each other.

The notions of relative distance and cohesion measure are
also related to the notion of relative centrality in our previous
work [34]. To see this, suppose that we sample two points x
and y from Ω according to the following bivariate distribution:

p(x, y) =
e−θd(x,y)∑

u∈Ω

∑
v∈Ω e−θd(u,v)

, θ > 0. (7)

Let PX(x) =
∑

y∈Ω p(x, y) and PY (y) =
∑

x∈Ω p(x, y)
be the two marginal distributions. Then one can verify that
the covariance p(x, y) − PX(x)PY (y) is proportional to the
cohesion measure γ(x, y) when θ ↓ 0. Intuitively, two points x
and y are cohesive if they are positively correlated according
to the sampling in (7) when θ is very small.

Now we extend the cohesion measure between two points
to the cohesion measure between two sets.

Definition 5 (Cohesion measure between two sets) Define
the cohesion measure between two sets S1 and S2, denoted
by γ(S1, S2), as the sum of the cohesion measures of all the
pairs of two points (with one point in S1 and the other point
in S2), i.e.,

γ(S1, S2) =
∑
x∈S1

∑
y∈S2

γ(x, y). (8)
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z1 z2
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z1 z2
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z1 z2
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Fig. 2. Illustrating examples of the cohesion measure in R2: (a) incohesive
as d(x, z1)+ d(y, z2) ≤ d(z1, z2), (b) incohesive as d(w, z1)+ d(x,w) ≥
d(x, z1) and d(y, w) + d(w, z2) ≥ d(y, z2), and (c) cohesive d(x,w) +
d(w, y) ≥ d(x, y) and d(w, z1) + d(w, z2) ≥ d(z1, z2).

Two sets S1 and S2 are said to be cohesive (resp. incohesive)
if γ(S1, S2) ≥ 0 (resp. γ(S1, S2) ≤ 0).

C. Equivalent statements of clusters

Now we define what a cluster is in terms of the cohesion
measure.

Definition 6 (Cluster) A nonempty set S is called a cluster
if it is cohesive to itself, i.e.,

γ(S, S) ≥ 0. (9)

In the following, we show the first main theorem of the
paper. Its proof is given in Appendix B.

Theorem 7 Consider a nonempty set S that is not equal to
Ω. Let Sc = Ω\S be the set of points that are not in S. Also,
let d̄(S1, S2) be the average distance between two randomly
selected points with one point in S1 and another point in S2,
i.e.,

d̄(S1, S2) =
1

|S1| × |S2|
∑
x∈S1

∑
y∈S2

d(x, y). (10)

The following statements are equivalent.
(i) The set S is a cluster, i.e., γ(S, S) ≥ 0.
(ii) The set Sc is a cluster, i.e., γ(Sc, Sc) ≥ 0.
(iii) The two sets S and Sc are incohesive, i.e.,

γ(S, Sc) ≤ 0.
(iv) The set S is more cohesive to itself than to Sc, i.e.,

γ(S, S) ≥ γ(S, Sc).

(v) 2d̄(S,Ω)− d̄(Ω,Ω)− d̄(S, S) ≥ 0.
(vi) The relative distance from Ω to S is not smaller than

the relative distance from S to S, i.e., RD(Ω||S) ≥
RD(S||S).

(vii) The relative distance from Sc to S is not smaller than
the relative distance from S to S, i.e., RD(Sc||S) ≥
RD(S||S).

(viii) 2d̄(S, Sc)− d̄(S, S)− d̄(Sc, Sc) ≥ 0.
(ix) The relative distance from S to Sc is not smaller than

the relative distance from Ω to Sc, i.e., RD(S||Sc) ≥
RD(Ω||Sc).

(x) The relative distance from Sc to S is not smaller than
the relative distance from Ω to S, i.e., RD(Sc||S) ≥
RD(Ω||S).

One surprise finding in Theorem 7(ii) is that the set Sc is
also a cluster. This shows that the points inside S are cohesive
and the points outside S are also cohesive. Thus, there seems
a boundary between S and Sc from the cohesion measure. An-
other surprise finding is in Theorem 7(viii). One usually would
expect that a cluster S should satisfy d̄(S, S) ≤ d̄(S, Sc). But
it seems our definition of a cluster is much weaker than that.
Regarding the scale invariance property, it is easy to see from
Theorem 7(viii) that the inequality there is still satisfied if
we scale the distance measure by a constant factor. Thus, a
cluster of data points is still a cluster after scaling the distance
measure by a constant factor. Regarding the richness property,
we argue that there exists a distance measure such that any
subset of points in Ω is a cluster. To see this, we simply let the
distance between any two points in the subset be equal to 0 and
the distance between a point outside the subset to a point in
the subset be equal to 1. Since a point x itself is a cluster, i.e.,
γ(x, x) ≥ 0, we then have γ(x, y) = γ(x, x) ≥ 0 for any two
points x and y in the subset. From (9), the subset is a cluster
under such a choice of the distance measure. Furthermore,
one can also see from Theorem 7(vii) that for a cluster S,
if we decrease the relative distance between two points in S
and increase the relative distance between one point in S and
another point in Sc, then the set S is still a cluster under such
a ”consistent” change.

We also note that in our proof of Theorem 7 we only need
d(·, ·) to be symmetric. As such, the results in Theorem 7 also
hold even when the triangular inequality is not satisfied.

III. A HIERARCHICAL AGGLOMERATIVE ALGORITHM

Once we define what a cluster is, our next question is

How do we find clusters and good partitions of clusters?

For this, we turn to an objective-based approach. We will
show that clusters can be found by optimizing two specific
objective functions by a hierarchical algorithm in Section III
and a partitional algorithm in Section IV.

In the following, we first define a quality measure for a
partition of Ω.

Definition 8 (Modularity) Let Sk, k = 1, 2, . . . ,K, be a
partition of Ω = {x1, x2, . . . , xn}, i.e., Sk ∩ Sk′ is an empty
set for k ̸= k′ and ∪K

k=1Sk = Ω. The modularity index Q
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ALGORITHM 1: The Hierarchical Agglomerative Algo-
rithm
Input: A data set Ω = {x1, x2, . . . , xn} and a distance

measure d(·, ·).
Output: A partition of clusters {S1, S2, . . . , SK}.
Initially, K = n; Si = {xi}, i = 1, 2, . . . , n;
Compute the cohesion measures γ(Si, Sj) = γ(xi, xj)
for all i, j = 1, 2, . . . , n;
while there exists some i and j such that γ(Si, Sj) > 0
do

Merge Si and Sj into a new set Sk, i.e.,
Sk = Si ∪ Sj ;
γ(Sk, Sk) = γ(Si, Si) + 2γ(Si, Sj) + γ(Sj , Sj);
for each ℓ ̸= k do

γ(Sk, Sℓ) = γ(Sℓ, Sk) = γ(Si, Sℓ) + γ(Sj , Sℓ);
end
K = K − 1;

end
Reindex the K remaining sets to {S1, S2, . . . , SK};

with respect to the partition Sk, k = 1, 2, . . . ,K, is defined
as follows:

Q =
K∑

k=1

γ(Sk, Sk). (11)

Based on such a quality measure, we can thus formulate
the clustering problem as an optimization problem for finding
a partition S1, S2, . . . , SK (for some unknown K) that maxi-
mizes the modularity index Q. Note that

Q =

K∑
k=1

γ(Sk, Sk) =

K∑
k=1

∑
x∈Sk

∑
y∈Sk

γ(x, y)

=
∑
x∈Ω

∑
y∈Ω

γ(x, y)δc(x),c(y), (12)

where c(x) is the cluster of x and δc(x),c(y) = 1 if x and y
are in the same cluster. In view of (12), another way to look
at the optimization problem is to find the assignment of each
point to a cluster. However, it was shown in [35] that finding
the optimal assignment for modularity maximization is NP-
complete in the strong sense and thus heuristic algorithms,
such as hierarchical algorithms and partitional algorithms are
commonly used in the literature for solving the modularity
maximization problem.

In Algorithm 1, we propose a hierarchical agglomerative
clustering algorithm that converges to a local optimum of
this objective. The algorithm starts from n clusters with each
point itself as a cluster. It then recursively merges two disjoint
cohesive clusters to form a new cluster until either there is a
single cluster left or all the remaining clusters are incohesive.
There are two main differences between a standard hierarchical
agglomerative clustering algorithm and ours:

(i) Stopping criterion: in a standard hierarchical agglom-
erative clustering algorithm, such as single linkage or
complete linkage, there is no stopping criterion. Here
our algorithm stops when all the remaining clusters
are incohesive.

