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Abstract—Establishing control channels in a cognitive radio 

network (CRN) is an important and challenging problem. To 

cope with the problem of control channel saturation and the 

problem of channel blocking by primary users, channel hopping 

(CH) schemes are commonly used in the literature for control 

channel establishment in CRNs. There are three metrics that are 

widely used for evaluating the performance of CH schemes: (i) 

degree of overlapping (the number of distinct rendezvous 

channels), (ii) worst case time-to-rendezvous (TTR), and (iii) 

system load. In this paper, we focus on the symmetric and 

synchronous setting and propose a novel Cycle-Adjustable 

Channel Hopping (CACH) scheme that outperforms several 

existing CH schemes, including SSCH and QCH, in terms of the 

three metrics. The key idea of CACH is to create an additional 

layer of logical channels on the top of physical channels so that 

the cycle of channel hopping sequences can be adjusted to 

optimize system performance. The mathematic tools for our 

scheme are based on the operations in Galois fields that are more 

general than the prime number modular arithmetic used in 

SSCH. We show that CACH is much more general than SSCH 

and it can achieve the maximum degree of overlapping while 

allowing the worst case TTR to be adjustable. It is also much 

better than QCH in terms of reducing system load while keeping 

the same degree of overlapping and the same worst case TTR. 

Our simulation results show that CACH outperforms several 

existing schemes in many other aspects, including throughput, 

and robustness to the disturbance of PUs.  

Keywords—Cognitive radio, multiple rendezvous, dynamic 

channel hopping, Galois field 

I.  INTRODUCTION 

Wireless networks used today are regulated by a fixed 
spectrum policy. This policy leads to the problem of 
inefficient usage of radio spectrum [1]. To solve this problem, 
cognitive radio (CR) [2] was introduced to improve the 
spectrum efficiency. In a cognitive radio network (CRN), 
unlicensed users (called secondary users (SUs)) are allowed to 
use unused licensed spectrum without interfering licensed 
users (called primary users (PUs)). With the support of 
software defined radio (SDR) technology, nodes equipped 
with cognitive radio transceivers (CR transceivers) can 
intelligently adjust the transmission characteristics (e.g., 
transmission power, carrier frequency, and modulation 
strategy) to achieve highly reliable communications and high 
spectrum efficiency throughout a wide range of spectrum. 
Therefore, they can quickly switch their operation spectrums 
and utilize the unused licensed spectrums efficiently.  

In a CRN, each SU is associated with a set of channels for 
communications, and the availability of each channel is 
determined by the behavior of neighboring PUs. SUs located 
in different locations may have different available channel sets 
because their neighboring PUs may be different. In addition, 
the available channel set of an SU may change with time 
because the neighboring PUs may change their transmission 
states. The diverseness of available channel sets makes the 
problem of establishing a control channel very challenging in 
a CRN, especially in a fully distributed environment.  

The most typical approach for control channel 
establishment is to use a dedicated global control channel 
among all SUs [3]-[6]. However, the availability of channel 
sets among SUs may vary due to the fact that they might have 
different neighboring PUs. Hence, the likelihood of having a 
control channel globally available to all SUs is very slim. 
Even if SUs are able to find a globally available channel, the 
availability of this dedicated control channel may change over 
time. When the dedicated control channel is unavailable, the 
normal operations of SUs may be disrupted. In particular, new 
data packets cannot be transmitted because the control 
messages cannot be exchanged even though there are other 
common available channels. Once a PU starts using its 
channel, it is very likely that the PU will continue to use this 
channel for a long time. Thus, all the control messages will be 
“blocked” during this long duration. Such a problem is known 
as the PU long-time blocking problem. Moreover, using one 
single control channel may introduce a bottleneck in the 
operation and may further cause the control channel 
saturation problem in a high node-density environment.  

To cope with the control channel saturation problem and 
the PU long-time blocking problem, channel hopping (CH) 
schemes are commonly used in the literature [7]-[19]. In a CH  
scheme, time is usually divided into consecutive time intervals 
and each SU hops to a channel in every time interval 
according to a specific CH sequence. As discussed in [19], CH 
schemes can be classified into various categories depending on 
their assumptions. A CH scheme is called asymmetric if one 
SU can be identified as the sender and the other SU can be 
identified as the receiver. For asymmetric CH schemes (such 
as ACH in [18] and ARCH in [19]), the sender and the 
receiver can use different strategies to rendezvous and thus 
can achieve better performance than symmetric CH schemes 
(such as SSCH in [7], SYN-MAC in [8], QCH in [9] and DH-
MAC in [10]), where both SUs have to follow the same 
strategy. Also, a CH scheme is synchronous if the indices of 



time intervals of both SU are the same. Such a synchronous 
setting can be easily implemented when there is a common 
GPS clock or there are timing signals from a neighboring PU, 
e.g., beacons from base stations of local cellular service 
providers. Synchronous CH schemes can achieve better 
performance than asynchronous CH schemes as both SUs 
know when to start their CH sequences. If clock 
synchronization is difficult, there are also several novel 
symmetric and asynchronous CH schemes that have been 
proposed in the literature, e.g., SeqR [12], DSREQ [13], 
CRSEQ [14], ASYNCH-ETCH [15] and JS [16]. A 
comparison of all these CH schemes can be found in [19]. 

