
CACH: Cycle-Adjustable Channel Hopping for

Control Channel Establishment in Cognitive Radio

Networks

Tsung-Ying Wu
1
, Wanjiun Liao

1
, and Cheng-Shang Chang

2

1
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

2
Institute of Communications Engineering, National Tsing-Hua University, Hsinchu, Taiwan

Email: {d96921024, wjliao}@ntu.edu.tw, cschang@ee.nthu.edu.tw

Abstract—Establishing control channels in a cognitive radio

network (CRN) is an important and challenging problem. To

cope with the problem of control channel saturation and the

problem of channel blocking by primary users, channel hopping

(CH) schemes are commonly used in the literature for control

channel establishment in CRNs. There are three metrics that are

widely used for evaluating the performance of CH schemes: (i)

degree of overlapping (the number of distinct rendezvous

channels), (ii) worst case time-to-rendezvous (TTR), and (iii)

system load. In this paper, we focus on the symmetric and

synchronous setting and propose a novel Cycle-Adjustable

Channel Hopping (CACH) scheme that outperforms several

existing CH schemes, including SSCH and QCH, in terms of the

three metrics. The key idea of CACH is to create an additional

layer of logical channels on the top of physical channels so that

the cycle of channel hopping sequences can be adjusted to

optimize system performance. The mathematic tools for our

scheme are based on the operations in Galois fields that are more

general than the prime number modular arithmetic used in

SSCH. We show that CACH is much more general than SSCH

and it can achieve the maximum degree of overlapping while

allowing the worst case TTR to be adjustable. It is also much

better than QCH in terms of reducing system load while keeping

the same degree of overlapping and the same worst case TTR.

Our simulation results show that CACH outperforms several

existing schemes in many other aspects, including throughput,

and robustness to the disturbance of PUs.

Keywords—Cognitive radio, multiple rendezvous, dynamic

channel hopping, Galois field

I. INTRODUCTION

Wireless networks used today are regulated by a fixed
spectrum policy. This policy leads to the problem of
inefficient usage of radio spectrum [1]. To solve this problem,
cognitive radio (CR) [2] was introduced to improve the
spectrum efficiency. In a cognitive radio network (CRN),
unlicensed users (called secondary users (SUs)) are allowed to
use unused licensed spectrum without interfering licensed
users (called primary users (PUs)). With the support of
software defined radio (SDR) technology, nodes equipped
with cognitive radio transceivers (CR transceivers) can
intelligently adjust the transmission characteristics (e.g.,
transmission power, carrier frequency, and modulation
strategy) to achieve highly reliable communications and high
spectrum efficiency throughout a wide range of spectrum.
Therefore, they can quickly switch their operation spectrums
and utilize the unused licensed spectrums efficiently.

In a CRN, each SU is associated with a set of channels for
communications, and the availability of each channel is
determined by the behavior of neighboring PUs. SUs located
in different locations may have different available channel sets
because their neighboring PUs may be different. In addition,
the available channel set of an SU may change with time
because the neighboring PUs may change their transmission
states. The diverseness of available channel sets makes the
problem of establishing a control channel very challenging in
a CRN, especially in a fully distributed environment.

The most typical approach for control channel
establishment is to use a dedicated global control channel
among all SUs [3]-[6]. However, the availability of channel
sets among SUs may vary due to the fact that they might have
different neighboring PUs. Hence, the likelihood of having a
control channel globally available to all SUs is very slim.
Even if SUs are able to find a globally available channel, the
availability of this dedicated control channel may change over
time. When the dedicated control channel is unavailable, the
normal operations of SUs may be disrupted. In particular, new
data packets cannot be transmitted because the control
messages cannot be exchanged even though there are other
common available channels. Once a PU starts using its
channel, it is very likely that the PU will continue to use this
channel for a long time. Thus, all the control messages will be
“blocked” during this long duration. Such a problem is known
as the PU long-time blocking problem. Moreover, using one
single control channel may introduce a bottleneck in the
operation and may further cause the control channel
saturation problem in a high node-density environment.

To cope with the control channel saturation problem and
the PU long-time blocking problem, channel hopping (CH)
schemes are commonly used in the literature [7]-[19]. In a CH
scheme, time is usually divided into consecutive time intervals
and each SU hops to a channel in every time interval
according to a specific CH sequence. As discussed in [19], CH
schemes can be classified into various categories depending on
their assumptions. A CH scheme is called asymmetric if one
SU can be identified as the sender and the other SU can be
identified as the receiver. For asymmetric CH schemes (such
as ACH in [18] and ARCH in [19]), the sender and the
receiver can use different strategies to rendezvous and thus
can achieve better performance than symmetric CH schemes
(such as SSCH in [7], SYN-MAC in [8], QCH in [9] and DH-
MAC in [10]), where both SUs have to follow the same
strategy. Also, a CH scheme is synchronous if the indices of

time intervals of both SU are the same. Such a synchronous
setting can be easily implemented when there is a common
GPS clock or there are timing signals from a neighboring PU,
e.g., beacons from base stations of local cellular service
providers. Synchronous CH schemes can achieve better
performance than asynchronous CH schemes as both SUs
know when to start their CH sequences. If clock
synchronization is difficult, there are also several novel
symmetric and asynchronous CH schemes that have been
proposed in the literature, e.g., SeqR [12], DSREQ [13],
CRSEQ [14], ASYNCH-ETCH [15] and JS [16]. A
comparison of all these CH schemes can be found in [19].

