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Abstract—In this paper, we propose a mathematical theory for multistage battery switching networks. The theory aims to address
several design issues in managing a large-scale battery system, including flexibility, reliability, efficiency, complexity (scalability) and
sustainability. Our multistage battery switching network is constructed by a concatenation of various rectangular “shapes” of battery
packs. The shape of each battery pack is specified by its voltage and its capacity. We show that our multistage battery switching
network can support a maximum number of Lmax loads under the constraint that the total voltages of these loads do not exceed a
design constant Vmax. Moreover, the voltage of each battery pack can be determined optimally by solving a Simultaneous Integer
Representation (SIR) problem. To determine the capacity of each battery pack, we propose a max-min fairness battery allocation
scheme, and show by computer simulations that such a scheme outperforms the uniform battery allocation scheme. We also propose a
fault tolerant battery switching network that can still be operated properly even after Fmax battery packs fail. Such a fault tolerant
battery switching network enables a battery system to implement the Largest Remaining Capacity First (LRCF) policy that does not
require the knowledge of the load profile.

Index Terms—Large-scale battery systems, fault tolerance, resource management.
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1 INTRODUCTION

LARGE-SCALE battery systems with hundreds or thou-
sands of (rechargeable) batteries are commonly adopted

in many systems such as electric vehicles (EVs) and smart
micro-grids. How to effectively manage large-scale battery
systems has received a lot of attention recently (see e.g., [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]). One of the key
issues of managing large-scale battery systems is reliability.
Most current battery systems are interconnected in a fixed
manner and a single failure of a battery might result in a
severe damage of the whole system. As such, dynamically
reconfiguring the interconnection of the batteries in a battery
system was previously proposed in several early works [6],
[7], [8] to handle battery failures. Another issue is how
to use the energy efficiently. As most battery systems are
interconnected in a fixed manner, to support multiple types
of loads one has to rely on voltage regulators or DC-DC
converters to convert the supplied voltages so as to match
the required voltages of loads. Since the efficiency of voltage
regulators and DC-DC converters degrades significantly
when the difference between the supplied voltage and the
required voltage is large [13], [14], [15], it is thus desirable
to reconfigure the interconnection of batteries so that the
difference between the supplied voltage and the required
voltage is small [4], [12]. Also, there is the sustainability
issue. In particular, the problem of how to prolong the
battery operating time was addressed in [3].
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In addition to the reliability issue, the efficiency issue,
and the sustainability issue, we think there are another
two issues that also need to be addressed: flexibility and
complexity (scalability). The hardware complexity (in terms
of the numbers of switches or relays) in a large-scale bat-
tery system should be kept low, while the system should
be flexible enough to generate any desired configuration
(within some design constraints). Though there are several
battery systems that allow batteries to be connected in any
desired configuration, e.g., the battery switch array system
in [5] and the Power Trees (PTs) in [11], the number of
switches in those systems are proportional to the number of
batteries. That not only poses a scalability problem but also
a reliability problem as it is difficult to ensure that a large
number of switches can be operated properly. In particular,
it was mentioned in [11] the order of turning on/off a large
number of switches in their system could be a problem as
batteries might be short-circuited due to random delays in
the process of turning on/off a large number of switches.
In view of all these, our main objective of this paper is
to propose a mathematical theory for multistage battery
switching networks that aims to address the following five
issues:

• Flexibility: The system needs to be flexible enough to
generate the desired configuration (output voltages).

• Reliability: The system needs to work properly un-
der nominal load conditions, in spite of potential
failure of battery packs.

• Efficiency: The system should be efficient in power
usage.

• Complexity: The hardware complexity of switches
in the system should be kept low and the compu-
tational complexity to control these switches should
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also be simple.
• Sustainability: The system should provide a long life

span.

Our approach is like Lego. We first connect batteries in a
fixed manner into a battery pack to form a building block,
and then interconnect various forms of battery packs by
switches to form a battery switching network. By doing so,
there is no switch inside any battery pack and thus the total
number of switches in the system can be reduced. In this
paper, we only consider battery packs in the rectangle shape.
Specifically, a battery pack with voltage d and capacity b
is constructed by connecting bd batteries first in series and
then in parallel as shown in Figure 1. The challenge of such
an approach is to determine the voltage and the capacity of
each building block so that the battery switching network
can also address these five issues.