As addressed in [9] and [19], there are three common 
metrics for evaluating the performance of a CH scheme: (i) 
degree of overlapping: the number of distinct channels for two 
SUs to rendezvous in each operation period, (ii) worst case 
time-to-rendezvous (TTR) (MTTR in [9]): the maximum time 
for two SUs to rendezvous (when there is no PU blocking), 
and (iii) system load: the maximum probability that an SU 
hops to a particular channel at a particular time interval. 
Clearly, for the PU long-time blocking problem, a CH scheme 
should have a large degree of overlapping, preferable the 
maximum degree of overlapping. On the other hand, to reduce 
packet delay, it is preferable to have a low worst case TTR. 
Finally, to mitigate the control channel saturation problem, a 
CH scheme should minimize its system load so that the 
average number of SUs that hop to the same channel at the 
same time interval can be minimized. As pointed out in [9], 
there is a tradeoff between worst case TTR and system load. In 
general, one can increase system load to reduce TTR and such 
a tradeoff can then be used to optimize system performance. 
Unfortunately, most existing CH schemes [7][8][10]-[16] in 
the literature were designed for a fixed environment and they 
cannot be easily adjusted to optimize system performance.  

Motivated by this, we focus on the symmetric and 
synchronous setting in this paper and propose a novel CH 
scheme, called Cycle-Adjustable Channel Hopping (CACH) 
scheme that exploits the tradeoff between system load and 
worst case TTR to optimize system performance. For this, we 
first generalize SSCH by proposing the Round-Robin 
Indemnity-channel Channel Hopping (RRICH) scheme that 
uses the Galois field operations instead of the prime number 
modular arithmetic in SSCH. RRICH also achieves the 
maximum degree of overlapping by implementing “rotation” 
under the addition field operation. We show that RRICH has 
the worst case TTR N+1 and the system load 1/(N-1) that are 
the same as those in SSCH. One problem of the RRICH 
scheme is that the TTR might be very long when the number 
of channels N is very large. To solve the long TTR problem 
for a large number of channels N, we further generalize 
RRICH by proposing CACH, where another layer of logical 
channels is created. In CACH, SUs rendezvous on logical 
channels that are in turn mapped to physical channels by using 
a modulo operation. By so doing, CACH still achieves 
maximum degree of overlapping. The number of logical 
channels u could be chosen to be much smaller than the 
number of physical channels N. As such, the worst case TTR 
of CACH is reduced to (u+1) at the cost of increasing its 
system load to 1/u.  

Certainly, choosing the number of logical channels u that 
optimizes the system performance, e.g., throughput, depends 
on various system characteristics, e.g., the number of SUs, the 

number of channels, and the characteristics of PUs. For this, 
we perform various computer simulations. By setting the 
number of logical channels u close to the average number of 
neighbors, our simulation results show that CACH in general 
can achieve a good throughput that is fairly close to its 
maximum throughput.  

The rest of the paper is organized as follows. We propose 
RRICH and CACH in Sec. II and Sec. III, respectively. The 
simulation results are shown in Sec. IV. Finally, the paper is 
concluded in Sec. V.  

II. ROUND-ROBIN INDEMNITY CHANNEL HOPPING 

SEQUENCE 

We consider an overlay ad-hoc CRN consisting of both 
PUs and SUs. There are N non-overlapping orthogonal 
channels indexed from 0 to N-1. The availability of each 
channel for each SU is determined by the activity of its 
neighboring PUs. Therefore, it varies with time and location. 
Each SU is equipped with one CR transceiver and able to 
accurately detect the availability of the current channel on 
which it operates. We call this channel the operation channel.  

As mentioned in the introduction, we focus on the 
symmetric and synchronous setting. In such a setting, the time 
axis is divided into consecutive time intervals. We index the 
time intervals by t=0, 1, 2,…. At the beginning of each time 
interval, SUs will switch their operation channel according to 
their predetermined CH sequences. If the channel is available, 
then SUs can use that channel for information exchange. 

Now we introduce our approach for constructing the 
Round-Robin Indemnity Channel Hopping (RRICH) sequence. 
Our construction is based on the mathematical theory of 
Galois fields [20]. A Galois field GF(N) is a set of N elements 
with two operations  (addition) and  (multiplication) that 

satisfy various algebraic properties, including the associative 
law, the commutative law and the distributive law. Moreover, 
there exists an identity element for addition , called the zero 

element, and for every element in GF(N),  its additive inverse 
exists. Similarly, there exists an identity element for 
multiplication , called the one element, and for every 

nonzero element, its multiplicative inverse exists. Intuitively, 
we can add, subtract, multiply and divide in a Galois field as 
in rational numbers.  

It is well known that a Galois field GF(N) exists if and 
only if N is a power of a prime. In particular, if N=2, the 
addition in GF(2) is the exclusive-OR operation and the 
multiplication in GF(2) is the AND operation. When N is a 
prime, the addition is the usual addition with the MOD N 
operation and the multiplication is the usual multiplication 
with the MOD N operation.  The operations for GF( ) are 

more involved, but they can be easily implemented by using 
combinatorial logic circuits and have a lot of applications in 
error correcting codes and network coding.  

