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Abstract—In user-item networks, the link prediction problem
has received considerable attentions and has many applications
(e.g., recommender systems, ranking item popularity) in recent
years. Many previous works commonly fail to utilize the
dynamic nature of the networks. This paper focuses on dealing
with the temporal information and proposes an algorithm to
cope with the link prediction problem on bipartite networks.
We describe a temporal bipartite projection method that yields
a projected item graph, called the temporal projection graph
(TPG). Based on the TPG, we propose a scoring function called
STEP (Score for TEmporal Prediction) for each user-item pair.
STEP leverages the historical behaviors of individual users
and the social aggregated behaviors learned from the TPG
for the link prediction problem. Furthermore, we use TPG
and PageRank to rank the popularity of items. To validate
our algorithms, we perform various experiments by using
the DBLP author-conference dataset, the Flickr dataset and
the Delicious dataset. We show that our results of the link
prediction problem for new links are substantially better than
other temporal link prediction algorithms. We also find the item
rankings generated by our approach match very well with that
existed in the real world.

Keywords-bipartite network; bipartite network projection;
link prediction; PageRank;

I. INTRODUCTION

Online social networks are very popular now and they
are very dynamic in nature. In such networks, there are
many people interacting with each other, expressing their
opinions, sharing files, viewing or purchasing things all the
time from all over the world. In the literature, sequences
of bipartite networks indexed by time are commonly used
for modelling (or logging) the interactions in online social
networks. In general, there are two kinds of nodes in such
bipartite networks, users and items (such as products, files,
and articles) and such bipartite networks are called the
user-item networks. A (weighted) link between a user node
and an item node at a certain time represents the specific
relationship between that user and that item such as buying,
sharing, or discussing certain topics at that time. By studying
the dynamics of such bipartite networks, one might be able

to infer the popularity of an item and the preference of
each individual to make personal recommendation or market
survey. For this, we address two specific problems in this
paper:

(i) Given a temporal sequence of user-item networks,
how can one generate an item graph to characterize
the relations among items?

(ii) Given a temporal sequence of user-item networks,
how can one predict future links between users and
items?

The second problem is commonly known as the link
prediction problem in the literature and has received a lot of
attention lately. There are roughly four classes of approaches
for the link prediction problem: methods based on similarity
of nodes [3, 4, 5], methods based on classification or
regression [6, 7, 8], methods based on graph mining [9, 10],
and methods based on tensor factorization and Holt-Winters
forecasting [2, 11, 12, 13].

The first problem is called the temporal bipartite projec-
tion problem in this paper and it seems to be less studied
in the literature. To deal with the huge amount of data
in a temporal sequence of bipartite networks, one has to
“condense” them into a simpler (and preferably meaning-
ful) representation for future data processing. The simplest
method is to collapse the sequence of bipartite networks (by
a weighted sum) into a single weighted bipartite network and
then perform bipartite projection (and link prediction) based
on the weighted bipartite network (see e.g., [3, 4, 5, 6, 7, 8]).
The drawback of such an approach is losing the valuable
temporal information (e.g., the order of events) and individ-
ual user history. In particular, it would be very difficult to
find out whether an item is the substitute of another item
without the temporal information.

There are few previous related works that have taken
the temporal information into account [2, 9, 10, 14, 15].
Eubak et al. [14] proposed using dynamic bipartite graphs
to model the physical contact patterns for disease outbreaks.



Koren [15] considered the problem of tracking the temporal
dynamics of customer preferences to products. By studying
time evolution graphs, Berlingerio et al. [9, 10] developed
GERM for mining graph evolution rules. Dunlavy et al.
[2] used the matrix and tensor factorization for the link
prediction problem. One drawback of tensor factorization
is that one loses the physical insights of the temporal
information during the factorization process. Besides, their
experimental results are not substantially better than those
from the well-known (truncated) Katz method when using
the DBLP dataset for comparison.

For the first problem, we propose in this paper a temporal
bipartite projection (TBP) method to generate an item graph,
called the temporal projection graph (TPG), that character-
izes the transition tendencies among similar items. The key
idea is to identify the transitions made by each user from
one item to another similar item over time. By assigning
each transition a weight, the sum of the weights of all the
transitions from one item to another item (over all users) is
then the transition tendency between these two items. Intu-
itively, transition tendency obtained this way can be viewed
as a social aggregated change of the preference among all
items. We then construct the TPG as a directed weighted
item graph by assigning the transition tendencies as its edge
weights. There are some factors that one might need to
consider for the weight assignment of a transition, including
computational complexity, occurrence of the transition, the
duration of the transition, weight between a user and an item
in the transition, and normalization among users.