We summarize our contributions as follows:
(i) Flexibility: Using these building blocks, we construct a
battery system that can support a maximum number of
Lmax loads (that might require different voltages) provided
that the sum of the voltages of these loads does not exceed
a design constant Vmax. Such a battery system is called
a (Vmax, Lmax)-battery switching network in Definition 1.
The voltage d of each battery pack can be determined
optimally in Theorem 6 by solving a Simultaneous Integer
Representation (SIR) problem (see Definition 2).
(ii) Complexity: The total number of on/off switches in our
multistage battery switching network is 4NLmax, where N
is the number of battery packs (stages). The connection
patterns of these on/off switches can be determined in
O(NLmax) steps by using the alternating C-transform in
Algorithm 1.
(iii) Efficiency and Sustainability: We propose a max-min
fairness battery allocation scheme that can be used for
determining the capacity of each battery pack to match its
average energy consumption rate. By computer simulations,
we show such a scheme significantly outperforms the uni-
form allocation scheme (that simply assigns each battery
pack with the same capacity) in terms of the system life.
(iv) Reliability: We show in Theorem 8 how to construct
a fault tolerant battery switching network so that the sys-
tem can still be operated properly even after Fmax battery
packs fail. If the system is also able to monitor the state
of charge (SOC) of each battery pack, then such a system
can only choose the N − Fmax battery packs that have the
largest remaining capacities to operate. We call such a policy
the Largest Remaining Capacity First (LRCF) policy. We
also show by computer simulations that the LRCF policy
performs very well even without the knowledge of the
stochastic load profile.

The paper is organized as follows: in Section 2, we show
how to construct a battery switching network that can sup-
port a maximum number Lmax loads under the constraint
that the sum of the voltages of these loads does not exceed
Vmax. By solving the SIR problem, we then show how to
choose the optimal voltage of each battery pack. In Section
3, we address the capacity assignment problem and propose
a max-min fairness allocation scheme to match the capacity
of each battery pack to its average energy consumption rate.
In Section 4, we propose fault tolerant battery switching

Fig. 1. A battery pack with voltage d and capacity b.

networks and the LRCF policy. We report our simulation
results in Section 5. Finally, we address possible extensions
of our work in Section 6.

2 CONSTRUCTION OF BATTERY SWITCHING NET-
WORKS

In this paper, we consider ideal batteries (with zero internal
resistance). Each (fully charged) battery can support one
unit of voltage (e.g., 1 Volt) and one unit of capacity (e.g., 1
Amp-hour). A battery pack with voltage d and capacity 1 is
constructed by connecting d batteries in series, and a battery
pack with voltage d and capacity b (see Fig. 1) is constructed
by connecting b battery packs with voltage d and capacity 1
in parallel. As such, there are b · d batteries in a battery pack
with voltage d and capacity b.

Now we give our definition of a battery switching net-
work.

Definition 1. (Battery switching network) A system is
called a (Vmax, Lmax)-battery switching network if the system
can simultaneously support any L loads with the required
integer-valued voltages X1, X2, ..., XL under the following
two conditions:

L ≤ Lmax, (1)

and
X1 +X2 + ...+XL ≤ Vmax. (2)

The constraint in (1) sets the limit on the maximum num-
ber of loads that can be supported by the system, while the
constraint in (2) sets the limit on the maximum total voltage
that can be supported by the system. In the literature (see
e.g., [11]), a load is generally described by two parameters:
the required voltage and the required current. However,
the required current is not needed for our definition of a
battery switching network in Definition 1. Also, for a load
that requires a large current, it can be served by treating it as
multiple loads with a small current. As such, the constraint
on the maximum number of loads indirectly puts a limit on
the maximum required current for a load. We also note that
in practice one might still need voltage regulators or DC-
DC converters as the output voltage of a non-ideal battery
is not constant during its discharge. However, as mentioned
in the introduction, it is still desirable to configure the
interconnection of batteries to keep the difference between
the supplied voltage and the required voltage small so that
voltage regulators or DC-DC converters can be operated
efficiently [4], [12].
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Fig. 2. Construction of a battery switching network by using
a crossbar switch.