In RRICH, we assume that N is a prime power. Hence, a 
Galois field GF(N) with the two operations  and  exists. If 

N is not a prime power, the solution of this problem will be 
described later. Denote the N elements in GF(N) as {0,1,2, …, 
N-1}, where 0 is the zero element (the identity element for ) 

and 1 is the one element (the identity element for ). We will 

use  to denote the inverse element of  under  and  to 

denote the inverse element of  under . As we can treat these 



two operations as usual addition and multiplication, it is well-
known that   and 

 for the Galois field GF(N).  

For each SU i, its RRICH sequence is a periodic sequence 
with period N(N+1). Each period of N(N+1) time intervals is 
called a frame. The sequence for SU i in a frame is determined 
by using a set of two CH parameters:  (called the 

RRICH parameter set).  The parameter  is called the initial 

seed. It denotes the initial channel of the RRICH sequence and 
its value is an integer ranged over [0, N-1]. The other 
parameter  is called the hopping seed. It is used to determine 

which channel for SU i to switch to. In order for the SU to 
change its control channel over time, we will not select the 
zero element as a hopping seed (we note that such a constraint 
will be removed in CACH in the next section).  Hence, the 
value of a hopping seed is an integer ranged over [1, N-1]. 
Specifically, let  be the control channel of SU i used at the 

 time interval for  Suppose that 

, where q is the quotient of t divided by N+1 

and r is its remainder. Then  is determined by:  

      (1) 

To see the intuition behind (1), suppose that 
 For this case, we have . The above 

equation is simply a “line” in the field GF(N) with  being its 

“slope.” As  is a nonzero element, the line is not a constant. 

As such, every SU hops to different channels as time goes on. 
Moreover, for two SUs with different hopping seeds, they hop 
as two lines with different “slopes” and these two lines 
intersect each other at a unique point.  For two SUs with 
identical hopping seeds, they hop as two “parallel lines.” That 
is why we have to add indemnity time intervals (the time 
intervals with ) for them to rendezvous.  

For the ease of our presentation, we partition each frame of 
N(N+1) time intervals into N sub-frames, each with N+1 time 
intervals. Specifically, the  sub-frame, , 

contains the time intervals from  to . 

Call the channel that an SU uses at an indemnity interval the 
indemnity channel. Note that the initial seed and the indemnity 

channel of an SU are updated by “adding” q for every sub-
frame while the hopping seed remains unchanged for every 
sub-frame. As such, the channel selections for every sub-frame 
behave exactly the same as those in the first sub-frame by re-
indexing the channels through a “rotation” under the  

operation. That is why we call such a sequence the round-
robin indemnity channel hopping scheme.  

In Fig. 1(a), we further illustrate how RRICH works by 
considering an example with three SUs and four channels, i.e., 

. We show the two operations of GF(4) in Fig. 1(b). 

The indemnity time intervals with  are marked with 

“I” in Fig. 1(a). Suppose that the RRICH parameter sets of SU 
A, SU B and SU C are initialized to be (3, 2), (1, 1), and (3, 1) 
respectively. For example, considering the 4

th
 time interval, in 

this case q is equal to 0 and r is equal to 4. According to Eq. 
(1), the control channel of SU A is set to  which is equal 

to 2. Consider the 7
th

 time interval, where  is equal to 1 and r 

is equal to 2. Thus the control channel of SU A is set to 
. Thus, the control channel of 

SU A is 1 at the 7
th

 time interval.  

In the following lemma, we show that an SU can scan all 
the channels and check the availability of each channel. 

Lemma 1.  An SU visits all the N channels within the first 
N time intervals in each sub-frame.  

Proof. Since the hopping seed  cannot be the zero 

element, all the N elements in the set 
 are distinct. Thus, it is 

the same as the set . ■  

Our second lemma shows when two SUs rendezvous in 
each sub-frame.  

Lemma 2. Consider two SUs with the parameter sets 
 and . 

(i) If they are assigned with the same hopping seed and the 
same initial seed, i.e.,  and , then they will 

rendezvous at each time interval.  

(ii) If they are assigned with the same hopping seed 
( ), but with different initial seeds  and   ( ), 

they will rendezvous at the indemnity time intervals (the last 

 

(a) The hopping sequences for the three SUs 

   

(b) The addition table and the multiplication table for the two operations of Galois field GF(4) 

Figure 1: RRICH for three SUs with four channels 



time interval in each sub-frame), i.e., , 

. 

(iii) If they are assigned with different hopping seeds 

( ), they will rendezvous at the  time interval in 

each sub-frame, i.e., ,  

 , where  

                       (2) 

Proof.  The proof for (i) and (ii) follows directly from the 
rule for the selection of the channels.  For (iii), we simply 
solve the following linear equation: 

 

To solve this equation, we first add 
 on both sides of the identity. Using 

the algebraic properties of these two operations, one can easily 
show that 

 

Multiplying  on both sides of the above 

identity yields  

 ■ 

In the following theorem, we show that RRICH achieves 
the maximum degree of overlapping if the two SUs do not 
have the same parameter set. Together with Lemma 1, RRICH 
achieves the maximum degree of overlapping, i.e., all the 
channels can be used as rendezvous channels for any two SUs 
in an operation period. 