As addressed in [9] and [19], there are three common
metrics for evaluating the performance of a CH scheme: (i)
degree of overlapping: the number of distinct channels for two
SUs to rendezvous in each operation period, (ii) worst case
time-to-rendezvous (TTR) (MTTR in [9]): the maximum time
for two SUs to rendezvous (when there is no PU blocking),
and (iii) system load: the maximum probability that an SU
hops to a particular channel at a particular time interval.
Clearly, for the PU long-time blocking problem, a CH scheme
should have a large degree of overlapping, preferable the
maximum degree of overlapping. On the other hand, to reduce
packet delay, it is preferable to have a low worst case TTR.
Finally, to mitigate the control channel saturation problem, a
CH scheme should minimize its system load so that the
average number of SUs that hop to the same channel at the
same time interval can be minimized. As pointed out in [9],
there is a tradeoff between worst case TTR and system load. In
general, one can increase system load to reduce TTR and such
a tradeoff can then be used to optimize system performance.
Unfortunately, most existing CH schemes [7][8][10]-[16] in
the literature were designed for a fixed environment and they
cannot be easily adjusted to optimize system performance.

Motivated by this, we focus on the symmetric and
synchronous setting in this paper and propose a novel CH
scheme, called Cycle-Adjustable Channel Hopping (CACH)
scheme that exploits the tradeoff between system load and
worst case TTR to optimize system performance. For this, we
first generalize SSCH by proposing the Round-Robin
Indemnity-channel Channel Hopping (RRICH) scheme that
uses the Galois field operations instead of the prime number
modular arithmetic in SSCH. RRICH also achieves the
maximum degree of overlapping by implementing “rotation”
under the addition field operation. We show that RRICH has
the worst case TTR N+1 and the system load 1/(N-1) that are
the same as those in SSCH. One problem of the RRICH
scheme is that the TTR might be very long when the number
of channels N is very large. To solve the long TTR problem
for a large number of channels N, we further generalize
RRICH by proposing CACH, where another layer of logical
channels is created. In CACH, SUs rendezvous on logical
channels that are in turn mapped to physical channels by using
a modulo operation. By so doing, CACH still achieves
maximum degree of overlapping. The number of logical
channels u could be chosen to be much smaller than the
number of physical channels N. As such, the worst case TTR
of CACH is reduced to (u+1) at the cost of increasing its
system load to 1/u.

Certainly, choosing the number of logical channels u that
optimizes the system performance, e.g., throughput, depends
on various system characteristics, e.g., the number of SUs, the

number of channels, and the characteristics of PUs. For this,
we perform various computer simulations. By setting the
number of logical channels u close to the average number of
neighbors, our simulation results show that CACH in general
can achieve a good throughput that is fairly close to its
maximum throughput.

The rest of the paper is organized as follows. We propose
RRICH and CACH in Sec. II and Sec. III, respectively. The
simulation results are shown in Sec. IV. Finally, the paper is
concluded in Sec. V.

II. ROUND-ROBIN INDEMNITY CHANNEL HOPPING

SEQUENCE

We consider an overlay ad-hoc CRN consisting of both
PUs and SUs. There are N non-overlapping orthogonal
channels indexed from 0 to N-1. The availability of each
channel for each SU is determined by the activity of its
neighboring PUs. Therefore, it varies with time and location.
Each SU is equipped with one CR transceiver and able to
accurately detect the availability of the current channel on
which it operates. We call this channel the operation channel.

As mentioned in the introduction, we focus on the
symmetric and synchronous setting. In such a setting, the time
axis is divided into consecutive time intervals. We index the
time intervals by t=0, 1, 2,…. At the beginning of each time
interval, SUs will switch their operation channel according to
their predetermined CH sequences. If the channel is available,
then SUs can use that channel for information exchange.

Now we introduce our approach for constructing the
Round-Robin Indemnity Channel Hopping (RRICH) sequence.
Our construction is based on the mathematical theory of
Galois fields [20]. A Galois field GF(N) is a set of N elements
with two operations (addition) and (multiplication) that

satisfy various algebraic properties, including the associative
law, the commutative law and the distributive law. Moreover,
there exists an identity element for addition , called the zero

element, and for every element in GF(N), its additive inverse
exists. Similarly, there exists an identity element for
multiplication , called the one element, and for every

nonzero element, its multiplicative inverse exists. Intuitively,
we can add, subtract, multiply and divide in a Galois field as
in rational numbers.

It is well known that a Galois field GF(N) exists if and
only if N is a power of a prime. In particular, if N=2, the
addition in GF(2) is the exclusive-OR operation and the
multiplication in GF(2) is the AND operation. When N is a
prime, the addition is the usual addition with the MOD N
operation and the multiplication is the usual multiplication
with the MOD N operation. The operations for GF() are

more involved, but they can be easily implemented by using
combinatorial logic circuits and have a lot of applications in
error correcting codes and network coding.

In RRICH, we assume that N is a prime power. Hence, a
Galois field GF(N) with the two operations and exists. If

N is not a prime power, the solution of this problem will be
described later. Denote the N elements in GF(N) as {0,1,2, …,
N-1}, where 0 is the zero element (the identity element for)

and 1 is the one element (the identity element for). We will

use to denote the inverse element of under and to

denote the inverse element of under . As we can treat these

two operations as usual addition and multiplication, it is well-
known that and

 for the Galois field GF(N).

For each SU i, its RRICH sequence is a periodic sequence
with period N(N+1). Each period of N(N+1) time intervals is
called a frame. The sequence for SU i in a frame is determined
by using a set of two CH parameters: (called the

RRICH parameter set). The parameter is called the initial

seed. It denotes the initial channel of the RRICH sequence and
its value is an integer ranged over [0, N-1]. The other
parameter is called the hopping seed. It is used to determine

which channel for SU i to switch to. In order for the SU to
change its control channel over time, we will not select the
zero element as a hopping seed (we note that such a constraint
will be removed in CACH in the next section). Hence, the
value of a hopping seed is an integer ranged over [1, N-1].
Specifically, let be the control channel of SU i used at the

 time interval for Suppose that

, where q is the quotient of t divided by N+1

and r is its remainder. Then is determined by:

 (1)

To see the intuition behind (1), suppose that
 For this case, we have . The above

equation is simply a “line” in the field GF(N) with being its

“slope.” As is a nonzero element, the line is not a constant.