There are several things that can be inferred from the
TPG. In particular, one can use PageRank [1] to rank the
popularity of items. Also, one can use transition tendencies
to identify substitute relationship between two items. If the
transition tendency from one item to another item is high
and the transition tendency of the opposite direction is close
to 0, then we may infer that the latter is a substitute item of
the former as the transitions are basically made one way. On
the other hand, if the transition tendencies in both directions
are high, then we may infer that these two items could be
substitutes of each other.

For the link prediction problem, we propose the STEP
(Score for TEmporal Prediction) method that uses the social
aggregated behavior from the TPG and each individual
history. For each user-item pair, STEP computes a score
that is used for ranking the likelihood of the occurrence of
a future link between a user and an item. The idea of STEP,
quite similar to the construction of the TPG, is to identify
all the potential transitions by looking at the history of that
user. By assigning a weight to each potential transition, the
score for each user-item pair is then the sum of the weights
of all the potential transitions. As the weight assignment for
a transition, the weight assignment for a potential transition
also takes the temporal information into account. Moreover,
since a potential transition is an event that has not happened

yet, we also use the social aggregated behavior from the
TPG for predicting the occurrence of a potential transition.

To test our methods, we use the DBLP dataset [16]
that contains publications in computer science journals and
proceedings from year 1936 to 2011. We follow the same
setting as in [2] to parse the DBLP dataset into a sequence
of author-conference bipartite networks. Thus, the users
and the items in our setting are simply the authors and
the conferences in the DBLP dataset, respectively. Our
numerical results reveal many interesting findings that match
very well with what really happened in the real world. In
particular, we find out that INTERSPEECH is a substitute
conference for EUROSPEECH. Moreover, INFOCOM is
one of the three conferences with very large self transition
tendencies. This shows that the authors of INFOCOM are
very loyal to INFOCOM. We also use PageRank to rank
the popularity of the conferences in the DBLP dataset. In
particular, INFOCOM is constantly ranked within the top 15
popular conferences in all our training periods. Also, for the
link prediction problem, our result is substantially better than
the method with the best performance in [2] for the DBLP
dataset [16], the Flickr dataset [17] and the Delicious dataset
[17].

The rest of the paper is organized as follows. In Section
II, we propose a temporal bipartite projection method for
the construction of the TPG. In section III, we propose
STEP for link prediction. In Section IV, we report our
experimental results by using the DBLP author-conference
dataset, the Flickr dataset and the Delicious dataset. The
paper is concluded in Section V, where we address possible
extensions of our work.

II. TEMPORAL BIPARTITE PROJECTION

A. Temporal projection graph

The traditional bipartite projection method is to project a
bipartite graph into a unipartite graph of one kind of nodes
in the original bipartite graph. For a bipartite network with
users and items as their two kinds of nodes, called the user-
item network (graph) in this paper, the traditional method
is to project such a graph into either a user graph (a graph
with all its nodes being users) or an item graph (a graph
with all its nodes being items). There are many methods for
bipartite projection (see e.g., [4]). In particular, we show in
Fig. 1 an example of bipartite projection that results in an
unweighted graph, where a link is created in the projected
graph if the two nodes in the user-item graph have common
neighbors. Since the traditional bipartite projection method
simply maps a user-item bipartite network to either a user
network (graph) or an item network (graph), one has to
collapse all the temporal bipartite networks into a single
one in order to use such a method. This results in the loss
of temporal information and that motivates us to define the
temporal bipartite projection that takes the temporal issue
into account.



Figure 1. An example of the traditional bipartite projection method.

As in the traditional bipartite projection, one can project
a sequence of weighted bipartite networks into either a user
network or an item network. In [18], Goyal et al. proposed
several methods to learn user influence probabilities by look-
ing into a sequence of action logs (with each log indicating
a certain user performing an action on a certain item at
a certain time). In the discrete-time setting, a sequence of
action logs can be equivalently represented by a sequence of
bipartite networks. As such, the user influence graph learned
by Goyal et al. [18] is in fact a projection of a sequence of
bipartite networks into a user network.

In this paper, we focus on the other direction of the
projection. Our temporal bipartite projection (TBP) method
is a mapping from a sequence of weighted bipartite networks
to a weighted directed item graph. Without loss of generality,
we assume each bipartite network consists of two kinds of
nodes: a set of N users U = {1, 2, . . . , N} and a set of
M items I = {1, 2, . . . ,M}. We consider a sequence of
bipartite networks {Gt, t = 1, 2 . . . , T} with T being the
length of the training period. Let gtn,m, n = 1, 2, . . . , N ,
m = 1, 2, . . . ,M , t = 1, 2, . . . , T , be the weight between
user n and item m in the bipartite network Gt. In this
paper, we assume that all the weights are nonnegative, i.e.,
gtn,m ≥ 0. For simplicity, we call gtn,m the weight between
user n and item m at time t.