Theorem 3.  In RRICH, any two SUs will rendezvous at 
least once in each sub-frame. Moreover, the channels they 
rendezvous in the N sub-frames are distinct if these two SUs 
do not have the same parameter set.  

Proof.  From Lemma 2 (i), (ii) and (iii), it is clear that they 
will rendezvous at least once in each sub-frame. If they are 
assigned with the same hopping seed ( ), but with 

different initial seeds  and  ( ), it follows from 

Lemma 2 (ii) that they will rendezvous in the  sub-frame on 

the indemnity channel . Thus, the channels they 

rendezvous in the N sub-frames are distinct. On the other hand, 
if they are assigned with different hopping seeds ( ), 

we have from Lemma 2 (iii) that they will rendezvous at the 

 time interval in each sub-frame, where r is specified in (2). 

In this case, they will rendezvous on the channel 

 in the  sub-frame and thus the channels 

they rendezvous in the N sub-frames are also distinct (as r is 
not a function of q). ■   

As a direct consequence of Theorem 3, we show that 
RRICH also solves the PU long-time blocking problem.  

Corollary 4.  Suppose that there are only m  

channels that are used by PUs. Any two SUs will rendezvous 
within  time intervals. 

 Proof. If the two SUs are assigned with two different 
parameter sets, it then follows from Theorem 3 that these two 
SUs will rendezvous at least  times on distinct channels 

before the end of the  sub-frame. Since there are only m 

 channels that are used by PUs, these two SUs will 

rendezvous within  time intervals. On the 

other hand,  if the two SUs are assigned with a common 
parameter set, then we have from Lemma 2(i) and Lemma 1 
that these two SUs will rendezvous at every time interval and 
on distinct channels in the first N time intervals.  Thus, they 
will rendezvous within  time intervals. ■ 

To address the control channel saturation problem, we 
define the load of a channel at a particular time interval as the 
probability that an SU hops on that channel at that interval.  
Also, the (maximum) system load is defined as the maximum 
of the load taken over all channels and all time intervals [9]. 
Now we show that the system load of RRICH is 1/(N-1). For 
perfect load balancing, an SU should hop to every channel at a 
time interval with an equal probability and the perfect system 
load should be 1/N. For RRICH, we show how we can 
distribute the traffic into the N channels to achieve load 
balancing. Note that there are N choices for the initial seeds 
and N-1 choices for the hopping seeds. To achieve load 
balancing, we simply assume that each SU chooses its initial 
seed independently and uniformly over [0, N-1] and its 
hopping seed independently and uniformly over [1, N-1]. Let 

 be the sequence of the channels 

generated by using the parameter set . If 

, then  and an SU that 

selects such a channel must select the hopping seed h. As the 
hopping seed is selected uniformly over [1, N-1], the 
probability that an SU selects such a channel is then 1/(N-1),  
which is only slightly larger than the ideal load 1/N  when N is 
large. On the other hand, if  for some 

, then for every fixed h and every fixed 

channel c there is a unique x such that  

Thus, the probability that an SU will select channel c is the 
probability that the SU selects the exact x that solves the 
equation. Such a probability is 1/N. In this case, we achieve 
perfect load balancing. From both cases, we conclude that the 
system load of RRICH is 1/(N-1), which is the same as the 
system load of SSCH in Table 1 of [9] .  In fact, RRICH is a 
generalization of SSCH in two folds: (i) RRICH uses the field 
operations which are much more general than the prime 
number modular arithmetic in SSCH, and (ii) RRICH 
implements “rotation” under the  operation and thus the 

degree of overlapping is N, i.e., all the channels. Note that the 
idea of using “rotation” was previous used in our early 
conference paper [10]. As a special case of Corollary 4, the 
worst case TTR for RRICH  is N+1 time intervals when there 
is no PU blocking,  i.e., .  This is also the same as that 

for SSCH in Table 1 of [9]. In comparison with M-QCH and 
L-QCH in Table 1 of [9], RRICH has the same degree of 
overlapping, a lower system load and a larger worst case TTR.   

The Maximum Conditional Time To Rendezvous 
(MCTTR) in [19] is defined as the maximum time for two SU 
to rendezvous when there are N-1 blocked channels, i.e., 
m=N-1. From Corollary 4, the MCTTR of RRICH is   

For the asymmetric and asynchronous setting, there are CH 
schemes with MCTTR equal to  [18,19]. As mentioned 

before, the reason that the MCTTR of the asymmetric CH 
schemes is smaller is because the two SUs can use different 
strategies.  For instance, ARCH in [19] cleverly puts the N 
channels on a ring and  has the sender (resp. receiver) walking 
counterclockwise (resp. clockwise) along the ring.  As the 
sender and the receiver walk in the opposite directions, they 
work toward each other and  thus rendezvous within  time 

intervals (provided that time-parities are the same). The tricky 



part of such an asymmetric CH scheme is when both SUs 
would like to become senders at the same time. Then they 
both walk in the same direction on a ring and will not 
rendezvous at all. On the other hand, the best MCTTR among 
all the known symmetric and asynchronous CH scheme is 

 in CRSEQ [14], where N is a prime.  As the time 

intervals of the two SUs need not be synchronized in CRSEQ,  
its MCTTR is much larger than  in RRICH. To the 

best of our knowledge,  seems to be the best MCTTR 

among all the symmetric and synchronous CHs when the 
system load is not greater than .  In the next section, 

we will introduce Cycle-Adjustable Channel Hopping (CACH) 
sequence that can further reduce the MCTTR at the cost of 
increasing the system load. 