As such, every SU hops to different channels as time goes on.
Moreover, for two SUs with different hopping seeds, they hop
as two lines with different “slopes” and these two lines
intersect each other at a unique point. For two SUs with
identical hopping seeds, they hop as two “parallel lines.” That
is why we have to add indemnity time intervals (the time
intervals with) for them to rendezvous.

For the ease of our presentation, we partition each frame of
N(N+1) time intervals into N sub-frames, each with N+1 time
intervals. Specifically, the sub-frame, ,

contains the time intervals from to .

Call the channel that an SU uses at an indemnity interval the
indemnity channel. Note that the initial seed and the indemnity

channel of an SU are updated by “adding” q for every sub-
frame while the hopping seed remains unchanged for every
sub-frame. As such, the channel selections for every sub-frame
behave exactly the same as those in the first sub-frame by re-
indexing the channels through a “rotation” under the

operation. That is why we call such a sequence the round-
robin indemnity channel hopping scheme.

In Fig. 1(a), we further illustrate how RRICH works by
considering an example with three SUs and four channels, i.e.,

. We show the two operations of GF(4) in Fig. 1(b).

The indemnity time intervals with are marked with

“I” in Fig. 1(a). Suppose that the RRICH parameter sets of SU
A, SU B and SU C are initialized to be (3, 2), (1, 1), and (3, 1)
respectively. For example, considering the 4

th
 time interval, in

this case q is equal to 0 and r is equal to 4. According to Eq.
(1), the control channel of SU A is set to which is equal

to 2. Consider the 7
th

 time interval, where is equal to 1 and r

is equal to 2. Thus the control channel of SU A is set to
. Thus, the control channel of

SU A is 1 at the 7
th

 time interval.

In the following lemma, we show that an SU can scan all
the channels and check the availability of each channel.

Lemma 1. An SU visits all the N channels within the first
N time intervals in each sub-frame.

Proof. Since the hopping seed cannot be the zero

element, all the N elements in the set
 are distinct. Thus, it is

the same as the set . ■

Our second lemma shows when two SUs rendezvous in
each sub-frame.

Lemma 2. Consider two SUs with the parameter sets
 and .

(i) If they are assigned with the same hopping seed and the
same initial seed, i.e., and , then they will

rendezvous at each time interval.

(ii) If they are assigned with the same hopping seed
(), but with different initial seeds and (),

they will rendezvous at the indemnity time intervals (the last

(a) The hopping sequences for the three SUs

(b) The addition table and the multiplication table for the two operations of Galois field GF(4)

Figure 1: RRICH for three SUs with four channels

time interval in each sub-frame), i.e., ,

.

(iii) If they are assigned with different hopping seeds

(), they will rendezvous at the time interval in

each sub-frame, i.e., ,

 , where

 (2)

Proof. The proof for (i) and (ii) follows directly from the
rule for the selection of the channels. For (iii), we simply
solve the following linear equation:

To solve this equation, we first add
 on both sides of the identity. Using

the algebraic properties of these two operations, one can easily
show that

Multiplying on both sides of the above

identity yields

 ■

In the following theorem, we show that RRICH achieves
the maximum degree of overlapping if the two SUs do not
have the same parameter set. Together with Lemma 1, RRICH
achieves the maximum degree of overlapping, i.e., all the
channels can be used as rendezvous channels for any two SUs
in an operation period.

Theorem 3. In RRICH, any two SUs will rendezvous at
least once in each sub-frame. Moreover, the channels they
rendezvous in the N sub-frames are distinct if these two SUs
do not have the same parameter set.

Proof. From Lemma 2 (i), (ii) and (iii), it is clear that they
will rendezvous at least once in each sub-frame. If they are
assigned with the same hopping seed (), but with

different initial seeds and (), it follows from

Lemma 2 (ii) that they will rendezvous in the sub-frame on

the indemnity channel . Thus, the channels they

rendezvous in the N sub-frames are distinct. On the other hand,
if they are assigned with different hopping seeds (),

we have from Lemma 2 (iii) that they will rendezvous at the

 time interval in each sub-frame, where r is specified in (2).

In this case, they will rendezvous on the channel

 in the sub-frame and thus the channels

they rendezvous in the N sub-frames are also distinct (as r is
not a function of q). ■

As a direct consequence of Theorem 3, we show that
RRICH also solves the PU long-time blocking problem.

Corollary 4. Suppose that there are only m

channels that are used by PUs. Any two SUs will rendezvous
within time intervals.

 Proof. If the two SUs are assigned with two different
parameter sets, it then follows from Theorem 3 that these two
SUs will rendezvous at least times on distinct channels

before the end of the sub-frame. Since there are only m

 channels that are used by PUs, these two SUs will

rendezvous within time intervals. On the

other hand, if the two SUs are assigned with a common
parameter set, then we have from Lemma 2(i) and Lemma 1
that these two SUs will rendezvous at every time interval and
on distinct channels in the first N time intervals. Thus, they
will rendezvous within time intervals. ■