In addition to the sequence of bipartite networks, we
assume that we have some preliminary knowledge regarding
the similarity of items. For this, we assume there is an
item similarity graph GI = (I, EI) in which an edge
(m1,m2) ∈ EI indicates that the two items m1 and m2 are
similar. With the graph GI , we can take the temporal issue
into account by identifying transitions between two similar
items. Specifically, A transition for a user n from item m1

at time t1 to another item m2 at time t2 (t2 > t1) if (i)
these two items are similar, (ii) both the weight between
user n and item m1 at time t1 and the weight between user
n and item m2 at time t2 are positive, i.e., gt1n,m1

> 0 and
gt2n,m2

> 0. In practice, the physical meaning of a transition
might reflect the change of the behavior (preference) of a
user, e.g., a user buys one item earlier and then buys another
similar item some time later. If these two items are the same,
a self transition also reflects the loyalty of that user to that
item. The concept of a transition is formalized as follows:

Definition 1: (Transition for a user between two items)

If (i) (m1,m2) ∈ EI and (ii) gt1n,m1
> 0 and gt2n,m2

> 0
for some user n in U , some items m1 and m2 in I, and
1 ≤ t1 < t2 ≤ T , then we say there is a transition for user n
from item m1 at time t1 to another item m2 at time t2. Such
a transition is denoted by the five tuple (n,m1, t1,m2, t2).

Intuitively, each transition records the change of the
preference of a user over time. If we assign each transition
a weight and then sum up the weights of all the transitions,
the result could be viewed as a social aggregated change of
the preference among all items. This leads us to define the
transition tendency between two items.

Definition 2: (Transition tendency between two items)
Suppose the weight for a transition (n, i, t1, j, t2) is
w(n, i, t1, j, t2). Then the transition tendency from item i
to item j, denoted by TranTend(i, j), is

N∑
n=1

T−1∑
t1=1

T∑
t2=t1+1

w(n, i, t1, j, t2).

Clearly, the matrix Ĝ = (ĝi,j) induces a directed weighted
item graph. The graph is called the temporal projection graph
(TPG) of the sequence of the bipartite networks {Gt, t =
1, 2 . . . , T}.

Definition 3: (Temporal projection graph (TPG)) The
temporal projection graph (TPG) of the sequence of the
bipartite networks {Gt, t = 1, 2 . . . , T} is the directed
weighted item graph with the adjacency matrix Ĝ = (ĝi,j),
where

ĝi,j = TranTend(i, j)

=

N∑
n=1

T−1∑
t1=1

T∑
t2=t1+1

w(n, i, t1, j, t2). (1)

One problem of the TPG is that the range of its edge
weights, i.e., transition tendencies, might be very large. For
this, we propose normalizing the edge weights to obtain item
transition probabilities.

Definition 4: (Item transition graph (ITG)) The item
transition graph (ITG) of the sequence of the bipartite
networks {Gt, t = 1, 2 . . . , T} is the directed weighted item
graph with the adjacency matrix P = (pi,j), where

pi,j =
ĝi,j∑M

m=1 ĝi,m
. (2)

The probability pi,j is the item transition probability that
indicates the probability of a user to switch from item i to
item j.

One possible application of the ITG is for ranking the
popularity of items. Analogous to PageRank [1], we can
model the behavior of a user by a random walk with random
jumps and then use that to compute the steady state proba-
bility for a user to visit a specific item in the ITG. The steady
state probabilities of these items, also called PageRank here,
are then used for ranking these items. Specifically, suppose



that there are M items and a user uniformly selects an
item with probability 1/M . Once he/she is on an item,
he/she continues the random walk with probability β. This
is done by selecting one of the neighboring items according
to the item transition probabilities. On the other hand, with
probability 1−β he/she performs a random jump and starts
a new item uniformly among all the M items. Clearly, such
a random walk induces a Markov chain and the steady
probability of item i, denoted by PR(i), satisfies

PR(i) = (1− β)
1

n
+ β

M∑
m=1

PR(m) · pmi. (3)

In all our experiments, the parameter β is set to be 0.85 as
in [1].

B. Weight assignment for a transition

Now the problem remains to find a method to assign
the weight for a transition (n, i, t1, j, t2). There are several
factors that one might need to consider for this.

(i) Computational complexity: The effort for comput-
ing the weight should be minimum for a large
dataset.

(ii) Occurrence of the transition: A recent transition
should carry a larger weight than an obsolete
transition.