In order for the RRICH scheme to work properly, we need 
the assumption that the number of channels N must be a prime 
power. If N is not a prime power, we can use a solution which 
is similar to that proposed in [7]. We can simply choose a 
prime power  larger than N. Since , some channels 

become invalid. When an SU hops to an invalid channel, we 
could either simply do nothing for that SU at that time interval 
or remap the channel to one of the N existing channels. Clearly, 
if we do nothing at that time interval, then this is equivalent to 
the case that there are  channels blocked by PUs. As 

such, Corollary 4 is still applicable and we only suffer minor 
performance degradation. Certainly, the performance can be 
improved by remapping. However, how to do remapping 
efficiently requires further study.  

III. CYCLE-ADJUSTABLE CHANNEL HOPPING SEQUENCE 

One problem of the RRICH scheme is that the time-to-
rendezvous (TTR) might be very long when the number of 
channels N is very large. To solve the long TTR problem for a 
large number of channels N, we introduce the Cycle-
Adjustable Channel Hopping (CACH) scheme in this section. 
The key idea of CACH is to create another layer of logical 
channels and have SUs rendezvous on logical channels. By 
choosing a modulo operation between logical channels and 
physical channels, CACH still achieves the maximum degree 
of overlapping as RRICH and thus it can still be used for 
solving the PU long-time blocking problem. 

To reduce the TTR, we choose a much smaller prime 
power u for the construction of the first sub-frame in RRICH 
and have two SUs rendezvous on one of the u logical channels 
in the first  time intervals. As in the construction of 

RRICH, we find a Galois field GF(u) with the two operations 
 and . Then SU i chooses its parameter set , where 

 is the initial seed and  is the hopping seed. However, 

unlike RRICH, both the initial seed and the hopping seed are 
chosen in [0,u-1]. In other words, the hopping seed can be the 
zero element in the GF(u) used here. Each CACH sequence is 
a periodic sequence with period . For 

, we further partition this period of 

 time intervals into N sub-frames, each with  

time intervals. The last interval in a sub-frame is called the 
indemnity time interval. Let  and  be the logical 

channel and the physical channel used by SU i at the  time 

interval. Suppose that , where q is the 

quotient of t divided by  and r is its remainder. Then 

 and  are determined by the following equation:  

  

               (3) 

The construction of the sequence  is the same 

as that in (1) except we remove the effect of q. Thus, the 
sequence  is a periodic sequence with period 

 and it repeats itself in every sub-frame. The index q is 

used in the mapping from a logical channel to a physical 
channel through the modulo operation in (3). As such, the 
physical channels used in each sub-frame are different. 

Fig. 2 gives an example for the construction of CACH 
sequences for N=5 and u=3. In this example, the addition in 
GF(3) is the usual addition with the MOD 3 operation and the 
multiplication in GF(3) is the usual multiplication with the 
MOD 3 operation. Since u=3, each sub-frame contains four 
time intervals with the last time interval in each sub-frame 
being the indemnity interval. For SU A with parameter set 

, we have , 

, and . 

As the last time interval in each sub-frame is the indemnity 
interval, . Note that the logical channel 

hopping sequence  repeats itself in each sub-frame with 

the sequence 1, 0, 2, 2. The physical channel hopping 
sequence  then adds 1 with the MOD 5 operation to 1, 0, 

2, 2 in each sub-frame and that leads to 1, 0, 2, 2 for the  

sub-frame, 2, 1, 3, 3 for the 1
st 

sub-frame, 3, 2, 4, 4 for the  

sub-frame, 4, 3, 0, 0 for the  sub-frame and 0, 4, 1, 1 for the 

 sub-frame. Both the logical channel hopping sequence and 

the physical channel hopping sequence for SU B with the 
parameter set  are also shown in Fig 2. 

Following the same argument as in the proof of Lemma 2, 
we have the following lemma for CACH. Note that this lemma 

 

Figure 2: CACH sequences for two SUs with 5 physical channels and 3 logical channels (i.e., N =5 and u=3). 



still holds even though we allow the hopping seed to be the 
zero element. 

Lemma 5. Consider two SUs with the parameter sets 
 and . 

(i) If they are assigned with the same hopping seed and the 
same initial seed, i.e.,  and , then they will 

rendezvous at each time interval.  

(ii) If they are assigned with the same hopping seed 
( ), but with different initial seeds  and  ( ), 

they will rendezvous at the indemnity time intervals (the last 
time interval in each sub-frame), i.e., , 

.  

(iii) If they are assigned with different hopping seeds 

( ), they will rendezvous at the  time interval in 

each sub-frame, i.e., , , 

where  

                      (4) 

In Theorem 6, we show that CACH also achieves the 
maximum degree of overlapping as RRICH. 