To address the control channel saturation problem, we
define the load of a channel at a particular time interval as the
probability that an SU hops on that channel at that interval.
Also, the (maximum) system load is defined as the maximum
of the load taken over all channels and all time intervals [9].
Now we show that the system load of RRICH is 1/(N-1). For
perfect load balancing, an SU should hop to every channel at a
time interval with an equal probability and the perfect system
load should be 1/N. For RRICH, we show how we can
distribute the traffic into the N channels to achieve load
balancing. Note that there are N choices for the initial seeds
and N-1 choices for the hopping seeds. To achieve load
balancing, we simply assume that each SU chooses its initial
seed independently and uniformly over [0, N-1] and its
hopping seed independently and uniformly over [1, N-1]. Let

 be the sequence of the channels

generated by using the parameter set . If

, then and an SU that

selects such a channel must select the hopping seed h. As the
hopping seed is selected uniformly over [1, N-1], the
probability that an SU selects such a channel is then 1/(N-1),
which is only slightly larger than the ideal load 1/N when N is
large. On the other hand, if for some

, then for every fixed h and every fixed

channel c there is a unique x such that

Thus, the probability that an SU will select channel c is the
probability that the SU selects the exact x that solves the
equation. Such a probability is 1/N. In this case, we achieve
perfect load balancing. From both cases, we conclude that the
system load of RRICH is 1/(N-1), which is the same as the
system load of SSCH in Table 1 of [9] . In fact, RRICH is a
generalization of SSCH in two folds: (i) RRICH uses the field
operations which are much more general than the prime
number modular arithmetic in SSCH, and (ii) RRICH
implements “rotation” under the operation and thus the

degree of overlapping is N, i.e., all the channels. Note that the
idea of using “rotation” was previous used in our early
conference paper [10]. As a special case of Corollary 4, the
worst case TTR for RRICH is N+1 time intervals when there
is no PU blocking, i.e., . This is also the same as that

for SSCH in Table 1 of [9]. In comparison with M-QCH and
L-QCH in Table 1 of [9], RRICH has the same degree of
overlapping, a lower system load and a larger worst case TTR.

The Maximum Conditional Time To Rendezvous
(MCTTR) in [19] is defined as the maximum time for two SU
to rendezvous when there are N-1 blocked channels, i.e.,
m=N-1. From Corollary 4, the MCTTR of RRICH is

For the asymmetric and asynchronous setting, there are CH
schemes with MCTTR equal to [18,19]. As mentioned

before, the reason that the MCTTR of the asymmetric CH
schemes is smaller is because the two SUs can use different
strategies. For instance, ARCH in [19] cleverly puts the N
channels on a ring and has the sender (resp. receiver) walking
counterclockwise (resp. clockwise) along the ring. As the
sender and the receiver walk in the opposite directions, they
work toward each other and thus rendezvous within time

intervals (provided that time-parities are the same). The tricky

part of such an asymmetric CH scheme is when both SUs
would like to become senders at the same time. Then they
both walk in the same direction on a ring and will not
rendezvous at all. On the other hand, the best MCTTR among
all the known symmetric and asynchronous CH scheme is

 in CRSEQ [14], where N is a prime. As the time

intervals of the two SUs need not be synchronized in CRSEQ,
its MCTTR is much larger than in RRICH. To the

best of our knowledge, seems to be the best MCTTR

among all the symmetric and synchronous CHs when the
system load is not greater than . In the next section,

we will introduce Cycle-Adjustable Channel Hopping (CACH)
sequence that can further reduce the MCTTR at the cost of
increasing the system load.

In order for the RRICH scheme to work properly, we need
the assumption that the number of channels N must be a prime
power. If N is not a prime power, we can use a solution which
is similar to that proposed in [7]. We can simply choose a
prime power larger than N. Since , some channels

become invalid. When an SU hops to an invalid channel, we
could either simply do nothing for that SU at that time interval
or remap the channel to one of the N existing channels. Clearly,
if we do nothing at that time interval, then this is equivalent to
the case that there are channels blocked by PUs. As

such, Corollary 4 is still applicable and we only suffer minor
performance degradation. Certainly, the performance can be
improved by remapping. However, how to do remapping
efficiently requires further study.

III. CYCLE-ADJUSTABLE CHANNEL HOPPING SEQUENCE

One problem of the RRICH scheme is that the time-to-
rendezvous (TTR) might be very long when the number of
channels N is very large. To solve the long TTR problem for a
large number of channels N, we introduce the Cycle-
Adjustable Channel Hopping (CACH) scheme in this section.
The key idea of CACH is to create another layer of logical
channels and have SUs rendezvous on logical channels. By
choosing a modulo operation between logical channels and
physical channels, CACH still achieves the maximum degree
of overlapping as RRICH and thus it can still be used for
solving the PU long-time blocking problem.

To reduce the TTR, we choose a much smaller prime
power u for the construction of the first sub-frame in RRICH
and have two SUs rendezvous on one of the u logical channels
in the first time intervals. As in the construction of

RRICH, we find a Galois field GF(u) with the two operations
 and . Then SU i chooses its parameter set , where

 is the initial seed and is the hopping seed. However,

unlike RRICH, both the initial seed and the hopping seed are
chosen in [0,u-1]. In other words, the hopping seed can be the
zero element in the GF(u) used here. Each CACH sequence is
a periodic sequence with period . For

, we further partition this period of

 time intervals into N sub-frames, each with

time intervals. The last interval in a sub-frame is called the
indemnity time interval. Let and be the logical

channel and the physical channel used by SU i at the time

interval. Suppose that , where q is the

quotient of t divided by and r is its remainder. Then

 and are determined by the following equation:

 (3)

The construction of the sequence is the same

as that in (1) except we remove the effect of q. Thus, the
sequence is a periodic sequence with period

 and it repeats itself in every sub-frame. The index q is

used in the mapping from a logical channel to a physical
channel through the modulo operation in (3). As such, the
physical channels used in each sub-frame are different.

Fig. 2 gives an example for the construction of CACH
sequences for N=5 and u=3. In this example, the addition in
GF(3) is the usual addition with the MOD 3 operation and the
multiplication in GF(3) is the usual multiplication with the
MOD 3 operation. Since u=3, each sub-frame contains four
time intervals with the last time interval in each sub-frame
being the indemnity interval. For SU A with parameter set

, we have ,

, and .