(iii) Duration of the transition: A transition with a
shorter time difference should carry a larger weight
than that with a larger time difference.

(iv) Weight between a user and an item in the tran-
sition: A transition with a larger weight between
a user and an item at time t1 should be assigned
with a larger weight than another transition with a
smaller weight between the same user and another
item at the same time.

(v) Normalization among users: As transition tendency
can be viewed as a social aggregated preference of
items, the weight assignment should avoid one user
dominating the social aggregated preference.

There are many approaches for weight assignment in
learning influence probabilities in [18]. The simplest one
is to use the discrete-time Bernoulli model in [18], i.e.,

w(n, i, t1, j, t2) = 1, (4)

when t2 − t1 is not greater than a specific time window.
Such a model, though having the lowest computational
complexity, was shown to achieve comparable performance
to the other models in [18] that require much more intensive
computational efforts. Unfortunately, such a simple model
does not perform well in our setting for link prediction (from
our experiments). Instead, we adopt a more complicated
weight assignment approach by taking the discounting factor
and the other factors into account. Specifically, for all our

experiments, we use

w(n, i, t1, j, t2) = α(t1)×
gt1n,i∑M
ℓ=1 g

t1
n,ℓ

× α(T − (t2 − t1))∑T
s=t1+1 I

s
n × α(T − (s− t1))

.(5)

where α(t) = (0.8)T−t is the discounting factor and

Itn =

{
1 if

∑M
j=1 g

t
n,j > 0,

0 otherwise.

We note that the second term in the product is to consider
the factor for the weights between a user and an item in
(iv), while the third term in the product is to avoid one user
dominating the social aggregated preference in (v).

Regarding the computation complexity of the TPG from
the weight assignment in (5), we note that for each
user n = 1, 2, . . . , N , we can precompute

∑M
ℓ=1 g

t
n,ℓ

for all t = 1, 2, . . . , T , with O(NMT ) complexity and
store them in O(NT ) memory. Also, we can precompute∑T

s=t+1 I
s
n × α(T − (s− t)) for all n and t with O(NT 2)

computational complexity and store them in O(NT ) mem-
ory. Note that the computational complexity of Isn is O(1)
by using

∑M
ℓ=1 g

s
n,ℓ in memory. With these in memory, the

computation complexity of the weight in (5) is O(1). Thus,
the computation complexity of ĝi,j in (1) is O(NT 2). For
all the M2 edge weights in the TPG, the computation com-
plexity is then O(NT 2M2) as the computational complexity
for the precomputation is only O(N max(MT,T 2)) (with
additional O(NT ) memory).

C. An illustrating example of the TBP method and the TPG

We give an example of how the TBP method works and
how to calculate ĝi,j and PR(i) here.

Let U = {1, 2}, I = {1, 2, 3}, and T = 3, i.e.,
there are two users, three items, and three user-item net-
works. The sequence of the user-item bipartite networks
{Gt, t = 1, 2, 3} are characterized by the following three
biadjacency matrices:

G1 =

[
1 1 0
2 0 0

]
, G2 =

[
0 2 0
0 0 0

]
, G3 =

[
0 1 1
1 0 1

]
.

We assume that these three items are similar to each other,
i.e., the item similarity graph GI is a clique of three nodes.
There are eight transitions for user 1:
(1, 1, 1, 2, 2), (1, 1, 1, 2, 3), (1, 1, 1, 3, 3), (1, 2, 1, 2, 2),
(1, 2, 1, 2, 3), (1, 2, 1, 3, 3), (1, 2, 2, 2, 3) and (1, 2, 2, 3, 3).
Also, there are two transitions for user 2:
(2, 1, 1, 1, 3) and (2, 1, 1, 3, 3).

Then we can start to calculate the weight of each transition
and then sum them up to obtain the weights in the TPG.

In Fig. 2, we show how one can obtain the TPG by adding
the weight for each of the ten transitions in the directed



weighted item graph. To ease our presentation in Fig. 2, we
denote ∆gi,j the weight for such a transition (1, i, t1, j, t2)
for user 1 or (2, i, t1, j, t2) for user 2 calculated from (5).
Each sub-figure illustrates the weights in the directed item
graph after adding ∆gi,j in each transition. After adding all
the weights of the ten transitions, we obtain the TPG for
this example in Fig. 2(k).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 2. An illustrating example of the TBP method and the TPG.
(a) (1, 1, 1, 2, 2). (b) (1, 1, 1, 2, 3). (c) (1, 1, 1, 3, 3). (d) (1, 2, 1, 2, 2).
(e) (1, 2, 1, 2, 3). (f) (1, 2, 1, 3, 3). (g) (1, 2, 2, 2, 3). (h) (1, 2, 2, 3, 3). (i)
(2, 1, 1, 1, 3). (j) (2, 1, 1, 3, 3). (k) The TPG from the TBP method.