(ii) Greedy selection: our algorithm only needs to select
a pair of cohesive clusters to merge. It does not need
to be the most cohesive pair. This could potentially
speed up the algorithm in a large data set.

In the following theorem, we show that the modularity
index Q in (11) is non-decreasing in every iteration of the
hierarchical agglomerative clustering algorithm and it indeed
produces clusters. Its proof is given in Appendix C.

Theorem 9 (i) Every set returned by the hierarchical
agglomerative clustering algorithm is indeed a clus-
ter.

(ii) For the hierarchical agglomerative clustering algo-
rithm, the modularity index is non-decreasing in ev-
ery iteration and thus converges to a local optimum.

As commented before, our algorithm only requires to find
a pair of cohesive clusters to merge in each iteration. This
is different from the greedy selection in [1], Chapter 13,
and [36]. Certainly, our hierarchical agglomerative clustering
algorithm can also be operated in a greedy manner. As in
[36], in each iteration we can merge the two clusters that
result in the largest increase of the modularity index, i.e.,
the most cohesive pair. It is well-known (see e.g., the book
[2]) that a näive implementation of a greedy hierarchical
agglomerative clustering algorithm has O(n3) computational
complexity and the computational complexity can be further
reduced to O(n2 log(n)) if priority queues are implemented
for the greedy selection. We also note that there are several
hierarchical agglomerative clustering algorithms proposed in
the literature for community detection in networks (see e.g.,
[37], [38], [39], [40]). These algorithms are also based on
“modularity” maximization. Among them, the fast unfolding
algorithm in [38] is the fast one as there is a second phase of
building a new (and much smaller) network whose nodes are
the communities found during the previous phase. The New-
man and Girvan modularity in [37] is based on a probability
measure from a random selection of an edge in a network (see
[34] for more detailed discussions) and this is different from
the distance metric used in this paper.

In the following, we provide an illustrating example for our
hierarchical agglomerative clustering algorithm by using the
greedy selection of the most cohesive pair.

Example 10 (Zachary’s karate club) As in [37], [41], we
consider the Zachary’s karate club friendship network [42].
The set of data was observed by Wayne Zachary [42] over
the course of two years in the early 1970s at an American
university. During the course of the study, the club split into
two groups because of a dispute between its administrator
(node 34) and its instructor (node 1).

In Figure 3, we show the dendrogram generated by using
our hierarchical agglomerative clustering algorithm with the
greedy selection of the most cohesive pair in each iteration.
The distance measure is the geodesic distance of the graph
in [42]. The algorithm stops when there are three incohesive
clusters left, one led by the administrator (node 34), one led
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Fig. 3. The dendrogram from our greedy hierarchical agglomerative clustering
algorithm for the Zachary karate club friendship network.

by the instructor (node 1), and person number 9 himself.
According to [42], there was an interesting story for person
number 9. He was a weak supporter for the administrator.
However, he was only three weeks away from a test for black
belt (master status) when the split of the club occurred. He
would have had to give up his rank if he had joined the
administrator’s club. He ended up with the instructor’s club.
We also run an additional step for our algorithm (to merge
the pair with the largest cohesive measure) even though the
remaining three clusters are incohesive. The additional step
reveals that person number 9 is clustered into the instructor’s
club.

IV. A PARTITIONAL ALGORITHM

A. Triangular distance

In this section, we consider another objective function.

Definition 11 (normalized modularity) Let Sk, k =
1, 2, . . . ,K, be a partition of Ω = {x1, x2, . . . , xn}, i.e.,
Sk ∩ Sk′ is an empty set for k ̸= k′ and ∪K

k=1Sk = Ω. The
normalized modularity index R with respect to the partition
Sk, k = 1, 2, . . . ,K, is defined as follows:

R =
K∑

k=1

1

|Sk|
γ(Sk, Sk). (13)

Unlike the hierarchical agglomerative clustering algorithm
in the previous section, in this section we assume that K is
fixed and known in advance. As such, we may use an approach
similar to the classical K-means algorithm by iteratively
assigning each point to the nearest set (until it converges).
Such an approach requires a measure that can measure how
close a point x to a set S is. In the K-means algorithm, such
a measure is defined as the square of the distance between
x and the centroid of S. However, there is no centroid for a
set in a non-Euclidean space and we need to come up with
another measure.

z1

z2

x

y

S

Fig. 4. An illustration of the triangular distance in R2.

Our idea for measuring the distance from a point x to a
set S is to randomly choose two points z1 and z2 from S
and consider the three sides of the triangle x, z1 and z2.
Note that the triangular inequality guarantees that d(x, z1) +
d(x, z2)− d(z1, z2) ≥ 0. Moreover, if x is close to z1 and z2,
then d(x, z1) + d(x, z2)− d(z1, z2) should also be small. We
illustrate such an intuition in Figure 4, where there are two
points x and y and a set S in R2. Such an intuition leads to
the following definition of triangular distance from a point x
to a set S.

Definition 12 (Triangular distance) The triangular distance
from a point x to a set S, denoted by ∆(x, S), is defined as
follows:

∆(x, S) =
1

|S|2
∑
z1∈S

∑
z2∈S

(
d(x, z1) + d(x, z2)− d(z1, z2)

)
.

(14)

In the following lemma, we show several properties of the
triangular distance and its proof is given in Appendix D.

Lemma 13 (i)

∆(x, S) = 2d̄({x}, S)− d̄(S, S) ≥ 0. (15)

(ii)

∆(x, S) = γ(x, x)− 2

|S|
γ({x}, S) + 1

|S|2
γ(S, S).

(16)
(iii) Let Sk, k = 1, 2, . . . ,K, be a partition of Ω =

{x1, x2, . . . , xn}. Then

K∑
k=1

∑
x∈Sk

∆(x, Sk) =
∑
x∈Ω

γ(x, x)−R. (17)

(iv) Let Sk, k = 1, 2, . . . ,K, be a partition of Ω =
{x1, x2, . . . , xn} and c(x) be the index of the set
to which x belongs, i.e., x ∈ Sc(x). Then

K∑
k=1

∑
x∈Sk

∆(x, Sk) =
K∑

k=1

∑
x∈Sk

d̄({x}, Sk)

=
∑
x∈Ω

d̄({x}, Sc(x)). (18)



A MATHEMATICAL THEORY FOR CLUSTERING IN METRIC SPACES 8

ALGORITHM 2: The K-sets Algorithm
Input: A data set Ω = {x1, x2, . . . , xn}, a distance

measure d(·, ·), and the number of sets K.
Output: A partition of sets {S1, S2, . . . , SK}.
(0) Initially, choose arbitrarily K disjoint nonempty sets
S1, . . . , SK as a partition of Ω.
(1) for i = 1, 2, . . . , n do

Compute the triangular distance ∆(xi, Sk) for each
set Sk by using (15).
Find the set to which the point xi is closest in terms
of the triangular distance.
Assign point xi to that set.

end
(2) Repeat from (1) until there is no further change.

The first property of this lemma is to represent triangular
distance by the average distance. The second property is to
represent the triangular distance by the cohesion measure.
Such a property plays an important role for the duality result
in Section V. The third property shows that the optimization
problem for maximizing the normalized modularity R is
equivalent to the optimization problem that minimizes the sum
of the triangular distance of each point to its set. The fourth
property further shows that such an optimization problem is
also equivalent to the optimization problem that minimizes
the sum of the average distance of each point to its set.
Note that d̄({x}, Sk) =

1
|Sk|

∑
y∈Sk

d(x, y). The objective for
maximizing the normalized modularity R is also equivalent to
minimize

K∑
k=1

1

|Sk|
∑
x∈Sk

∑
y∈Sk

d(x, y).

This is different from the K-median objective, the K-means
objective and the min-sum objective addressed in [21].

B. The K-sets algorithm

In the following, we propose a partitional clustering algo-
rithm, called the K-sets algorithm in Algorithm 2, based on
the triangular distance. The algorithm is very simple. It starts
from an arbitrary partition of the data points that contains K
disjoint sets. Then for each data point, we assign the data
point to the closest set in terms of the triangular distance. We
repeat the process until there is no further change. Unlike the
Lloyd iteration that needs two-step minimization, the K-sets
algorithm only takes one-step minimization. This might give
the K-sets algorithm the computational advantage over the
K-medoids algorithms [6], [1], [7], [8].

In the following theorem, we show the convergence of the
K-sets algorithm. Moreover, for K = 2, the K-sets algorithm
yields two clusters. Its proof is given in Appendix E.