As the last time interval in each sub-frame is the indemnity
interval, . Note that the logical channel

hopping sequence repeats itself in each sub-frame with

the sequence 1, 0, 2, 2. The physical channel hopping
sequence then adds 1 with the MOD 5 operation to 1, 0,

2, 2 in each sub-frame and that leads to 1, 0, 2, 2 for the

sub-frame, 2, 1, 3, 3 for the 1
st

sub-frame, 3, 2, 4, 4 for the

sub-frame, 4, 3, 0, 0 for the sub-frame and 0, 4, 1, 1 for the

 sub-frame. Both the logical channel hopping sequence and

the physical channel hopping sequence for SU B with the
parameter set are also shown in Fig 2.

Following the same argument as in the proof of Lemma 2,
we have the following lemma for CACH. Note that this lemma

Figure 2: CACH sequences for two SUs with 5 physical channels and 3 logical channels (i.e., N =5 and u=3).

still holds even though we allow the hopping seed to be the
zero element.

Lemma 5. Consider two SUs with the parameter sets
 and .

(i) If they are assigned with the same hopping seed and the
same initial seed, i.e., and , then they will

rendezvous at each time interval.

(ii) If they are assigned with the same hopping seed
(), but with different initial seeds and (),

they will rendezvous at the indemnity time intervals (the last
time interval in each sub-frame), i.e., ,

.

(iii) If they are assigned with different hopping seeds

(), they will rendezvous at the time interval in

each sub-frame, i.e., , ,

where

 (4)

In Theorem 6, we show that CACH also achieves the
maximum degree of overlapping as RRICH.

Theorem 6. Any two SUs will rendezvous at least once in
each sub-frame. Moreover, the physical channels they
rendezvous in the first m sub-frames contain at least m distinct

channels, .

Proof. From Lemma 5 (i), (ii) and (iii), it is clear that they
will rendezvous at least once in each sub-frame. If they are
assigned with the same hopping seed (), it follows

from Lemma 5 (i) and (ii) that they will rendezvous in the

sub-frame on the logical indemnity channel and thus on the

physical channel It is clear that all the

elements in the set

are distinct. On the other hand, if they are assigned with
different hopping seeds (), we have from Lemma 5 (iii)

that they will rendezvous at the time interval in each sub-

frame, where r is specified in (4). In this case, they will

rendezvous on the logical channel in the

sub-frame and on the physical channel
 Once again, it is clear that all

elements in set

are distinct. ■

Analogous to proof for Corollary 4, one can use the results
in Theorem 6 to show that CACH also solves the PU long-
time blocking problem.

Corollary 7. Suppose that there are m channels

that are used by PUs. Any two SUs will rendezvous within
 time intervals.

In comparison with RRICH, the worst case TTR for
CACH is shorter than that of RRICH if . However, this

is at the cost of increasing the system load and thus the
possibility of causing the control channel congestion. To see
this, recall that the load of a channel at a particular time
interval is defined as the probability that an SU hops on that
channel at that interval. Note that there are u choices for the
initial seeds and u choices for the hopping seeds in CACH. As
in RRICH, we simply assume that each SU chooses its initial
seed and its hopping seed independently and uniformly over

[0,u-1]. Thus, each SU is distributed uniformly to one of the u
logical channels in each time interval. Thus, the probability
that an SU is distributed in a logical channel (and the
corresponding physical channel) is simply , which could

be substantially higher than the ideal load when .

As a direct consequence of Corollary 7, the MCTTR of CACH
is which could be substantially smaller than in

ACH [18] and ARCH [19]. We also note that it is difficult to
create an additional layer of logical channels in the
asynchronous setting, where the two SUs do not have the
same indices of time intervals.

In particular, if we choose u=2, the worst case TTR for
CACH is 3 and its system load is only 1/2, which is lower than
2/3 of M-QCH [9]. For this case, CACH is better than M-QCH
as CACH has a lower system load while keeping the same
degree of overlapping and the same worst case TTR. Now we
compare CACH with L-QCH [9]. If the maximum allowable
TTR is , it is shown in Theorem 2 of [9] that the system load

of any QCH system is at least . L-QCH is the QCH

system with the system load . Taking , we then

derive that the system load of the CACH scheme is only
, which is significantly lower than in L-QCH.

In view of these, we conclude that CACH is in general much
better than QCH in terms of reducing system load while
keeping the same degree of overlapping and the same worst
case TTR.

Certainly, choosing the number of logical channels u that
optimizes the system performance, e.g., throughput, depends
on various system characteristics, e.g., the number of SUs, the
number of channels, and the characteristics of PUs. For this,
we will perform various computer simulations in the next
section. One of our findings from the simulations results is to
set the number of logical channels u close to the average
number of neighbors for a reasonably good throughput. As the
load of CACH is 1/u, the average number of SUs that hop to a
rendezvous channel is close to 1 if u is close to the average
number of neighbors.