Theorem 6.  Any two SUs will rendezvous at least once in 
each sub-frame. Moreover, the physical channels they 
rendezvous in the first m sub-frames contain at least m distinct 

channels, .  

Proof.  From Lemma 5 (i), (ii) and (iii), it is clear that they 
will rendezvous at least once in each sub-frame. If they are 
assigned with the same hopping seed ( ), it follows 

from Lemma 5 (i) and (ii) that they will rendezvous in the  

sub-frame on the logical indemnity channel  and thus on the 

physical channel  It is clear that all the 

elements in the set  

are distinct. On the other hand, if they are assigned with 
different hopping seeds ( ), we have from Lemma 5 (iii) 

that they will rendezvous at the  time interval in each sub-

frame, where r is specified in (4). In this case, they will 

rendezvous on the logical channel  in the  

sub-frame and on the physical channel 
 Once again, it is clear that all 

elements in set  

are distinct. ■ 

Analogous to proof for Corollary 4, one can use the results 
in Theorem 6 to show that CACH also solves the PU long-
time blocking problem.  

Corollary 7.  Suppose that there are m  channels 

that are used by PUs. Any two SUs will rendezvous within 
 time intervals. 

In comparison with RRICH, the worst case TTR for 
CACH is shorter than that of RRICH if . However, this 

is at the cost of increasing the system load and thus the 
possibility of causing the control channel congestion. To see 
this, recall that the load of a channel at a particular time 
interval is defined as the probability that an SU hops on that 
channel at that interval. Note that there are u choices for the 
initial seeds and u choices for the hopping seeds in CACH. As 
in RRICH, we simply assume that each SU chooses its initial 
seed and its hopping seed independently and uniformly over 

[0,u-1]. Thus, each SU is distributed uniformly to one of the u 
logical channels in each time interval. Thus, the probability 
that an SU is distributed in a logical channel (and the 
corresponding physical channel) is simply , which could 

be substantially higher than the ideal load  when . 

As a direct consequence of Corollary 7, the MCTTR of CACH 
is  which could be substantially smaller than  in 

ACH  [18] and ARCH  [19]. We also note that it is difficult to 
create an additional layer of logical channels in the 
asynchronous setting, where the two SUs do not have the 
same indices of time intervals.  

In particular, if we choose u=2, the worst case TTR for 
CACH is 3 and its system load is only 1/2, which is lower than 
2/3 of M-QCH [9]. For this case, CACH is better than M-QCH 
as CACH has a lower system load while keeping the same 
degree of overlapping and the same worst case TTR. Now we 
compare CACH with L-QCH [9]. If the maximum allowable 
TTR is , it is shown in Theorem 2 of [9] that the system load 

of any QCH system is at least . L-QCH is the QCH 

system with the system load . Taking , we then 

derive that the system load of the CACH scheme is only 
, which is significantly lower than  in L-QCH. 

In view of these, we conclude that CACH is in general much 
better than QCH in terms of reducing system load while 
keeping the same degree of overlapping and the same worst 
case TTR. 

Certainly, choosing the number of logical channels u that 
optimizes the system performance, e.g., throughput, depends 
on various system characteristics, e.g., the number of SUs, the 
number of channels, and the characteristics of PUs. For this, 
we will perform various computer simulations in the next 
section. One of our findings from the simulations results is to 
set the number of logical channels u close to the average 
number of neighbors for a reasonably good throughput. As the 
load of CACH is 1/u, the average number of SUs that hop to a 
rendezvous channel is close to 1 if u is close to the average 
number of neighbors.  

Note that setting u to be close to the average number of 
neighbors depends on the topology of the network and might 
be difficult to implement in a dynamic network. If we view the 
average number of SUs hopping to a rendezvous channel as 
the utilization of the rendezvous channel, then the key factor 
for achieving a good throughput is to maintain a reasonably 
good utilization in a rendezvous channel. Instead of directly 
estimating (or tracking) the average number of neighbors, one 
might estimate the average number of contentions in a 
rendezvous channel and use that to maintain a reasonably 
good utilization in a rendezvous channel. Specifically, we can 
partition the average number of contentions in a rendezvous 
channel into several levels and associate each level with an 
appropriate u. By so doing, we can make CACH adapt to the 
dynamic change of the network. However, how to estimate the 
number of contentions in a rendezvous channel and establish 
the mapping between that and u require further study 

IV. SIMULATION RESULTS 

In this section, we perform various computer simulations 
via an event-driven C++ simulator. In our simulations, we 
only consider disjoint flows, where each source SU and each 
destination SU cannot have multiple flows. However, we do 
allow SUs to change its hopping seeds. Specifically, we let 



each SU change its hopping seeds with probability 1/100 at 
the beginning of each time interval. These flow pairs and PUs 
are distributed randomly in a region. The transmission range 
and the interference range are set to 250m and 550m, 
respectively. The behavior of a PU is modeled by a two-state 
ON-OFF Markov chain, where both ON periods and OFF 
periods are independent, and exponentially distributed. The 
simulation time is set to 100s. The time interval is set to 6 ms. 
In the first 2 ms, each pair of SUs will exchange the control 
messages. If they correctly receive the control messages from 
each other, they can use the control channel as their data 
channel for transmitting data in the following 4ms. All SUs 
content the right of access channel through IEEE 802.11 
Distributed Coordination Function.  