Theorem 14 (i) In the K-sets algorithm based on the
triangular distance, the normalized modularity is
increasing when there is a change, i.e., a point is
moved from one set to another. Thus, the algorithm

Fig. 5. Two rings: (a) a clustering result by the K-means algorithm, and (b)
a clustering result by the K-sets algorithm.

converges to a local optimum of the normalized
modularity.

(ii) Let S1, S2, . . . , SK be the K sets when the algorithm
converges. Then for all i ̸= j, the two sets Si and
Sj are two clusters if these two sets are viewed in
isolation (by removing the data points not in Si∪Sj

from Ω).

An immediate consequence of Theorem 14 (ii) is that for
K = 2, the two sets S1 and S2 are clusters when the algorithm
converges. However, we are not able to show that for K ≥ 3
the K sets, S1, S2, . . . , SK , are clusters in Ω. On the other
hand, we are not able to find a counterexample either. All the
numerical examples that we have tested for K ≥ 3 yield K
clusters.

C. Experiments

In this section, we report several experimental results for
the K-sets algorithm: including the dataset with two rings in
Section IV-C1, the stochastic block model in Section IV-C2,
and the mixed National Institute of Standards and Technology
dataset in Section IV-C3.

1) Two rings: In this section, we first provide an illustrating
example for the K-sets algorithm.

In Figure 5, we generate two rings by randomly placing
500 points in R2. The outer (resp. inner) ring consists of 300
(resp. 200) points. The radius of a point in the outer (resp.
inner) ring is uniformly distributed between 20 and 22 (resp.
10 and 12). The angle of each point is uniformly distributed
between 0 and 2π. In Figure 5(a), we show a typical clustering
result by using the classical K-means algorithm with K = 2.
As the centroids of these two rings are very close to each
other, it is well-known that the K-means algorithm does not
perform well for the two rings. Instead of using the Euclidean
distance as the distance measure for our K-sets algorithm, we
first convert the two rings into a graph by adding an edge
between two points with the Euclidean distance less than 5.
Then the distance measure between two points is defined as
the geodesic distance of these two points in the graph. By
doing so, we can then easily separate these rings by using the
K-sets algorithm with K = 2 as shown in Figure 5(b).

The purpose of this example is to show the limitation of the
applicability of the K-means algorithm. The data points for
the K-means algorithm need to be in some Euclidean space.
On the other hand, the data points for the K-sets algorithms
only need to be in some metric space. As such, the distance
matrix constructed from a graph cannot be directly applied by
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the K-means algorithm while it is still applicable for the K-
sets algorithm. We note that one can still apply the K-means
algorithm by embedding the data points in a non-Euclidean
space into a Euclidean space. One common approach of doing
that is known as spectral clustering in the literature (see e.g.,
[14], [43], [44], [45], [19]).

2) Stochastic block model: The stochastic block model
(SBM), as a generalization of the Erdös-Rényi random graph
[46], is a commonly used method for generating random
graphs that can be used for benchmarking community detec-
tion algorithms [47], [48]. In a stochastic block model with q
blocks (communities), the total number of nodes in the random
graph are evenly distributed to these q blocks. The probability
that there is an edge between two nodes within the same
block is pin and the probability that there is an edge between
two nodes in two different blocks is pout. These edges are
generated independently. Let cin = n · pin , cout = n · pout.
Then it is known (see e.g., [49], [50], [47]) that these q
communities can be detected (in theory for a large network)
if

|cin − cout| > q
√

mean degree. (19)

In this paper, we use MODE-NET [48] to run SBM.
Specifically, we consider a stochastic block model with two
blocks. The number of nodes in the stochastic block model is
1,000 with 500 nodes in each of these two blocks. The average
degree of a node is set to be 3. The values of cin − cout of
these graphs are in the range from 2.5 to 5.9 with a common
step of 0.1. We generate 20 graphs for each cin−cout. Isolated
vertices are removed. Thus, the exact numbers of vertices used
in this experiment are slightly less than than 1,000.

We compare the K-sets algorithm (in Algorithm 2) and
the hierarchical agglomerative algorithm (in Algorithm 1)
with some other community detection algorithms, such as
OSLOM2 [51], infomap [52], [53], and fast unfolding [38].
The metric used for the K-sets algorithm and the hierarchical
agglomerative algorithm for each sample of the random graph
is the resistance distance, and this is pre-computed by NumPy
[54]. The resistance distance matrix (denoted by R = (Ri,j))
can be derived from the pseudo inverse of the Laplacian matrix
(denoted by Γ = (Γi,j)) as follows: [55]:

Ri,j =

{
0, if i = j,

Γi,i + Γj,j − Γi,j − Γj,i, otherwise.

The K-sets algorithm, the hierarchical agglomerative algo-
rithm and OSLOM2 are implemented in C++, and the others
are all taken from igraph [56] and are implemented in C
with python wrappers. In Table II, we show the average
running times for these four algorithms over 700 trials. The
pre-computation time for the K-sets algorithm is the time
to compute the distance matrix. Except infomap, the other
three algorithms are very fast. In Figure 6, we compute
the normalized mutual information measure (NMI) by using
a built-in function in igraph [56] for the results obtained
from these four algorithms. Each point is averaged over 20
random graphs from the stochastic block model. The error
bars are the 95% confidence intervals. In this stochastic block
model, the theoretical phase transition threshold from (19)

is cin − cout = 3.46. It seems that the K-sets algorithm
is able to detect these two blocks when cin − cout ≥ 4.5.
Its performance in that range is better than the hierarchical
agglomerative algorithm, infomap [52], [53], fast unfolding
[38] and OSLOM2 [51]. We note that the comparison is not
exactly fair as the hierarchical agglomerative algorithm and
the other three algorithms do not have the information of
the number of blocks (communities). We also note that our
hierarchical agglomerative algorithm performs better than fast
unfolding [38] in terms of NMI. A detailed examination of
our experiments reveals that our hierarchical agglomerative
algorithm ends up with only two or three clusters when
cin − cout is large. On the other hand, fast unfolding could
produce more than 10 clusters in the same range. As we use
greedy selection in our hierarchical agglomerative algorithm,
its computation time is substantially longer than fast unfolding.

For the K-sets algorithm, we also conduct an experiment
that uses the line graph (the edge-to-vertex dual graph) of
the original graph in the stochastic block model. For this
experiment, we use the K-sets algorithm to label the edges
into two clusters according to the resistance distance of the line
graph. Each node is then labelled by the majority vote of the
labels of its edges. As shown in Figure 6, the K-sets algorithm
using the line graph (the curve marked with K-sets (line
graph)) performs better than the K-sets algorithm using the
original graph. This shows that the choice of the right feature
(and the associated distance metric) plays an important role
in the clustering problem. In fact, it is known (see e.g., [57])
that the second eigenvector of the non-backtracking matrix is
correlated with the communities in the stochastic block model
and it can be used for producing nearly optimal community
detection results in such a model. Feature selection (and the
associated distance metric) is beyond the scope of this paper.

TABLE II
AVERAGE RUNNING TIME (IN SECONDS).

pre-comp. running total
Infomap 0 0.7634 0.7634

Fast unfolding 0 0.0074 0.0074
OSLOM2 0 0.0059 0.0059

K-sets 2.3096 0.0060 2.3156
K-sets (line graph) 7.0140 0.0367 7.0507

Hierarchical 3.0076 4.9082 7.9158

3) Mixed National Institute of Standards and Technology
dataset: In this section, we consider a real-world dataset, the
mixed National Institute of Standards and Technology dataset
(the MNIST dataset) [58]. The MNIST dataset contains 60,000
samples of hand-written digits. These samples are 28×28
pixels grayscale images (i.e., each of the image is a 784
dimensional data point). For our experiments, we select the
first 1,000 samples from each set of the digit 0 to 9 to create
a total number of 10,000 samples.