2.1 Constructing a Battery Switching Network by Using
a Single Crossbar Switch
The basic idea to construct a battery switching network is
to dynamically interconnect battery packs with fixed volt-
ages (either in series or in parallel) to support the desired
voltages. This can be done by using a crossbar switch and
various battery packs with fixed voltages. In the literature
(see e.g., [16], [17]), an N ×N crossbar switch is commonly
defined as a network device (with N inputs and N outputs)
that is capable of realizing any (sub)permutation that con-
nects the N inputs to the N outputs. In Fig. 2, we consider a
network device that consists of an (N+Lmax)×(N+Lmax)
crossbar switch and N battery packs with fixed integer-
valued voltages d1, d2, ..., dN . In order for such a network
device to support L loads with the required integer-valued
voltages Xi i = 1, 2, . . . , L, one must be able to find disjoint
subsets of battery packs Si, i = 1, 2, . . . , L, such that for
i = 1, 2, . . . , L,

Xi =
∑
k∈Si

dk, (3)

and then connect the battery packs in each subset in series
to support the desired voltage.

As an illustrating example, consider a 4 × 4 crossbar
switch and three voltage packs with voltages d1 = 1, d2 = 2
and d3 = 4 in Figure 3. For a load that requires voltage 5,
we can use the binary representation to derive

5 = 1× 20 + 0× 21 + 1× 22.

Now we can set the connection pattern as shown in Figure 3.
By doing so, the two voltage packs with voltages d1 = 1 and
d3 = 4 are connected in series to yield the desired voltage 5.

The reason that we restrict ourselves to the selection of
disjoint sets in this paper is to avoid short circuits in battery
packs. For instance, suppose that three battery packs, say
1,2, and 3, are already connected in series to support a load.

Fig. 3. An illustrating example for the connection pattern to
support a load that requires voltage 5.

If we further connect battery packs 1 and 3 in series to
support another load, then such a connection creates a short
circuit (a loop) in battery pack 2.

The problem to find disjoint subsets of battery packs
that satisfy (3) is formulated as the Simultaneous Integer
Representation (SIR) problem below.

Definition 2. (The Simultaneous Integer Representa-
tion (SIR) problem) Given a set of positive integers
S = {d1, d2, . . . , dN} and a set of nonnegative integers
X = {X1, X2, ..., XL}, we say X is simultaneously repre-
sentable by the basis set S if there exist Ci(k), i = 1, 2, . . . , L,
k = 1, 2, . . . , N , such that

Ci(k) = 0 or 1, (4)
L∑

i=1

Ci(k) ≤ 1, and (5)

Xi =
N∑

k=1

Ci(k) · dk. (6)

The Simultaneous Integer Representation (SIR) problem with
the basis set S and the maximum number of representable
integers Lmax, denoted by the (S,Lmax)-SIR problem in this
paper, is to find the largest integer Vmax so that any set of non-
negative integers X = {X1, X2, ..., XL} is simultaneously
representable by the basis set S as long as L ≤ Lmax and

X1 +X2 + ...+XL ≤ Vmax.

We note that the (S,Lmax)-SIR problem in Definition 2
is different from the postage stamp problem [18]. In the
postage stamp problem, there is only one integer that needs
to be represented and the elements in the basis set can be
repeatedly selected to represent that integer, i.e., Ci(k) can
be larger than 1. Also, the total usage of the elements in
the basis set in the postage stamp problem is bounded,
i.e.,

∑N
k=1 Ci(k) ≤ h for some constant h. The postage

stamp problem is known to be NP-hard [19]. However, the
(S,Lmax)-SIR problem is much simpler as every element in
the basis set can only be used at most once. As such, the
solution of the (S,Lmax)-SIR problem is bounded above by
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the sum of all the elements in the basis set. We will show
later in Corollary 5 that the sum of all the elements in the
basis set is indeed the solution of the (S,Lmax)-SIR problem
if the elements in the basis set satisfy certain inequalities.