A. Selection of the Number of Logical Channels 

In this section we address the problem for the selection of 
the number of logical channels in CACH. We consider that 
there are some SUs distributed in a 380mx380m region. As 
such, each SU is a neighbor of another SU. Each channel is 
associated with a PU. The mean of OFF periods is set to 10s. 
The mean of ON periods is set to 10s with probability 1/5 and 
is set to 30s with probability 4/5. The channel capacity is set to 
54Mbps and the source SU always has packets to send. In Fig. 
3(a), we show the throughputs of CACH when the number of 
channels N is set to 13. In Fig. 3, u(x) means the number of 
logical channels u is set to x. When the number of SUs is set to 
6 (resp. 10 and 14), CACH has the largest throughput if the 
number of logical channels u is set to 7 (resp. 13 and 13). It 
can be observed that when the number of logical channels is 
set to the value close to the number of neighbors, CACH can 
achieve a good throughput. When the difference between the 
number of logical channels and the number of neighbors 
increases, the throughput decreases. In Fig. 3(b), we consider 
another setting with the number of channels N being set to 23. 
When the number of SUs is set to 10 (resp. 18), CACH has the 

largest throughput if the number of logical channels u is set to 
11 (resp. 19). The results in Fig. 3(b) also show that one 
should choose the number of logical channels close to the 
number of neighbors. 

Note that the performance of throughput might be quite 
sensitive to the selection of the number of logical channels u 
in some cases.  As discussed before, if we view the average 
number of SUs hopping to a rendezvous channel as the 
utilization of the rendezvous channel, then the key factor for 
achieving a good throughput is to maintain a reasonably good 
utilization in a rendezvous channel. As shown in Fig. 3, if we 
set u too small, then the utilization of a rendezvous channel is 
too high and that leads to lots of collisions and sharp 
degradation of throughput. 

B. Performance comparisons without data traffic 

Next, we compare the performance of SYN, SSCH, L-
QCH, RRICH and CACH for various performance metrics, 
including the average number of co-channel SUs (for a 
particular SU per time interval), the average number of used 
channels (per time interval), and the average TTR. In order to 
see the effects (and the insights) of these rendezvous 
algorithms, we do this without introducing data traffic, i.e., no 
data flows. We first consider the case where six SUs are 
distributed randomly in a 380mx380m region. Also, the SUs 
do not change their CH parameters. In this simulation, there 
are 13 channels and each channel is associated with a PU. The 
mean OFF period of a PU is set to 10s. The mean of ON 
periods is set to 10s with probability 1/5 and is set to 30s with 
probability 4/5. In Fig. 4(a), we show the effect of the number 
of SUs on the average number of co-channel SUs (for a 
particular SU). A co-channel SU for a particular SU in a 
particular time interval is an SU that operates on the same 
channel as that SU in the time interval. To measure this, we 
choose an arbitrary SU and take the average of the number of 
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(a) Effect of the number of SUs on the average number of co-channel SUs. 
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(b) Effect of the number of SUs on the average number of used channels. 

Figure 4: Effects of the number of channels on the average number of co-
channel SUs and the average number of used channels. 
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(a) The number of channels is 13. 
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(b) The number of channels is 23. 

Figure 3: The throughputs of CACH for different number of logical channels. 



co-channel SUs over time. Clearly, the larger the average 
number of co-channel SUs is, the larger the co-channel 
interference is. As such, a large average number of co-channel 
SUs might suffer from the problem of control channel 
saturation. It can be seen from Fig. 4(a) that both RRICH and 
SSCH have the same average number of co-channel SUs. 
When the number of SUs is larger than 11, CACH is reduced 
to RRICH as the number of logical channels is upper bounded 
by the number of channels. Also, the average number of co-
channel SUs for L-QCH is larger than those of RRICH, 
CACH, and SSCH. Such a result is expected as the system 
load of L-QCH is larger than the system loads of RRICH, 
CACH, and SSCH. Since the system load of SYN is 1, the 
average number of co-channel SUs for SYN increases linearly 
with respect to the number of SUs. On the other hand, the 
average numbers of co-channel SUs for RRICH, CACH, 
SSCH, and L-QCH only increase slowly with respect to the 
increase of the number of SUs.  In Fig. 4(b), we further show 
the effect of the number of SUs on the average number of used 
channels in a time interval. A channel is said to be used in a 
time interval if there is (at least) one SU that operates that 
channel as the control channel in that time interval. To 
measure this, we count the number of used channels in every 
time interval and then take its average. Intuitively, a 
rendezvous algorithm that has a large average number of used 
channels tends to distribute its traffic evenly over the channels. 
It is observed that RRICH, CACH and SSCH have same 
average number of used channels when the number of SUs is 
larger than 11. When the number of SUs is only 6, the average 
number of used channels for RRICH is larger than that of 
CACH because the system load in CACH is larger than that of 
RRICH. Also, the average number of used channels for CACH 
is better than L-QCH, even when the number of SUs is 6. This 
is because L-QCH only distribute the control traffic over the 
time (but not over the channels).  