To fairly evaluate the performance of the K-sets algo-
rithm, we compare the K-sets algorithm with two clustering
algorithms in which the number of clusters is also known
a priori, i.e., the K-means++ algorithm [59] and the K-
medoids algorithm [60]. For the MNIST dataset, the number
of clusters is 10 (for the ten digits, 0, 1, 2, . . . , 9). The K-
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Fig. 6. Comparison of infomap [52], [53], fast unfolding [38], OSLOM2 [51],
Hierarchical (Algorithm 1) and K-sets (Algorithm 2) for the stochastic block
model with two blocks. Each point is averaged over 20 such graphs. The
error bars are the 95% confidence intervals. The theoretical phase transition
threshold in this case is 3.46.

means++ algorithm is an improvement of the standard K-
means algorithm with a specific method to choose the initial
centroids of the K clusters. Like the K-sets algorithm, the
K-medoids algorithm is also a clustering algorithm that uses
a distance measure. The key difference between the K-sets
algorithm and the K-medoids algorithm is that we use the tri-
angular distance to a set for the assignment of each data point
and the K-medoids algorithm uses the distance to a medoid
for such an assignment. The Euclidean distance between two
data points (samples from the MNIST dataset) for the K-
medoids algorithm and the K-sets algorithm are pre-computed
by NumPy [54]. The K-sets algorithm is implemented in C++,
and the others are implemented in C with python wrappers. All
the programs are executed on an Acer Altos-T350-F2 machine
with two Intel(R) Xeon(R) CPU E5-2690 v2 processors. In
order to have a fair comparison of their running times, the
parallelization of each program is disabled, i.e., only one core
is used in these experiments. We assume that the input data
is already stored in the main memory and the time consumed
for I/O is not recorded.

In Table III, we show the average running times for
these three algorithms over 100 trials. Both the K-medoids
algorithm and the K-sets algorithm need to compute the
distance matrix and this is shown in the row marked with
the pre-computation time. The total running times for these
three algorithms are roughly the same for this experiment.
In Figure 7, we compute the normalized mutual information
measure (NMI) by using a built-in function in igraph [56]
for the results obtained from these three algorithms. Each
point is averaged over 100 trials. The error bars are the 95%
confidence intervals. In view of Figure 7, the K-sets algorithm
outperforms the K-means++ algorithm and the K-medoids
algorithm for the MNIST dataset. One possible explanation
for this is that both the the K-means++ algorithm and the
K-medoids algorithm only select a single representative data
point for a cluster and that representative data point may not
be able to represent the whole cluster well enough. On the
other hand, the K-sets algorithm uses the triangular distance

K-means++ K-medoids K-sets

N
M

I

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

Fig. 7. Comparison of K-means++ [59], K-medoids [60] and K-sets for the
MNIST dataset. Each point is averaged over 100 trials. The error bars are the
95% confidence intervals.

that takes the distance to every point in a cluster into account.

TABLE III
AVERAGE RUNNING TIME (IN SECONDS).

K-means++ K-medoids K-sets
pre-computation 0 36.981 36.981

running 49.940 1.228 1.801
total 49.940 38.209 38.782

V. DUALITY BETWEEN A COHESION MEASURE AND A
DISTANCE MEASURE

A. The duality theorem

In this section, we show the duality result between a
cohesion measure and a distance measure. In the following,
we first provide a general definition for a cohesion measure.

Definition 15 A measure between two points x and y, denoted
by β(x, y), is called a cohesion measure for a set of data points
Ω if it satisfies the following three properties:

(C1) (Symmetry) β(x, y) = β(y, x) for all x, y ∈ Ω.
(C2) (Zero-sum) For all x ∈ Ω,

∑
y∈Ω β(x, y) = 0.

(C3) (Triangular inequality) For all x, y, z in Ω,

β(x, x) + β(y, z)− β(x, z)− β(x, y) ≥ 0. (20)

In the following lemma, we show that the specific cohesion
measure defined in Section II indeed satisfies (C1)–(C3) in
Definition 15. Its proof is given in Appendix F.

Lemma 16 Suppose that d(·, ·) is a distance measure for Ω,
i.e., d(·, ·) satisfies (D1)–(D4). Let

β(x, y) =
1

n

∑
z2∈Ω

d(z2, y) +
1

n

∑
z1∈Ω

d(x, z1)

− 1

n2

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1)− d(x, y). (21)

Then β(x, y) is a cohesion measure for Ω.

We know from (5) that the cohesion measure γ(·, ·) defined
in Section II has the following representation:

γ(x, y) =
1

n

∑
z2∈Ω

d(z2, y) +
1

n

∑
z1∈Ω

d(x, z1)

− 1

n2

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1)− d(x, y).
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As a result of Lemma 16, it also satisfies (C1)–(C3) in
Definition 15. As such, we call the cohesion measure γ(·, ·)
defined in Section II the dual cohesion measure of the distance
measure d(·, ·).

On the other hand, if β(x, y) is a cohesion measure for Ω,
then there is an induced distance measure and it can be viewed
as the dual distance measure of the cohesion measure β(x, y).
This is shown in the following lemma and its proof is given
in Appendix G.

Lemma 17 Suppose that β(·, ·) is a cohesion measure for Ω.
Let

d(x, y) = (β(x, x) + β(y, y))/2− β(x, y). (22)

Then d(·, ·) is a distance measure that satisfies (D1)–(D4).

In the following theorem, we show the duality result. Its
proof is given in Appendix H.

Theorem 18 Consider a set of data points Ω. For a distance
measure d(·, ·) that satisfies (D1)–(D4), let

d∗(x, y) =
1

n

∑
z2∈Ω

d(z2, y) +
1

n

∑
z1∈Ω

d(x, z1)

− 1

n2

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1)− d(x, y) (23)

be the dual cohesion measure of d(·, ·). On the other hand,
For a cohesion measure β(·, ·) that satisfies (C1)–(C3), let

β∗(x, y) = (β(x, x) + β(y, y))/2− β(x, y) (24)

be the dual distance measure of β(·, ·). Then d∗∗(x, y) =
d(x, y) and β∗∗(x, y) = β(x, y) for all x, y ∈ Ω.

B. The dual K-sets algorithm
For the K-sets algorithm, we need to have a distance

measure. In view of the duality theorem between a cohesion
measure and a distance measure, we propose the dual K-sets
algorithm in Algorithm 3 that uses a cohesion measure. As
before, for a cohesion measure γ(·, ·) between two points, we
define the cohesion measure between two sets S1 and S2 as

γ(S1, S2) =
∑
x∈S1

∑
y∈S2

γ(x, y). (25)

Also, note from (16) that the triangular distance from a point
x to a set S can be computed by using the cohesion measure
as follows:

∆(x, S) = γ(x, x)− 2

|S|
γ({x}, S) + 1

|S|2
γ(S, S). (26)

As a direct result of the duality theorem in Theorem 18 and
the convergence result of the K-sets algorithm in Theorem 14,
we have the following convergence result for the dual K-sets
algorithm.

Corollary 19 As in (13), we define the normalized modularity
as

∑K
k=1

1
|Sk|γ(Sk, Sk). For the dual K-sets algorithm, the

normalized modularity is increasing when there is a change,
i.e., a point is moved from one set to another. Thus, the
algorithm converges to a local optimum of the normalized
modularity. Moreover, for K = 2, the dual K-sets algorithm
yields two clusters when the algorithm converges.

ALGORITHM 3: The dual K-sets Algorithm
Input: A data set Ω = {x1, x2, . . . , xn}, a cohesion

measure γ(·, ·), and the number of sets K.
Output: A partition of sets {S1, S2, . . . , SK}.
(0) Initially, choose arbitrarily K disjoint nonempty sets
S1, . . . , SK as a partition of Ω.
(1) for i = 1, 2, . . . , n do

Compute the triangular distance ∆(xi, Sk) for each
set Sk by using (26).
Find the set to which the point xi is closest in terms
of the triangular distance.
Assign point xi to that set.

end
(2) Repeat from (1) until there is no further change.

C. Connections to the kernel K-means algorithm

In this section, we show the connection between the dual
K-sets algorithm and the kernel K-means algorithm in the
literature (see e.g., [61], [62]). In [62], it was shown that a
general weighted kernel K-means objective is mathematically
equivalent to a weighted graph clustering objective, including
the ratio cut, normalized cut, and ratio association criteria.