Note that setting u to be close to the average number of
neighbors depends on the topology of the network and might
be difficult to implement in a dynamic network. If we view the
average number of SUs hopping to a rendezvous channel as
the utilization of the rendezvous channel, then the key factor
for achieving a good throughput is to maintain a reasonably
good utilization in a rendezvous channel. Instead of directly
estimating (or tracking) the average number of neighbors, one
might estimate the average number of contentions in a
rendezvous channel and use that to maintain a reasonably
good utilization in a rendezvous channel. Specifically, we can
partition the average number of contentions in a rendezvous
channel into several levels and associate each level with an
appropriate u. By so doing, we can make CACH adapt to the
dynamic change of the network. However, how to estimate the
number of contentions in a rendezvous channel and establish
the mapping between that and u require further study

IV. SIMULATION RESULTS

In this section, we perform various computer simulations
via an event-driven C++ simulator. In our simulations, we
only consider disjoint flows, where each source SU and each
destination SU cannot have multiple flows. However, we do
allow SUs to change its hopping seeds. Specifically, we let

each SU change its hopping seeds with probability 1/100 at
the beginning of each time interval. These flow pairs and PUs
are distributed randomly in a region. The transmission range
and the interference range are set to 250m and 550m,
respectively. The behavior of a PU is modeled by a two-state
ON-OFF Markov chain, where both ON periods and OFF
periods are independent, and exponentially distributed. The
simulation time is set to 100s. The time interval is set to 6 ms.
In the first 2 ms, each pair of SUs will exchange the control
messages. If they correctly receive the control messages from
each other, they can use the control channel as their data
channel for transmitting data in the following 4ms. All SUs
content the right of access channel through IEEE 802.11
Distributed Coordination Function.

A. Selection of the Number of Logical Channels

In this section we address the problem for the selection of
the number of logical channels in CACH. We consider that
there are some SUs distributed in a 380mx380m region. As
such, each SU is a neighbor of another SU. Each channel is
associated with a PU. The mean of OFF periods is set to 10s.
The mean of ON periods is set to 10s with probability 1/5 and
is set to 30s with probability 4/5. The channel capacity is set to
54Mbps and the source SU always has packets to send. In Fig.
3(a), we show the throughputs of CACH when the number of
channels N is set to 13. In Fig. 3, u(x) means the number of
logical channels u is set to x. When the number of SUs is set to
6 (resp. 10 and 14), CACH has the largest throughput if the
number of logical channels u is set to 7 (resp. 13 and 13). It
can be observed that when the number of logical channels is
set to the value close to the number of neighbors, CACH can
achieve a good throughput. When the difference between the
number of logical channels and the number of neighbors
increases, the throughput decreases. In Fig. 3(b), we consider
another setting with the number of channels N being set to 23.
When the number of SUs is set to 10 (resp. 18), CACH has the

largest throughput if the number of logical channels u is set to
11 (resp. 19). The results in Fig. 3(b) also show that one
should choose the number of logical channels close to the
number of neighbors.

Note that the performance of throughput might be quite
sensitive to the selection of the number of logical channels u
in some cases. As discussed before, if we view the average
number of SUs hopping to a rendezvous channel as the
utilization of the rendezvous channel, then the key factor for
achieving a good throughput is to maintain a reasonably good
utilization in a rendezvous channel. As shown in Fig. 3, if we
set u too small, then the utilization of a rendezvous channel is
too high and that leads to lots of collisions and sharp
degradation of throughput.

B. Performance comparisons without data traffic

Next, we compare the performance of SYN, SSCH, L-
QCH, RRICH and CACH for various performance metrics,
including the average number of co-channel SUs (for a
particular SU per time interval), the average number of used
channels (per time interval), and the average TTR. In order to
see the effects (and the insights) of these rendezvous
algorithms, we do this without introducing data traffic, i.e., no
data flows. We first consider the case where six SUs are
distributed randomly in a 380mx380m region. Also, the SUs
do not change their CH parameters. In this simulation, there
are 13 channels and each channel is associated with a PU. The
mean OFF period of a PU is set to 10s. The mean of ON
periods is set to 10s with probability 1/5 and is set to 30s with
probability 4/5. In Fig. 4(a), we show the effect of the number
of SUs on the average number of co-channel SUs (for a
particular SU). A co-channel SU for a particular SU in a
particular time interval is an SU that operates on the same
channel as that SU in the time interval. To measure this, we
choose an arbitrary SU and take the average of the number of

0

5

10

15

20

25

30

6 11 16 21 26

A
v

e
ra

g
e

 n
u

m
b

e
r

o
f

co
-c

h
a

n
n

e
l

S
U

s

Number of SUs

SYN

CACH

L-QCH

SSCH

RRICH

(a) Effect of the number of SUs on the average number of co-channel SUs.

0

2

4

6

8

10

12

6 11 16 21 26

A
v

e
ra

g
e

 n
u

m
b

e
r

o
f

u
se

d
 c

h
a

n
n

e
ls

Number of SUs

SYN

CACH

L-QCH

SSCH

RRICH

(b) Effect of the number of SUs on the average number of used channels.

Figure 4: Effects of the number of channels on the average number of co-
channel SUs and the average number of used channels.

0

1

2

3

4

5

6

7

8

9

10

6 10 14

A
v

e
ra

g
e

 t
h

ro
u

g
h

p
u

t
(M

b
p

s)

Number of SUs

u(3)

u(5)

u(7)

u(11)

u(13)

(a) The number of channels is 13.

0

1

2

3

4

5

6

7

8

9

10 18

A
v

e
ra

g
e

 t
h

ro
u

g
h

p
u

t
(M

b
p

s)

Number of SUs

u(3)

u(5)

u(7)

u(11)

u(13)

u(17)

u(19)

u(23)

(b) The number of channels is 23.