From Fig. 2(k), we can obtain all transition tendencies as
follows:
ĝ2,2 = 1.12, ĝ2,3 = 0.94222, ĝ1,3 = 0.78222, ĝ1,1 = 0.64,
ĝ1,2 = 0.32, and the others are zero.

We can use (2) and the TPG (see Fig. 2(k)) to calculate
the transition probabilities of all items pairs as follows:

[pi,j ] ≃

 0.36735 0.18368 0.44898
0 0.5431 0.4569
0 0 0

 .

The PageRank of these three items are as follows:
PR(1) ≃ 0.0737, PR(2) ≃ 0.114, and PR(3) ≃ 0.122.

III. LINK PREDICTION

In this section, we address the link prediction problem.
The link prediction problem is usually attacked by comput-
ing a score for each user-item pair based on the sequence
of bipartite networks in the training period. The score is
then used for ranking the likelihood of the occurrence of a
future link between a user and an item. To compute the score
for each user-item pair, we propose the STEP (Score for
TEmporal Prediction) method that uses the social aggregated
behavior from the TPG and each individual history.

A. The STEP method

In this section, we propose the STEP method for link
prediction. Our basic assumption for link prediction is that
the future behavior of a user depends on his/her personal
history and the social preference. As discussed before, ITG
can be viewed as the aggregated social behavior and the
item transition probability from item i to item j represents
the percentage of users who performed an action on item
i and then switched to item j. As such, if a user, say user
n, performed an action on item i, then the item transition
probability pij could be used for predicting the event that
he/she will switch to item j. Of course, such a probability
should be discounted and it depends on when the action on
item i is performed. Another factor is the weight between
user n and item i at time t, i.e., gtn,i. If such a weight could
be interpreted as the number of repetitive actions, e.g., the
number of papers in the same conference or the number of
posts with the same tag, then it is also reasonable to assume
that the probability for user n to perform an action on item j
at time T +1 is proportional to the weight gtn,i. Specifically,
we make the following assumption:

(A1) If user n performed an action on item i at time t
with weight gtn,i, then the probability that this user
will perform an action on item j at time T + 1 is

max[α(t) · gtn,i · pij , 1]. (6)

where 0 < α(t) ≤ 1 is the discounting factor for
the time that the action on item i was performed.

In view of (A1), if we would like to predict whether user
n will perform an action on item j at time T+1, we need to
find all the actions that user n performed on the items that
are similar to j before. This leads to the following definition
of potential transitions.

Definition 5: (Potential transition for a target user
from one item to a target item) For a target user n in U and
a target item j in I, if (i) (i, j) ∈ EI and (ii) gtn,i > 0 for
some 1 ≤ t ≤ T , then we say there is a potential transition
for the target user n from item i at time t to the target item
j at time T + 1. Such a potential transition is denoted by
the five tuple (n, i, t, j, T + 1).

Let P (n, i, t, j, T + 1) be the probability of the potential
transition (n, i, t, j, T + 1). Then it follows from (6) that

P (n, i, t, j, T + 1) = max[α(t) · gtn,i · pij , 1]. (7)

If we view each potential transition as a future event, then
the event that user n will perform an action on item j at
time T + 1 is the union of all the potential transitions for
user n on item j. To compute the probability for a union
of events is in general very difficult (unless these events are
independent). However, if the probability of each event is
rather small, then the probability for a union of events can
be well approximated by the sum of the probability of each
event. This leads us to the following way to compute the



score for the event that user n will perform an action on
item j at time T + 1.

Definition 6: (Score between a target user and a target
item) Assign a potential transition (n, i, t, j, T + 1) with
the weight w(n, i, t, j, T + 1) = α(t) · gtn,i · pij . The score
between the target user n and the target item j, denoted by
Score(n, j), is

T∑
t=1

M∑
i=1

w(n, i, t, j, T + 1). (8)

It is of interest to compare STEP with item-based col-
laborative filtering [19]. For a classical item-based col-
laborative filtering approach, one computes a “similarity”
score between two items for a user-item network and then
use the similarity score to compute a weighted average
score between a user and an item. For STEP, the transition
probability pij can be viewed as the “similarity” score
between items i and j. The difference here is that such a
similarity score is not symmetric and is discounted by a
timing factor. As such, STEP can be viewed as an item-
based collaborative filtering approach with the enhancement
of adding the timing information into the discounting factor
of an asymmetric similarity score.