Let us consider the n × n matrix Γ = (γi,j) with γi,j =
γ(xi, xj) being the cohesion measure between xi and xj . Call
the matrix Γ the cohesion matrix (corresponding to the cohe-
sion measure γ(·, ·)). Since γ(xi, xj) = γ(xj , xi), the matrix Γ
is symmetric and thus has real eigenvalues λk, k = 1, 2, . . . , n.
Let I be the n × n identity matrix and σ ≥ −min1≤k≤n λk.
Then the matrix Γ̃ = σI+Γ is positive semi-definite as its n
eigenvalues λ̃k = σ+λk, k = 1, 2, . . . , N are all nonnegative.
Let vk = (vk,1, vk,2, . . . , vk,n)

T , k = 1, 2, . . . , n be the
eigenvector of Γ corresponding to the eigenvalue λk. Then vk
is also the eigenvector of Γ̃ corresponding to the eigenvalue
λ̃k. Thus, we can decompose the matrix Γ̃ as follows:

Γ̃ =
n∑

k=1

λ̃kvkv
T
k , (27)

where vTk is the transpose of vk. Now we choose the mapping
ϕ : Ω 7→ Rn as follows:

ϕ(xi) =
(√

λ̃1v1,i,

√
λ̃2v2,i, . . . ,

√
λ̃nvn,i

)T

, (28)

for i = 1, 2 . . . , n. Note that

ϕ(xi)
T · ϕ(xj) =

n∑
k=1

λ̃kvk,ivk,j

= (Γ̃)i,j = σδi,j + γ(xi, xj), (29)

where δi,j = 1 if i = j and 0 otherwise.
The “centroid” of a set S can be represented by the

corresponding centroid in Rn, i.e.,

1

|S|
∑
y∈S

ϕ(y), (30)
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and the square of the “distance” between a point x and the
“centroid” of a set S is(

ϕ(x)− 1

|S|
∑
y∈S

ϕ(y)
)T

·
(
ϕ(x)− 1

|S|
∑
y∈S

ϕ(y)
)

= (1− 2

|S|
1{x∈S} +

1

|S|
)σ + γ(x, x)− 2

|S|
γ({x}, S)

+
1

|S|2
γ(S, S), (31)

where 1{x∈S} is the indicator function that has value 1 if x is
in S and 0 otherwise. In view of (16), we then have(

ϕ(x)− 1

|S|
∑
y∈S

ϕ(y)
)T

·
(
ϕ(x)− 1

|S|
∑
y∈S

ϕ(y)
)

= (1− 2

|S|
1{x∈S} +

1

|S|
)σ +∆(x, S), (32)

where ∆(x, S) is the triangular distance from a point x to a
set S. Thus, the square of the “distance” between a point x
and the “centroid” of a set S is (1 − 1

|S| )σ + ∆(x, S) for a
point x ∈ S and (1 + 1

|S| )σ +∆(x, S) for a point x ̸∈ S. In
particular, when σ = 0, the dual K-sets algorithm is the same
as the sequential kernel K-means algorithm for the kernel Γ̃.
Unfortunately, the matrix Γ̃ may not be positive semi-definite
if σ is chosen to be 0. As indicated in [61], a large σ decreases
(resp. increases) the distance from a point x to a set S that
contains (resp. does not contain) that point. As such, a point
is more unlikely to move from one set to another set and the
kernel K-means algorithm is thus more likely to be trapped
in a local optimum.

To summarize, the dual K-sets algorithm operates in the
same way as a sequential version of the classical kernel
K-means algorithm by viewing the matrix Γ as a kernel.
However, there are two key differences between the dual K-
sets algorithm and the classical kernel K-means algorithm: (i)
the dual K-sets algorithm guarantees the convergence even
though the matrix Γ from a cohesion measure is not positive
semi-definite, and (ii) the dual K-sets algorithm can only
be operated sequentially and the kernel K-means algorithm
can be operated in batches. To further illustrate the difference
between these two algorithms, we show in the following two
examples that a cohesion matrix may not be positive semi-
definite and a positive semi-definite matrix may not be a
cohesion matrix.

Example 20 In this example, we show there is a cohesion
matrix Γ that is not a positive semi-definite matrix.

Γ =


0.44 0.04 0.04 0.04 −0.56
0.04 0.64 −0.36 −0.36 0.04
0.04 −0.36 0.64 −0.36 0.04
0.04 −0.36 −0.36 0.64 0.04

−0.56 0.04 0.04 0.04 0.44

 . (33)

The eigenvalues of this matrix are −0.2, 0, 1, 1, and 1.

Example 21 In this example, we show there is a positive
semi-definite matrix M = (mi,j) that is not an cohesion
matrix.

M =


0.375 −0.025 −0.325 −0.025

−0.025 0.875 −0.025 −0.825
−0.325 −0.025 0.375 −0.025
−0.025 −0.825 −0.025 0.875

 . (34)

The eigenvalues of this matrix are 0, 0.1, 0.7, and 1.7. Even
though the matrix M is symmetric and has all its row sums
and column sums being 0, it is still not a cohesion matrix as
m1,1 −m1,2 −m1,4 +m2,4 = −0.4 < 0.

D. Constructing a cohesion measure from a similarity mea-
sure

A similarity measure is in general defined as a bivariate
function of two distinct data points and it is often charac-
terized by a square matrix without specifying the diagonal
elements. In the following, we show how one can construct
a cohesion measure from a symmetric bivariate function by
further specifying the diagonal elements. Its proof is given in
Appendix I.

Proposition 22 Suppose a bivariate function β0 : Ω×Ω 7→ R
is symmetric, i.e., β0(x, y) = β0(y, x). Let β1(x, y) = β0(x, y)
for all x ̸= y and specify β1(x, x) such that

β1(x, x) ≥ max
x ̸=y ̸=z

[β1(x, z) + β1(x, y)− β1(y, z)]. (35)

Also, let

β(x, y) = β1(x, y)−
1

n

∑
z1∈Ω

β1(z1, y)

− 1

n

∑
z2∈Ω

β1(x, z2) +
1

n2

∑
z1∈Ω

∑
z2∈Ω

β1(z1, z2).(36)

Then β(x, y) is a cohesion measure for Ω.

We note that one simple choice for specifying β1(x, x) in
(35) is to set

β1(x, x) = 2βmax − βmin, (37)

where
βmax = max

x ̸=y
β(x, y), (38)

and
βmin = min

x ̸=y
β(x, y). (39)

In particular, if the similarity measure β(x, y) only has values
0 and 1 as in the adjacency matrix of a simple undirected
graph, then one can simply choose β1(x, x) = 2 for all x.

Example 23 (A cohesion measure for a graph) As an
illustrating example, suppose A = (ai,j) is the n×n adjacency
matrix of a simple undirected graph with ai,j = 1 if there
is an edge between node i and node j and 0 otherwise. Let
ki =

∑n
j=1 ai,j be the degree of node i and m = 1

2

∑n
i=1 ki be
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the total number of edges in the graph. Then one can simply
let β1(i, j) = 2δi,j + ai,j , where δi,j = 1 if i = j and 0
otherwise. By doing so, we then have the following cohesion
measure

β(i, j) = 2δi,j + ai,j −
2 + ki
n

− 2 + kj
n

+
2m+ 2n

n2
. (40)

We note that such a cohesion measure is known as the
deviation to indetermination null model in [63].

VI. CONCLUSIONS

In this paper, we developed a mathematical theory for
clustering in metric spaces based on distance measures and
cohesion measures. A cluster is defined as a set of data points
that are cohesive to themselves. The hierarchical agglomera-
tive algorithm in Algorithm 1 was shown to converge with a
partition of clusters. Our hierarchical agglomerative algorithm
differs from a standard hierarchical agglomerative algorithm in
two aspects: (i) there is a stopping criterion for our algorithm,
and (ii) there is no need to use the greedy selection. We
also proposed the K-sets algorithm in Algorithm 2 based
on the concept of triangular distance. Such an algorithm
appears to be new. Unlike the Lloyd iteration, it only takes
one-step minimization in each iteration and that might give
the K-sets algorithm the computational advantage over the
K-medoids algorithms. The K-sets algorithm was shown to
converge with a partition of two clusters when K = 2. Another
interesting finding of the paper is the duality result between a
distance measure and a cohesion measure. As such, one can
perform clustering either by a distance measure or a cohesion
measure. In particular, the dual K-sets algorithm in Algorithm
3 converges in the same way as a sequential version of the
kernel K-means algorithm without the need for the cohesion
matrix to positive semi-definite.