Figure 3: The throughputs of CACH for different number of logical channels.

co-channel SUs over time. Clearly, the larger the average
number of co-channel SUs is, the larger the co-channel
interference is. As such, a large average number of co-channel
SUs might suffer from the problem of control channel
saturation. It can be seen from Fig. 4(a) that both RRICH and
SSCH have the same average number of co-channel SUs.
When the number of SUs is larger than 11, CACH is reduced
to RRICH as the number of logical channels is upper bounded
by the number of channels. Also, the average number of co-
channel SUs for L-QCH is larger than those of RRICH,
CACH, and SSCH. Such a result is expected as the system
load of L-QCH is larger than the system loads of RRICH,
CACH, and SSCH. Since the system load of SYN is 1, the
average number of co-channel SUs for SYN increases linearly
with respect to the number of SUs. On the other hand, the
average numbers of co-channel SUs for RRICH, CACH,
SSCH, and L-QCH only increase slowly with respect to the
increase of the number of SUs. In Fig. 4(b), we further show
the effect of the number of SUs on the average number of used
channels in a time interval. A channel is said to be used in a
time interval if there is (at least) one SU that operates that
channel as the control channel in that time interval. To
measure this, we count the number of used channels in every
time interval and then take its average. Intuitively, a
rendezvous algorithm that has a large average number of used
channels tends to distribute its traffic evenly over the channels.
It is observed that RRICH, CACH and SSCH have same
average number of used channels when the number of SUs is
larger than 11. When the number of SUs is only 6, the average
number of used channels for RRICH is larger than that of
CACH because the system load in CACH is larger than that of
RRICH. Also, the average number of used channels for CACH
is better than L-QCH, even when the number of SUs is 6. This
is because L-QCH only distribute the control traffic over the
time (but not over the channels).

In Fig. 5(a), we show the effect of the number of channel
on the average TTR. Since SYN allows all SUs to hop to the
same channel, it has the lowest average TTR. Since the worst
case TTRs of CACH and L-QCH are independent of the
number of channels, their average TTRs are also not
influenced by the number of channels. However, the worst
case TTRs of RRICH and SSCH depend on the number of
channels, and the average TTRs of RRICH and SSCH
increases when the number of channels increases. Moreover,
since the degree of overlapping of RRICH is N, RRICH has a
lower average TTR than SSCH (as SSCH suffers from the PU
long-time blocking problem). In Fig. 5(b), we measure the
effect of the mean ON period (of a PU) on the average TTR.
When the mean ON period of each PU is set to 10s, RRICH
and SSCH have the same average TTR. However, when the
mean of the ON period is increased, the average TTR of SSCH
is increased rapidly due to the long-time PU blocking problem.
The other channel hopping schemes do not increase their
average TTRs quickly because their degree of overlapping are
equal to N and then they are immune to the long-time PU
blocking problem. In view of Fig. 5(a) and Fig. 5(b), we note
that L-QCH has a lower average TTR than that of CACH.
This is because that L-QCH has a heavier system load than
CACH. On the other hand, CACH have a smaller number of
co-channel SUs and a larger number of used channels than
those of L-QCH.

C. Throughput

In this section, we compare the throughputs of RRICH and
CACH (via simulations) with other existing schemes,
including SSCH [7], SYN-MAC [8] and L-QCH [9]. In the
simulation, the number of logical channels u of CACH is set
to the largest prime number that is smaller than the average
number of neighbors of the SUs. In Fig. 6(a), we show the
effect of the number of channels on the average throughput
(per flow). In order to simulate the scenario with
heterogeneous available channel sets, we distribute 10 SUs in
a 1000mx1000m region independently and uniformly. We
then generate 100 network topologies and calculate the
average number of neighbors of a SU. In this case, each SU
has 5 neighbors on average. Each channel is associated with 2
PUs. The mean of OFF periods is set to 10s. The mean of ON
periods is set to 10s with probability 1/5 and is set to 30s with
probability 4/5. The channel capacity is set to 54Mbps and the
source SU always has packets to send. The packet arrival
process is modeled by a Poisson process.

It is observed that SYN-MAC has the highest average
throughput because SYN-MAC has almost no contention in
this scenario and the lowest worst case TTR. The average
throughputs of CACH and L-QCH are not affected by the
increase of the number of channels N because their worst case
TTRs do not depend on N. Although both L-QCH and CACH
have the same worst case TTR, CACH still has a higher
average throughput. This is because CACH distributes control
messages not only over the time line but also over all the
channels (i.e., multiple rendezvous) and L-QCH only
distributes control messages over the time line. When the
number of channels N increases, the average throughput of
RRICH decreases quickly because of the long TTR problem.
Note that SSCH has the poorest performance because SSCH
does not achieve the maximum degree of overlapping. In Fig.
6(b), we show the effect of the number of SUs on the average
throughput. The number of channels N is set to 13. When there

0

50

100

150

200

250

300

350

13 23 31 43 53

A
v
e

ra
g

e
 T

T
R

 (
ti

m
e

 i
n

te
rv

a
ls

)

Number of channels

SYN

CACH

L-QCH

SSCH

RRICH

(a) Effect of the number of channels on average TTR.

0

20

40

60

80

100

120

140

160

180

10 20 30 40 50

A
v

e
ra

g
e

 T
T

R
 (

ti
m

e
 i

n
te

rv
a

ls
)

Mean of ON period (s)

SYN

CACH

L-QCH

SSCH

RRICH

(b) Effect of the PU behavior on the average TTR.

Figure 5: Effects of the number of channels and PU behavior on the average
TTR.

are 10, 20, 30, 40, and 50 SUs distributed randomly in a
1000mx1000m region, the average number of neighbors of an
SU is 5, 11, 16, 22 and 28 respectively. When the number of
neighbors is larger than 10, the number of logical channels of
CACH is set to the number of channels. Hence, CACH is
reduced to RRICH and their average throughputs are almost
the same when the number of SUs is larger than 20 in Fig.
6(b). When the number of SUs increases, the average
throughput of SYN-MAC decrease much rapidly than the
other schemes. This is because SYN-MAC now suffers from
the control channel saturation problem. Since RRICH, CACH,
L-QCH and SSCH do not have the control channel saturation
problem, their average throughputs decrease slowly with the
same slope as shown in Fig. 6(b).