In Fig. 5(a), we show the effect of the number of channel 
on the average TTR. Since SYN allows all SUs to hop to the 
same channel, it has the lowest average TTR. Since the worst 
case TTRs of CACH and L-QCH are independent of the 
number of channels, their average TTRs are also not 
influenced by the number of channels. However, the worst 
case TTRs of RRICH and SSCH depend on the number of 
channels, and the average TTRs of RRICH and SSCH 
increases when the number of channels increases. Moreover, 
since the degree of overlapping of RRICH is N, RRICH has a 
lower average TTR than SSCH (as SSCH suffers from the PU 
long-time blocking problem).  In Fig. 5(b), we measure the 
effect of the mean ON period (of a PU) on the average TTR. 
When the mean ON period of each PU is set to 10s, RRICH 
and SSCH have the same average TTR. However, when the 
mean of the ON period is increased, the average TTR of SSCH 
is increased rapidly due to the long-time PU blocking problem. 
The other channel hopping schemes do not increase their 
average TTRs quickly because their degree of overlapping are 
equal to N and then they are immune to the long-time PU 
blocking problem. In view of Fig. 5(a) and Fig. 5(b), we note 
that L-QCH has a lower average TTR than that of CACH. 
This is because that L-QCH has a heavier system load than 
CACH. On the other hand, CACH have a smaller number of 
co-channel SUs and a larger number of used channels than 
those of L-QCH. 

C. Throughput 

In this section, we compare the throughputs of RRICH and 
CACH (via simulations) with other existing schemes, 
including SSCH [7], SYN-MAC [8] and L-QCH [9]. In the 
simulation, the number of logical channels u of CACH is set 
to the largest prime number that is smaller than the average 
number of neighbors of the SUs.  In Fig. 6(a), we show the 
effect of the number of channels on the average throughput 
(per flow). In order to simulate the scenario with 
heterogeneous available channel sets, we distribute 10 SUs in 
a 1000mx1000m region independently and uniformly. We 
then generate 100 network topologies and calculate the 
average number of neighbors of a SU. In this case, each SU 
has 5 neighbors on average. Each channel is associated with 2 
PUs. The mean of OFF periods is set to 10s. The mean of ON 
periods is set to 10s with probability 1/5 and is set to 30s with 
probability 4/5. The channel capacity is set to 54Mbps and the 
source SU always has packets to send. The packet arrival 
process is modeled by a Poisson process.  

It is observed that SYN-MAC has the highest average 
throughput because SYN-MAC has almost no contention in 
this scenario and the lowest worst case TTR. The average 
throughputs of CACH and L-QCH are not affected by the 
increase of the number of channels N because their worst case 
TTRs do not depend on N. Although both L-QCH and CACH 
have the same worst case TTR, CACH still has a higher 
average throughput. This is because CACH distributes control 
messages not only over the time line but also over all the 
channels (i.e., multiple rendezvous) and L-QCH only 
distributes control messages over the time line. When the 
number of channels N increases, the average throughput of 
RRICH decreases quickly because of the long TTR problem. 
Note that SSCH has the poorest performance because SSCH 
does not achieve the maximum degree of overlapping. In Fig. 
6(b), we show the effect of the number of SUs on the average 
throughput. The number of channels N is set to 13. When there 
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(a) Effect of the number of channels on average TTR. 
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(b) Effect of the PU behavior on the average TTR. 

Figure 5: Effects of the number of channels and PU behavior on the average 
TTR. 



are 10, 20, 30, 40, and 50 SUs distributed randomly in a 
1000mx1000m region, the average number of neighbors of an 
SU is 5, 11, 16, 22 and 28 respectively. When the number of 
neighbors is larger than 10, the number of logical channels of 
CACH is set to the number of channels. Hence, CACH is 
reduced to RRICH and their average throughputs are almost 
the same when the number of SUs is larger than 20 in Fig. 
6(b). When the number of SUs increases, the average 
throughput of SYN-MAC decrease much rapidly than the 
other schemes. This is because SYN-MAC now suffers from 
the control channel saturation problem. Since RRICH, CACH, 
L-QCH and SSCH do not have the control channel saturation 
problem, their average throughputs decrease slowly with the 
same slope as shown in Fig. 6(b). 

V. CONCLUSION 

In this paper, we proposed a novel Cycle-Adjustable 
Channel Hopping (CACH) scheme for control channel 
establishment in cognitive radio networks. For this, we first 
extended SSCH to RRICH by introducing Galois fields and 
rotating rendezvous channels. The key idea of CACH is the 
creation of another layer of logical channels in RRICH so that 
the TTR in CACH can be adjusted to optimize system 
performance. We showed that CACH is better than both M-
QCH and L-QCH in terms of minimizing the system load 
while maintaining the same degree of overlapping and the 
same worst case TTR. Via extensive computer simulations, it 
is suggested that the number of logical channels in CACH 
should be close to the average number of neighbors to obtain a 
good throughput. Also, the simulations results show that 
CACH outperforms existing schemes in many aspects, 
including throughput, and robustness to the disturbance of PUs.  
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(a) Effect of the number of channels on throughput. 
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(b) Effect of the number of SUs on throughput. 

Figure 6: Effects of the number of channels and the number of SUs on 
throughput. 