There are several possible extensions for our work:
(i) Asymmetric distance measure: One possible extension is to
remove the symmetric property in (D3) for a distance measure.
Our preliminary result shows that one only needs d(x, x) = 0
in (D2) and the triangular inequality in (D4) for the K-sets
algorithm to converge. The key insight for this is that one
can replace the original distance measure d(x, y) by a new
distance measure d̃(x, y) = d(x, y) + d(y, x). By doing so,
the new distance measure is symmetric.
(ii) Distance measure without the triangular inequality: An-
other possible extension is to remove the triangular inequal-
ity in (D4). However, the K-sets algorithm does not work
properly in this setting as the triangular distance is no longer
nonnegative. In order for the K-sets algorithm to converge,
our preliminary result shows that one can adjust the value of
the triangular distance based on a weaker notion of cohesion
measure. Results along this line will be reported separately.
(iii) Performance guarantee: Like the K-means algorithm, the
output of the K-sets algorithm also depends on the initial
partition. It would be of interest to see if it is possible to
derive performance guarantee for the K-sets algorithm (or
the optimization problem for the normalized modularity). In
particular, the approach by approximation stability in [21]

might be applicable as their threshold graph lemma seems
to hold when one replaces the distance from a point x to its
center c, i.e., d(x, c), by the average distance of a point x to
its set, i.e., d̄(x, S).
(iv) Local clustering: The problem of local clustering is to
find a cluster that contains a specific point x. Since we
already define what a cluster is, we may use the hierarchical
agglomerative algorithm in Algorithm 1 to find a cluster that
contains x. One potential problem of such an approach is the
output cluster might be very big. Analogous to the concept of
community strength in [34], it would be of interest to define a
concept of cluster strength and stop the agglomerative process
when the desired cluster strength can no longer be met.
(v) Reduction of computational complexity: Note that the
computation complexity for each iteration within the FOR loop
of the K-sets algorithm is O(Kn2) as it takes O(Kn) steps
to compute the triangular distance for each point and there are
n points that need to be assigned in each iteration. To further
reduce the computational complexity for such an algorithm,
one might exploit the idea of “sparsity” and this can be done
by the transformation of distance measure.
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APPENDIX

APPENDIX A

In this section, we prove Proposition 4.
(i) Since the distance measure d(·, ·) is symmetric, we have

from (5) that γ(x, y) = γ(y, x). Thus, the cohesion measure
between two points is symmetric.

(ii) We note from (6) that

γ(x, x) =
1

n2

∑
z2∈Ω

∑
z1∈Ω

(
d(x, z1) + d(z2, x)

−d(z1, z2)− d(x, x)
)
. (41)

Since d(x, x) = 0, we have from the triangular inequality that
γ(x, x) ≥ 0.

(iii) Note from (41) and (6) that

γ(x, x)− γ(x, y)

=
1

n

∑
z2∈Ω

(
d(z2, x)− d(x, x) + d(x, y)− d(z2, y)

)
.

Since d(x, x) = 0, we have from the triangular inequality that

γ(x, x) ≥ γ(x, y).

(iv) This can be easily verified by summing y in (5).

APPENDIX B

In this section, we prove Theorem 7.
We first show several properties that will be used in the

proof of Theorem 7.

Proposition 24 (i) Suppose that S2 and S3 are two
disjoint subsets of Ω. Then

d̄(S1, S2 ∪ S3)

=
|S2|

|S2|+ |S3|
d̄(S1, S2) +

|S3|
|S2|+ |S3|

d̄(S1, S3).

(42)

(ii) The cohesion measure between two sets can be rep-
resented in terms of the average distance as follows:

γ(S1, S2) = |S1| · |S2| ·
(
d̄(Ω, S2) + d̄(S1,Ω)

−d̄(Ω,Ω)− d̄(S1, S2)
)
. (43)

(iii) The relative distance from set S1 to another set S2

can be represented in terms of the average distance
as follows:

RD(S1||S2) = d̄(S1, S2)− d̄(S1,Ω). (44)

(iv) Suppose that S is a nonempty set and it is not equal
to Ω. Let Sc = Ω\S be the set of points that are not
in S. Then

γ(S, S) = −γ(Sc, S) = γ(Sc, Sc). (45)

(v) For any two sets S1 and S2,

RD(Ω||S2)− RD(S1||S2)

= RD(Ω||S1)− RD(S2||S1). (46)

Proof. (i) This is trivial from the definition of the average
distance in (10).

(ii) From (5), one can represent the cohesion measure be-
tween two points in terms of the average distance as follows:

γ(x, y) = d̄(Ω, y) + d̄(x,Ω)− d̄(Ω,Ω)− d(x, y). (47)

That (43) holds then follows from (8) and (47).
(iii) From (1), one can represent the relative distance from

x to y in terms of the average distance as follows:

RD(x||y) = d(x, y)− d̄(x,Ω). (48)

That (44) holds then follows from (48) and (3).
(iv) From (43), we know that γ(Ω, S) = γ(S ∪ Sc, S) = 0.

Thus, γ(S, S) + γ(Sc, S) = 0. We then have

γ(S, S) = −γ(Sc, S). (49)

From (49), we also have

γ(Sc, Sc) = −γ(S, Sc). (50)

From the symmetric property of the cohesion measure, we
have γ(Sc, S) = γ(S, Sc). As a result of (49) and (50), we
then have

γ(S, S) = γ(Sc, Sc).

(v) Note from (44) and the symmetric property of the
distance measure that

RD(Ω||S2)− RD(S1||S2)

= d̄(Ω, S2)− d̄(Ω,Ω)− (d̄(S1, S2)− d̄(S1,Ω))

= d̄(Ω, S1)− d̄(Ω,Ω)− (d̄(S2, S1)− d̄(S2,Ω))

= RD(Ω||S1)− RD(S2||S1)

Proof. (Theorem 7) (i) ⇒ (ii): If γ(S, S) ≥ 0, we then have
from (45) that

γ(Sc, Sc) = γ(S, S) ≥ 0. (51)

(ii) ⇒ (iii): If γ(Sc, Sc) ≥ 0, then it follows from (45) that

γ(Sc, S) = −γ(Sc, Sc) ≤ 0. (52)

(iii) ⇒ (iv): If γ(Sc, S) ≤ 0, then we have from (45) that
γ(S, S) = −γ(Sc, S) ≥ 0. Thus, γ(S, S) ≥ γ(S, Sc).

(iv) ⇒ (v): If γ(S, S) ≥ γ(S, Sc), then it follows from (52)
that

γ(S, S) ≥ γ(S, Sc) = −γ(S, S).

This then leads to γ(S, S) ≥ 0. From (43), we know that

γ(S, S) = |S|2 ·
(
2d̄(S,Ω)− d̄(Ω,Ω)− d̄(S, S)

)
≥ 0. (53)

Thus, 2d̄(S,Ω)− d̄(Ω,Ω)− d̄(S, S) ≥ 0.
(v) ⇒ (vi): Note from (44) that

RD(Ω||S)− RD(S||S)
= d̄(Ω, S)− d̄(Ω,Ω)− (d̄(S, S)− d̄(S,Ω))

= 2d̄(S,Ω)− d̄(Ω,Ω)− d̄(S, S).

Thus, if 2d̄(S,Ω)− d̄(Ω,Ω)− d̄(S, S) ≥ 0, then RD(Ω||S) ≥
RD(S||S).
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(vi) ⇒ (vii): Note from (42) and (44) that for any set S1

and any two disjoint sets S2 and S3

RD(S2 ∪ S3||S1) =
|S2|

|S2|+ |S3|
RD(S2||S1)

+
|S3|

|S2|+ |S3|
RD(S3||S1). (54)

We then have

RD(Ω||S) = RD(S∪Sc||S) = |S|
n

RD(S||S)+ |Sc|
n

RD(Sc||S).

Thus,

RD(Ω||S)− RD(S||S) = |Sc|
n

(
RD(Sc||S)− RD(S||S)

)
.

Clearly, if RD(Ω||S) ≥ RD(S||S), then RD(Sc||S) ≥
RD(S||S).

(vii) ⇒ (viii): Note from (42) and (44) that

RD(Sc||S)− RD(S||S)
= d̄(Sc, S)− d̄(Sc,Ω)− (d̄(S, S)− d̄(S,Ω))

= d̄(Sc, S)− d̄(Sc, S ∪ Sc)− d̄(S, S) + d̄(S, S ∪ Sc)

=
(n− |S|)

n

(
2d̄(S, Sc)− d̄(S, S)− d̄(Sc, Sc)

)
.

Thus, if RD(Sc||S) ≥ RD(S||S), then 2d̄(S, Sc)− d̄(S, S)−
d̄(Sc, Sc) ≥ 0.

(viii) ⇒ (ix): Note from (42) and (44) that

RD(S||Sc)− RD(Ω||Sc)

= d̄(S, Sc)− d̄(S,Ω)− (d̄(Ω, Sc)− d̄(Ω,Ω))

= d̄(S, Sc)− d̄(S, S ∪ Sc)− d̄(S ∪ Sc, Sc)

+d̄(S ∪ Sc, S ∪ Sc)

=
|S| × (n− |S|)

n2

(
2d̄(S, Sc)− d̄(S, S)− d̄(Sc, Sc)

)
.

Thus, if 2d̄(S, Sc) − d̄(S, S) − d̄(Sc, Sc) ≥ 0, then
RD(S||Sc) ≥ RD(Ω||Sc).

(ix) ⇒ (x): Note from (46) that

RD(Sc||S)− RD(Ω||S) = RD(S||Sc)− RD(Ω||Sc).

Thus, if RD(S||Sc) ≥ RD(Ω||Sc), then RD(Sc||S) ≥
RD(Ω||S).