V. CONCLUSION

In this paper, we proposed a novel Cycle-Adjustable
Channel Hopping (CACH) scheme for control channel
establishment in cognitive radio networks. For this, we first
extended SSCH to RRICH by introducing Galois fields and
rotating rendezvous channels. The key idea of CACH is the
creation of another layer of logical channels in RRICH so that
the TTR in CACH can be adjusted to optimize system
performance. We showed that CACH is better than both M-
QCH and L-QCH in terms of minimizing the system load
while maintaining the same degree of overlapping and the
same worst case TTR. Via extensive computer simulations, it
is suggested that the number of logical channels in CACH
should be close to the average number of neighbors to obtain a
good throughput. Also, the simulations results show that
CACH outperforms existing schemes in many aspects,
including throughput, and robustness to the disturbance of PUs.

ACKNOWLEDGEMENT

This work was supported in part by the Excellent Research

Projects of National Taiwan University, under Grant Number

AE00-00-04, and in part by National Science Council (NSC),

Taiwan, under Grant Numbers NSC102-2221-E-002-014-

MY2 and 102-2221-E-007 -006 -MY3.

REFERENCES

[1] Federal Comm. Commission, “Spectrum Policy Task Force Report,”
Washington, DC, FCC 02-155, 2002.

[2] J. Mitola III and G. Q. Maguire Jr.,”Cognitive Radio: Making Software
Radios More Personal,” IEEE Personal Communications, Aug. 1999.

[3] J. Zhao, H. Zheng and G.-H. Yang, “Distributed Coordination in
Dynamic Spectrum Allocation Networks,” in Proc. IEEE DySPAN’05.

[4] L. Le and E. Hossain, “OSA-MAC: A MAC Protocol for Opportunistic
Spectrum Access in Cognitive Radio Networks,” in Proc. IEEE
WCNC’08.

[5] T. Chen et al. “CogMesh: A Cluster-based Cognitive Radio Network,”
in Proc. IEEE DySPAN’07.

[6] X. Zhang and H. Su, “CREAM-MAC: Cognitive Radio-EnAbled Multi-
Channel MAC Protocol Over Dynamic Spectrum Access Networks,”
IEEE Journal on Selected Topics in Signal Processing, Vol. 5, No. 1, pp.
110-123, February 2011.

[7] P. Bahl, R. Chandra, and J. Dunagan, “SSCH: Slotted Seeded Channel
Hopping for Capacity Improvement in IEEE 802.11 Ad-Hoc Wireless
Networks,” in Proc. ACM MobiCom’04.

[8] Y. R. Kondareddy and P. Agrawal, “Synchronized MAC Protocol for
Multi-hop Cognitive Radio Networks,” in Proc. IEEE ICC’08.

[9] K. Bian, J.-M. Park, and R. Chane, “A Quorum-based Framework for
Establishing Control Channels in Dynamic Spectrum Access Networks,”
in Proc. ACM MobiCom’09.

[10] C.-F. Shih, T,-Y, Wu, and W. Liao, “DH-MAC: A Dynamic Channel
Hopping MAC Protocol for Cognitive Radio Networks,” in Proc. IEEE
ICC’10.

[11] H.-S. W. So, G. Nguyen, J, Walrand, “Practical Synchronization
Techniques for Multi-Channel MAC,” in Proc. ACM MobiCom’06.

[12] L. DaSilva and I. Guerreiro, “Sequence Based Rendezvous for Dynamic
Spectrum Access,” in Proc. IEEE DySPAN’08.

[13] D. Yang, J. Shin, and C. Kim, “Deterministic Rendezvous Scheme in
Multichannel Access Networks,” Electronics Letters, Vol. 46, No. 20,
pp. 1402-1404, 2010.

[14] J. Shin, D. Yang, and C. Kim, “A Channel Rendezvous Scheme for
Cognitive Radio Networks,” IEEE Communications Letter, vol. 14, no.
10, pp. 954-956, 2010.

[15] Y. Zhang, Q. Li, G. Yu, and B. Wang, “ETCH: Efficient Channel
Hopping for Communication Rendezvous in Dynamic Spectrum Access
Networks,” in Proc. IEEE INFOCOM’11.

[16] Z. Lin, H. Liu, X. Chu, and Y.-W. Leung, “Jump-Stay Based Channel-
hopping Algorithm with Guaranteed Rendezvous for Cognitive Radio
Networks,” in Proc. IEEE INFOCOM’11.

[17] N. C. Theis, R. W. Thomas, and L. A. DaSilva, “Rendezvous for
Cognitive Radios,” IEEE Transactions on Mobile Computing, Vol. 10,
No. 2, pp. 216--227, 2011.

[18] K. Bian and J.-M. Park. "Asynchronous channel hopping for establishing
rendezvous in cognitive radio networks." In Proc. IEEE. INFOCOM,
2011.

[19] G.-Y. Chang, W.-H. Teng, H.-Y. Chen, and J.-P. Sheu, “Novel Channel-
Hopping Schemes for Cognitive Radio Networks,” IEEE Transactions
on Mobile Computing.

[20] R. P, Grimaldi, Discrete and Combinational Mathematics: An Applied
Introduction. Addison Wesley 2004.

0

2

4

6

8

10

12

14

16

13 23 31 43 53

A
v

e
ra

g
e

 t
h

ro
u

g
h

p
u

t
(M

b
p

s)

Number of channels

SYN

CACH

L-QCH

SSCH

RRICH

(a) Effect of the number of channels on throughput.

0

2

4

6

8

10

12

14

16

10 20 30 40 50

A
v

e
ra

g
e

 t
h

ro
u

g
h

p
u

t
(M

b
p

s)

Number of SUs

SYN

CACH

L-QCH

SSCH

RRICH

(b) Effect of the number of SUs on throughput.

Figure 6: Effects of the number of channels and the number of SUs on
throughput.