B. An illustrating example of the STEP method

We consider the same example as in Section II-C and
choose α(t) = 0.8T−t = 0.83−t. Note that the transition
probability matrix computed there is an upper triangular
matrix. In view of (8), there is no need to compute the
weight for the potential transitions with a zero transition
probability. The scores of all user-item pairs are as follows:

Score(1, 1) = α(1)× g11,1 × p1,1 ≃ 0.235,

Score(1, 2) = α(1)× g11,1 × p1,2 + α(1)× g11,2 × p2,2

+ α(2)× g21,2 × p2,2 + α(3)× g31,2 × p2,2

≃ 1.877,

Score(1, 3) = α(1)× g11,1 × p1,3 + α(1)× g11,2 × p2,3

+ α(2)× g21,2 × p2,3 + α(3)× g31,2 × p2,3

≃ 1.768,

Score(2, 1) = α(1)× g12,1 × p1,1 + α(3)× g32,1 × p1,1

≃ 0.838,

Score(2, 2) = α(1)× g12,1 × p1,2 + α(3)× g32,1 × p1,2

≃ 0.419,

Score(2, 3) = α(1)× g12,1 × p1,3 + α(3)× g32,1 × p1,3

≃ 1.024.

Then we can sort these numerical results to rank these user-
item pairs for link prediction. In this example, the pair of
user 1 and item 2 has the highest score.

Table I
THE STATISTICS OF AUTHOR-CONFERENCE NETWORKS PARSED FROM

DBLP

Training Test Auths Confs. Training Links Test Links
Years Year (%Dens) (%Dens)

1991-2000 2001 8749 1599 130171 (0.09) 13004 (0.09)
1992-2001 2002 10287 1746 154926 (0.09) 16818 (0.09)
1993-2002 2003 12102 1909 186160 (0.08) 21464 (0.09)
1994-2003 2004 14343 2107 225072 (0.07) 28801 (0.10)
1995-2004 2005 17628 2383 281385 (0.07) 37389 (0.09)
1996-2005 2006 21573 2661 354135 (0.06) 43495 (0.08)
1997-2006 2007 26060 2952 439247 (0.06) 52678 (0.07)
1998-2007 2008 30758 3290 531209 (0.05) 60079 (0.06)
1999-2008 2009 35851 3550 631617 (0.05) 69420 (0.05)
2000-2009 2010 40929 3789 734305 (0.05) 71183 (0.05)

IV. EXPERIMENTAL RESULTS

A. The DBLP dataset

To test our method, we use the DBLP dataset [16] that
contains publications in computer science journals and pro-
ceedings from year 1936 to 2011. We follow the same setting
as in [2] to parse the DBLP dataset into a sequence of author-
conference bipartite networks. Thus, the users and the items
in our setting are simply the authors and the conferences
in the DBLP dataset, respectively. The granularity of time
is in year here. We only consider publications of type
inproceedings in DBLP and obtain the results from year
1991 to 2010. The training period T = 10 (years). Also,
we only keep those authors with more than 10 publications
in the training period. The statistics of the data is listed in
Table I (%Dens means the density of links in percentage,
i.e., %Dens = #links

#authors×#conferences ). We note that there
are some minor differences between our parsing results and
the results in [2]. It might be due to the updates of the DBLP
dataset.

B. Transition tendency and PageRank

After parsing the DBLP dataset into a sequence of author-
conference networks, we use the TBP method for the
sequence of author-conference networks from year 1991
to 2000 to obtain the transition tendencies among all the
1599 conferences. In our experiments, we assume that the
item similarity graph GI is a clique and thus all the 1599
conferences are similar.

We list the three top transition tendencies (by using the
weight assignment in (5)) in the TPG here:

1st: TranTend(EUROSPEECH, INTERSPEECH)

= 173.904,

2nd: TranTend(ICRA, ICRA) = 170.952,

3rd: TranTend(Winter Simulation Conference,
Winter Simulation Conference) = 157.485,



The maximum transition tendency (i.e., maximum edge
weight) in the TPG is 173.904, which is a significant
conference transition because it is 607.4 times higher
than mean transition tendency (which is only 0.2863).
The maximum transition tendency is from conference EU-
ROSPEECH to INTERSPEECH. INTERSPEECH is in fact
an annual conference that merged the traditional two bi-
ennial conferences ICSLP (held in even years) and EU-
ROSPEECH (held in odd years). As such, EUROSPEECH
is replaced by INTERSPEECH (see Fig. 3(a) for the
number of papers in EUROSPEECH, ICSLP, and INTER-
SPEECH during 1991 to 2001). This interesting truth is
revealed from our transition tendency index as we have
TranTend(EUROSPEECH, INTERSPEECH) = 173.904
and TranTend(INTERSPEECH, EUROSPEECH) = 0 in
the TPG.