(x) ⇒ (i): From (43) and (44), it follows that

γ(S1, S2) = |S1| · |S2| ·
(

RD(Ω||S2)− RD(S1||S2)
)
. (55)

Note from (45) and (55) that

γ(S, S) = −γ(S, Sc) = −|S|·|Sc|·
(

RD(Ω||S)−RD(Sc||S)
)
.

Thus, if RD(Sc||S) ≥ RD(Ω||S), then γ(S, S) ≥ 0.

APPENDIX C

In this section, we prove Theorem 9.
(i) We prove this by induction. Since γ(x, x) ≥ 0, every

point is a cluster by itself. Thus, all the initial n sets are
disjoint clusters. Assume that all the remaining sets are clusters
as our induction hypothesis. In each iteration, we merge two
disjoint cohesive clusters. Suppose that Si and Sj are merged
to form Sk. It then follows from (8) that

γ(Sk, Sk) = γ(Si, Si) + 2γ(Si, Sj) + γ(Sj , Sj). (56)

As both Si and Sj are clusters from our induction hypothesis,
we have γ(Si, Si) ≥ 0 and γ(Sj , Sj) ≥ 0. Also, since Si and
Sj are cohesive, i.e., γ(Si, Sj) ≥ 0, we then have from (56)
that γ(Sk, Sk) ≥ 0 and the set Sk is also a cluster.

(ii) To see that the modularity index is non-decreasing in
every iteration, note from (56) and γ(Si, Sj) ≥ 0 that

γ(Sk, Sk) ≥ γ(Si, Si) + γ(Sj , Sj).

As such, the algorithm converges to a local optimum.

APPENDIX D

In this appendix, we prove Lemma 13.
(i) From the triangular inequality, it is easy to see from the

definition of the triangular distance in (14) that ∆(x, S) ≥ 0.
Note that

1

|S|2
∑
z1∈S

∑
z2∈S

d(x, z1) =
1

|S|
∑
z1∈S

d(x, z1) = d̄({x}, S).

Similarly,

1

|S|2
∑
z1∈S

∑
z2∈S

d(x, z2) = d̄({x}, S).

Thus, the triangular distance in (14) can also be written as
∆(x, S) = 2d̄({x}, S)− d̄(S, S).

(ii) Recall from (43) that

γ(S1, S2) = |S1| · |S2| ·
(
d̄(Ω, S2) + d̄(S1,Ω)

−d̄(Ω,Ω)− d̄(S1, S2)
)
.

Thus,

γ(x, x)− 2

|S|
γ({x}, S) + 1

|S|2
γ(S, S)

= 2d̄({x},Ω)− d̄(Ω,Ω)− 2
(
d̄({x},Ω) + d̄(S,Ω)

−d̄(Ω,Ω)− d̄({x}, S)
)

+
(
2d̄(Ω, S)− d̄(Ω,Ω)− d̄(S, S)

)
= 2d̄({x}, S)− d̄(S, S) = ∆(x, S),

where we use (i) of the lemma in the last equality.
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(iii) Note from (ii) that

K∑
k=1

∑
x∈Sk

∆(x, Sk)

=
K∑

k=1

∑
x∈Sk

(
γ(x, x)− 2

|Sk|
γ({x}, Sk)

+
1

|Sk|2
γ(Sk, Sk)

)
=

K∑
k=1

∑
x∈Sk

γ(x, x)−
K∑

k=1

1

|Sk|
γ(Sk, Sk)

=
∑
x∈Ω

γ(x, x)−R. (57)

(iv) From (i) of this lemma, we have

K∑
k=1

∑
x∈Sk

∆(x, Sk) =
K∑

k=1

∑
x∈Sk

(2d̄({x}, Sk)− d̄(Sk, Sk)).

Observe that ∑
x∈Sk

d̄({x}, Sk) = |Sk|d̄(Sk, Sk).

Thus,

K∑
k=1

∑
x∈Sk

∆(x, Sk) =
K∑

k=1

|Sk| · (2d̄(Sk, Sk)− d̄(Sk, Sk))

=

K∑
k=1

|Sk| · d̄(Sk, Sk) =

K∑
k=1

∑
x∈Sk

d̄({x}, Sk)

=
∑
x∈Ω

d̄(x, Sc(x)).

APPENDIX E

In this section, we prove Theorem 14. For this, we need to
prove the following two inequalities.

Lemma 25 For any set S and any point x that is not in S,∑
y∈S∪{x}

∆(y, S ∪ {x}) ≤
∑

y∈S∪{x}

∆(y, S), (58)

and ∑
y∈S

∆(y, S) ≤
∑
y∈S

∆(y, S ∪ {x}). (59)

Proof. We first show that for any set S and any point x that
is not in S,

d̄(S ∪ {x}, S ∪ {x})− 2d̄(S ∪ {x}, S) + d̄(S, S) ≤ 0. (60)

From the symmetric property and the weighted average prop-
erty in Proposition 24(i), we have

d̄(S ∪ {x}, S ∪ {x}) = |S|2

(|S|+ 1)2
d̄(S, S)

+
2|S|

(|S|+ 1)2
d̄({x}, S) + 1

(|S|+ 1)2
d̄({x}, {x}),

and

d̄(S ∪ {x}, S) = |S|
|S|+ 1

d̄(S, S) +
1

|S|+ 1
d̄({x}, S).

Note that

d̄({x}, {x}) = d(x, x) = 0.

Thus,

d̄(S ∪ {x}, S ∪ {x})− 2d̄(S ∪ {x}, S) + d̄(S, S)

=
1

(|S|+ 1)2

(
d̄(S, S)− 2d̄({x}, S)

)
≤ 0,

where we use (15) in the last inequality.
Note from (15) that∑

y∈S2

∆(y, S1) =
∑
y∈S2

(2d̄({y}, S1)− d̄(S1, S1))

= |S2| ·
(
2d̄(S1, S2)− d̄(S1, S1)

)
. (61)

Using (61) yields∑
y∈S∪{x}

∆(y, S ∪ {x})−
∑

y∈S∪{x}

∆(y, S)

= |S ∪ {x}| ·
(
2d̄(S ∪ {x}, S ∪ {x})

−d̄(S ∪ {x}, S ∪ {x})
)

−|S ∪ {x}| ·
(
2d̄(S, S ∪ {x})− d̄(S, S)

)
= |S ∪ {x}| ·

(
d̄(S ∪ {x}, S ∪ {x})

−2d̄(S, S ∪ {x}) + d̄(S, S)
)
. (62)

As a result of (60), we then have∑
y∈S∪{x}

∆(y, S ∪ {x})−
∑

y∈S∪{x}

∆(y, S) ≤ 0.

Similarly, using (61) and (60) yields∑
y∈S

∆(y, S)−
∑
y∈S

∆(y, S ∪ {x})

= |S| ·
(
2d̄(S, S)− d̄(S, S)

)
−|S| ·

(
2d̄(S ∪ {x}, S)− d̄(S ∪ {x}, S ∪ {x})

)
= |S| ·

(
d̄(S ∪ {x}, S ∪ {x})

−2d̄(S ∪ {x}, S) + d̄(S, S)
)

≤ 0 (63)

Proof. (Theorem 14) (i) Let Sk (resp. S′
k), k = 1, 2, . . . ,K,

be the partition before (resp. after) the change. Also let c(x)
be the index of the set to which x belongs. Suppose that
∆(xi, Sk∗) < ∆(xi, Sc(xi)) and xi is moved from Sc(xi) to
Sk∗ for some point xi and some k∗. In this case, we have
S′
k∗ = Sk∗ ∪ {xi}, S′

c(xi)
= S′

c(xi)
\{x} and S′

k = Sk
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for all k ̸= c(xi), k
∗. It then follows from ∆(xi, Sk∗) <

∆(xi, Sc(xi)) that

K∑
k=1

∑
x∈Sk

∆(x, Sk)

=
∑

k ̸=c(xi),k∗

∑
x∈Sk

∆(x, Sk)

+
∑

x∈Sc(xi)

∆(x, Sc(xi)) +
∑

x∈Sk∗

∆(x, Sk∗)

=
∑

k ̸=c(xi),k∗

∑
x∈Sk

∆(x, Sk) +
∑

x∈Sc(xi)
\{xi}

∆(x, Sc(xi))

+∆(xi, Sc(xi)) +
∑

x∈Sk∗

∆(x, Sk∗)

>
∑

k ̸=c(xi),k∗

∑
x∈Sk

∆(x, Sk) +
∑

x∈Sc(xi)
\{xi}

∆(x, Sc(xi))