The second and third largest transition tendencies are
TranTend(ICRA, ICRA) = 170.952, TranTend(Winter
Simulation Conference, Winter Simulation Conference) =
157.485 . These two transition tendencies are the transitions
from one conference to itself (self transitions). As such, we
might infer that ICRA and Winter Simulation Conference
are home conferences for their areas and the authors in their
areas have high loyalty to them (see Fig. 3(b) for the paper
counts during 1991 to 2001 of these three conferences).
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Figure 3. The number of papers of some conferences from 1991 to 2001.
(a) The number of papers in EUROSPEECH, ICSLP, and INTERSPEECH.
(b) The number of papers of attractive conferences: ICRA, Winter Simula-
tion Conference, and INFOCOM.

Once we obtain the TPG from the DBLP dataset, then
we can use that to compute PageRank [1] for ”ranking” the
conferences in the dataset. In Table II, we show the ranking
of the conferences from PageRank for each 10 year training
period. As PageRank computes the steady probability for a
random “walker” with random jumps to attend a conference,
our ranking by PageRank merely reflects the “popularity” of
the conferences in the future and it should not be considered
as a mean for ranking the “prestige” of the conferences. In
Table III, we list the number of authors and the number
of papers in Globecom and INFOCOM for the last five
10 year training periods. From Table II and III, we can
find an interesting phenomenon. In the 1996-2005 period,
there were still more papers and authors in INFOCOM than
in Globecom. But Globecom had higher PageRank index
than INFOCOM at the same time. Not surprisingly, there

Table III
NUMBERS OF AUTHORS AND PAPERS IN GLOBECOM AND INFOCOM

Globecom INFOCOM
papers authors papers authors

1996-2005 1537 4345 2029 5629
1997-2006 2545 7297 2199 6269
1998-2007 3554 10363 2352 6862
1999-2008 4642 13757 2491 7433
2000-2009 5696 17130 2686 8177

were more papers and authors in Globecom than INFOCOM
during the next period (1997-2006). In the following periods,
Globecom always has higher PageRank index than INFO-
COM and Globecom also has more papers and more authors
than INFOCOM. This shows that the popularity index by
using PageRank is closely related to the number of papers
and the number of authors in a conference in the future.
However, a conference with a larger number of authors may
not have a higher PageRank index than another conference
with a much smaller number of authors. Lower PageRank
index represents the number of papers and authors of a
conference will decrease in the future.

C. Link prediction results

We define new links and old links in the sequence of user-
item bipartite networks as follows.

Definition 7: (New link) A link with a positive weight
between a user n and an item j at time t is called a new
link at time t if

t−1∑
s=1

gsn,j = 0 and gtn,j > 0.

In the setting of the author-conference networks, a new
link corresponds to a paper that an author has not published
in that conference before. We use the STEP method for the
new link prediction problem on the DBLP author-conference
dataset, and compare the prediction performance with the
result in Dunlavy et al. [2]. We predict the new links by
ranking Score(n, j) in (8) for the DBLP author-conference
networks with the training period from year 1991 to 2000.
The prediction result is then compared with what really
happened in 2001 for validation. The precision-recall curve
is shown in Fig. 4, where precision is the ratio of the
number of true new links to the number of top ranked author-
conference pairs and recall is the ratio of the number of true
new links among the top ranked list of author-conference
pairs to the total number of new links in the testing year.
The number of true new links in 2001 among the top 1000

scores computed by STEP (see Fig. 4) is 116, and thus the
precision for STEP is 11.6%. We also reproduce the result by
the method TKatz-CWT in [2] that has the best performance
among all the methods discussed in [2]. That method only
achieves 82.56 true positive prediction (on average). Thus
its precision is only 8.256%, which is lower than 11.6% by
STEP.



Table II
PAGERANK FOR THE CONFERENCES IN THE DBLP DATASET

1991- 1992- 1993- 1994- 1995- 1996- 1997- 1998- 1999- 2000-
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1 HICSS HICSS HICSS IPDPS HICSS HICSS IPDPS Globecom Globecom Globecom
2 AAAI/IAAI ICRA IPDPS HICSS IPDPS IPDPS ICRA IPDPS ICC ICC
3 INFOCOM INFOCOM ICRA ICRA ICRA ICRA HICSS ICRA IPDPS ICIP
4 Euro-Par INTERSP INFOCOM INTERSP SAC SAC Globecom HICSS SAC ICASSP
5 ICDE Euro-Par INTERSP ICME ICME INTERSP SAC ICME ICME ICRA
6 PDPTA IPDPS Euro-Par Euro-Par INTERSP ICME ICME ISCAS ISCAS IROS
7 ICRA ICSE SAC SAC ICIP Globecom IROS SAC ICRA SAC
8 ICPR DEXA PDPTA DATE DATE DATE INTERSP IROS INTERSP IPDPS
9 DAC VLDB VLDB INFOCOM ICCS INFOCOM INFOCOM ICC ICIP ISCAS
10 SIGMOD DAC ICDE ICIP (3) AAMAS AAMAS AAAI INFOCOM INFOCOM ICME
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Figure 4. The precision-recall curve of using STEP for new link prediction.

Table IV
CORRECT PREDICTIONS OF NEW LINKS AMONG THE TOP 1000 SCORES

OF STEP AND TKATZ-CWT.

Test Year TKatz-CWT STEP
New Links

2001 82.56 116
2002 90.11 123
2003 84.89 120
2004 106.22 128
2005 113.78 127
2006 86.44 104
2007 98.89 156
Mean 94.70 124.86

To compare STEP with the methods in [2], we list the new
link prediction result by STEP and the method with the best
performance (TKatz-CWT) in [2] in Table IV. As shown in
Table IV, our STEP method outperforms the method with
the best performance in [2].

D. Flickr and Delicious datasets

To further test the performance of our link prediction
algorithm, we use the Flickr dataset for the year of 2004 and
the Delicious dataset for the year of 2004 in [17]. In these
two datasets, the user-item networks are user-tag networks.
The weight between a user and a tag is the number of
times that the user posts that tag in a month. In these two

Table V
THE STATISTICS OF THE FLICKR DATASET AND THE DELICIOUS

DATASET

Training data Test data
Users Items Links Users Items Links

Flickr 9976 76088 315191 14090 93526 421181
Delicious 10682 79449 716061 14134 77680 552673

Table VI
CORRECT PREDICTIONS OF ALL LINKS AMONG THE TOP 1000 SCORES

OF STEP AND TKATZ-CWT.

Dataset TKatz-CWT STEP
All Links

Flickr 186 336
Delicious 173 664

datasets, we use the first 10 months in 2004 as the training
period, i.e., T = 10 (with the data in each month being a
user-tag network), and the last two months, i.e., November
and December, as the testing period. The statistics of these
datasets are shown in Table V. Once again, we compare our
STEP with TKatz-CWT in [2]. In Table VI, we show the
number of correct predictions among the top 1000 scores
for all links (both new links and old links) by STEP and
TKatz-CWT. Our link prediction results are better than those
by TKatz-CWT in [2] for these two datasets.

V. CONCLUSION

In this paper, we addressed two specific problems: (i)
the temporal bipartite projection problem for generating an
item graph to characterize the relations among items, and
(ii) the link prediction problem for predicting links between
users and items. For the first problem, we proposed a tem-
poral bipartite projection method in Section II to generate
the temporal projection graph (TPG) that characterizes the
transition tendencies among items. The transition tendency
from one item to another item is computed from a weighted
sum of all the transitions and thus can be viewed as a social
aggregated behavior. There are several things that can be
inferred from the TPG. In particular, one can use PageRank
[1] to rank the popularity of items. For the link prediction



problem, we proposed the STEP method that computes a
score for ranking the likelihood of the occurrence of a future
link between a user and an item. As for the computation of
transition tendencies, the score for a user-item pair computed
by STEP is also a weighted sum of potential transitions
between that user and that item. Since the weight of a
potential transition depends on the transition probability
from one item to another, STEP in fact uses individual user
history and the social aggregated behavior from the TPG. To
validate our approach, we performed various experiments by
using the DBLP author-conference dataset. Our numerical
results revealed many interesting findings that match very
well with that really existed in the real world. The ranking
results generated by ITG and PageRank can tell us the
popularity of items in the future. Meanwhile, for the new
link prediction problem, our result is substantially better than
the method with the best performance in [2]. We also tested
our results on the Flickr and Delicious datasets. For the link
prediction problem, our result is also better than the method
with the best performance in [2].

There are several issues that require further study:
(i) Weight assignment: Here we discussed several

factors that one might consider for the weight
assignment of a transition and a potential transi-
tion. However, as discussed in [18] for learning
influence probabilities, there are still many choices
for computing the weights. It is not clear which
choice would be better.

(ii) Fusion of predictors: a future action of a user could
be influenced by several factors. Here we only
consider the global influence by constructing the
item transition probabilities and then use those for
an item-based link prediction. On the other hand,
there is local influence (by friends) and the influ-
ence probabilities in [18] can also be used for user-
based link prediction. How to fuse these predictors
to improve the accuracy of link prediction could be
an interesting research topic.
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