+∆(xi, Sk∗) +
∑

x∈Sk∗

∆(x, Sk∗)

=
∑

k ̸=c(xi),k∗

∑
x∈S′

k

∆(x, S′
k) +

∑
x∈Sc(xi)

\{xi}

∆(x, Sc(xi))

+
∑

x∈Sk∗∪{xi}

∆(x, Sk∗), (64)

where we use the fact that S′
k = Sk for all k ̸= c(xi), k

∗, in
the last equality. From (58) and S′

k∗ = Sk∗ ∪ {xi}, we know
that ∑

x∈Sk∗∪{xi}

∆(x, Sk∗) ≥
∑

x∈Sk∗∪{xi}

∆(x, Sk∗ ∪ {xi})

=
∑

x∈S′
k∗

∆(x, S′
k∗). (65)

Also, it follows from (59) and S′
c(xi)

= S′
c(xi)

\{xi} that∑
x∈Sc(xi)

\{xi}

∆(x, Sc(xi)) ≥
∑

x∈Sc(xi)
\{xi}

∆(x, Sc(xi)\{xi})

=
∑

x∈S′
c(xi)

∆(x, S′
c(xi)

). (66)

Using (65) and (66) in (64) yields
K∑

k=1

∑
x∈Sk

∆(x, Sk)

>
∑

k ̸=c(xi),k∗

∑
x∈S′

k

∆(x, S′
k) +

∑
x∈S′

k∗

∆(x, S′
k∗)

+
∑

x∈S′
c(xi)

∆(x, S′
c(xi)

)

=
K∑

k=1

∑
x∈S′

k

∆(x, S′
k). (67)

In view of (17) and (67), we then conclude that the
normalized modularity is increasing when there is a change.
Since there is only a finite number of partitions for Ω, the
algorithm thus converges to a local optimum of the normalized
modularity.

(ii) The algorithm converges when there are no further
changes. As such, we know for any x ∈ Si and j ̸= i,
∆(x, Si) ≤ ∆(x, Sj). Summing up all the points x ∈ Si and
using (15) yields

0 ≥
∑
x∈Si

(
∆(x, Si)−∆(x, Sj)

)
=

∑
x∈Si

(
2d̄({x}, Si)− d̄(Si, Si)

)
−

∑
x∈Si

(
2d̄({x}, Sj)− d̄(Sj , Sj)

)
= |Si| ·

(
d̄(Si, Si)− 2d̄(Si, Sj) + d̄(Sj , Sj)

)
. (68)

When the two sets Si and Sj are viewed in isolation (by
removing the data points not in Si ∪ Sj from Ω), we have
Sj = Sc

i . Thus,

d̄(Si, Si)− 2d̄(Si, S
c
i ) + d̄(Sc

i , S
c
i ) ≤ 0.

As a result of Theorem 7(viii), we conclude that Si is a cluster
when the two sets Si and Sj are viewed in isolation. Also,
Theorem 7(ii) implies that Sj = Sc

i is also a cluster when the
two sets Si and Sj are viewed in isolation.

APPENDIX F

In this section, we prove Lemma 16.
We first show (C1). Since d(x, y) = d(y, x) for all x ̸= y,

we have from (21) that β(x, y) = β(y, x) for all x ̸= y.
To verify (C2), note from (21) that∑
y∈Ω

β(x, y) =
1

n

∑
y∈Ω

∑
z2∈Ω

d(z2, y) +
∑
z1∈Ω

d(x, z1)

− 1

n

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1)−
∑
y∈Ω

d(x, y)

= 0. (69)

Now we show (C3). Note from (21) that

β(x, x) + β(y, z)− β(x, z)− β(x, y)

= −d(x, x)− d(y, z) + d(x, z) + d(x, y). (70)

Since d(x, x) = 0, it then follows from the triangular inequal-
ity for d(·, ·) that

β(x, x) + β(y, z)− β(x, z)− β(x, y) ≥ 0.

APPENDIX G

In this section, we prove Lemma 17.
Clearly, d(x, x) = 0 from (22) and thus (D2) holds trivially.

That (D3) holds follows from the symmetric property in (C1)
of Definition 15.

To see (D1), choosing z = y in (20) yields

0 ≤ β(x, x) + β(y, y)− β(x, y)− β(x, y) = 2d(x, y).
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For the triangular inequality in (D4), note from (22) and
(20) in (C3) that

d(x, z) + d(z, y)− d(x, y)

=
(β(x, x) + β(z, z))

2
− β(x, z) +

(β(z, z) + β(y, y))

2

−β(z, y)− (β(x, x) + β(y, y))

2
+ β(x, y)

= β(z, z) + β(x, y)− β(z, x)− β(z, y) ≥ 0.

APPENDIX H
In this section, we prove Theorem 18.
We first show that d∗∗(x, y) = d(x, y) for a distance

measure d(·, ·). Note from (23) and d(x, x) = 0 that

d∗(x, x) =
1

n

∑
z2∈Ω

d(z2, x) +
1

n

∑
z1∈Ω

d(x, z1)

− 1

n2

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1). (71)

From the symmetric property of d(·, ·), it then follows that

d∗(x, x) =
2

n

∑
z1∈Ω

d(x, z1)−
1

n2

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1). (72)

Similarly,

d∗(y, y) =
2

n

∑
z2∈Ω

d(z2, y)−
1

n2

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1). (73)

Using (23), (72) and (73) in (24) yields

d∗∗(x, y) = (d∗(x, x) + d∗(y, y))/2− d∗(x, y) = d(x, y).
(74)

Now we show that β∗∗(x, y) = β(x, y) for a cohesion
measure β(·, ·). Note from (24) that

β∗(z2, y) + β∗(x, z1)− β∗(z1, z2)− β∗(x, y)

= −β(z2, y)− β(x, z1) + β(z1, z2) + β(x, y). (75)

Also, we have from (23) that

β∗∗(x, y)

=
1

n

∑
z2∈Ω

β∗(z2, y) +
1

n

∑
z1∈Ω

β∗(x, z1)

− 1

n2

∑
z2∈Ω

∑
z1∈Ω

β∗(z2, z1)− β∗(x, y)

=
1

n2

∑
z2∈Ω

∑
z1∈Ω

(
β∗(z2, y) + β∗(x, z1)

−β∗(z1, z2)− β∗(x, y)
)
. (76)

Using (75) in (76) yields

β∗∗(x, y)

=
1

n2

∑
z2∈Ω

∑
z1∈Ω

(
β(x, y) + β(z1, z2)

−β(x, z1)− β(z2, y)
)

= β(x, y) +
1

n2

∑
z2∈Ω

∑
z1∈Ω

β(z1, z2)−
1

n

∑
z1∈Ω

β(x, z1)

− 1

n

∑
z1∈Ω

β(z2, y). (77)

Since β(·, ·) is a cohesion measure that satisfies (C1)–(C3),
we have from (C1) and (C2) that the last three terms in (77)
are all equal to 0. Thus, β∗∗(x, y) = β(x, y).

APPENDIX I

In this section, we prove Proposition 22.
We first show (C1). Since β1(x, y) = β0(x, y) for all

x ̸= y, we have from the symmetric property of β0(·, ·) that
β1(x, y) = β1(y, x) for all x ̸= y. In view of (36), we then
also have β(x, y) = β(y, x) for all x ̸= y.

To verify (C2), note from (36) that∑
y∈Ω

β(x, y) =
∑
y∈Ω

β1(x, y)−
1

n

∑
y∈Ω

∑
z1∈Ω

β1(z1, y)

−
∑
z2∈Ω

β1(x, z2) +
1

n

∑
z1∈Ω

∑
z2∈Ω

β1(z1, z2)

= 0. (78)

Now we show (C3). Note from (36) that

β(x, x) + β(y, z)− β(x, z)− β(x, y)

= β1(x, x) + β1(y, z)− β1(x, z)− β1(x, y). (79)

It then follows from (35) that for all x ̸= y ̸= z that

β(x, x) + β(y, z)− β(x, z)− β(x, y) ≥ 0. (80)

If either x = y or x = z, we also have

β(x, x) + β(y, z)− β(x, z)− β(x, y) = 0.

Thus, it remains to show the case that y = z and x ̸= y. For
this case, we need to show that

β(x, x) + β(y, y)− β(x, y)− β(x, y) ≥ 0. (81)

Note from (80) that

β(y, y) + β(x, z)− β(y, z)− β(y, x) ≥ 0. (82)

Summing the two inequalities in (80) and (82) and using the
symmetric property of β(·, ·) yields the desired inequality in
(81).