In the following proposition, we establish the connection
between the simultaneous integer representation problem
and the construction of a battery switching network.
Proposition 3. Given S = {d1, . . . , dN} and Lmax, let Vmax be

the solution of the (S,Lmax)-SIR problem. Then the network
represented in Figure 2 is a (Vmax, Lmax)-battery switching
network.

Proof. Consider a set of integer-valued loads X =
{X1, X2, ..., XL} that is simultaneously representable by S.
Note that the indicator variable Ci(k) indicates whether the
battery pack with voltage dk in Figure 2 should be used for
supporting the load that requires voltage Xi. Furthermore,
the inequalities in (5) imply that each battery pack can be
used at most once so that the connection patterns from
the (N + Lmax) inputs to the (N + Lmax) outputs of the
crossbar switch is a (sub)permutation. As the connection
pattern is a (sub)permutation, it is realizable by the crossbar
switch. The equality in (6) indicates that the load Xi can
be supported by connecting the subset of battery packs in
Si = {k : Ci(k) = 1} in series.

For example, if we choose the basis set S = {di =
2i−1, i = 1, 2, . . . , N}, then it follows from the binary
representation that the solution of the (S, 1)-SIR problem
with such a basis set is 2N − 1. According to Proposition
3, such a system is a (2N − 1, 1)-battery switching network
that can support a single load with the maximum voltage
2N − 1. To support Lmax loads, one can simply replicate
each battery packs in the above (2N − 1, 1)-battery switch-
ing network Lmax times. Specifically, one can construct
a (2N − 1, Lmax)-battery switching network by using an
(NLmax + Lmax) × (NLmax + Lmax) crossbar switch and
NLmax battery packs with voltages di = 2⌊(i−1)/Lmax⌋,
i = 1, 2, . . . , NLmax. In particular, for Lmax = 2, we can
choose the basis set

S = {d1, d2, d3, d4, d5, d6, d7, d8}
= {1, 1, 2, 2, 4, 4, 8, 8} (7)

for the construction of a (15, 2)-battery switching network
with a 10 × 10 crossbar switch in Figure 2. A careful exam-
ination reveals that the solution of the (S, 2)-SIR problem
for the basis set in (7) is 30. Thus, it is in fact a (30, 2)-
battery switching network. The question is whether this
construction can be further improved by choosing another
basis set. We show in the following example that the answer
is yes. Suppose now we choose

S∗ = {d∗1, d∗2, d∗3, d∗4, d∗5, d∗6, d∗7, d∗8}
= {1, 1, 2, 3, 4, 6, 9, 14}. (8)

Then one can verify that the solution of the (S∗, 2)-SIR
problem for the basis set S∗ in (8) is 40. As such, we now
have a (40, 2)-battery switching network with the same
10 × 10 crossbar switch in Figure 2. Such a (40, 2)-battery
switching network (with the basis set S∗ specified in (8))
is better than the (30, 2)-battery switching network (with
the basis set S specified in (7)) as the former can support a
higher maximum total voltage.

In the classic packet switch network design, crossbar
switches (as shown in Figure 2) are generally used for es-
tablishing non-conflicting routing paths for arriving packets
(see e.g., [16], [17]). By viewing dk’s in Figure 2 as the
delays through various fiber delay lines, crossbar switches
were used in [20] to construct “optical queues” that route
packets through non-conflicting routing paths with speci-
fied/required delays. Instead of viewing dk’s as delays, the
battery switching network in Figure 2 views dk’s as voltages
and provides non-conflicting routing paths for loads with
specified/required voltages. Both the mathematical theories
in optical queues and battery switching networks in this
paper are related to the integer representation problem. The
new advance of the theory is that the integer representation
problem in this paper is for simultaneous representation of
several integers, instead of a single integer considered in [20],
[21] for constructing optical queues.

2.2 Optimal Selection of the Basis Set
In Proposition 3, we have shown that a (Vmax, Lmax)-
battery switching network can be constructed by using a
single (N + Lmax) × (N + Lmax) crossbar switch and N
battery packs with voltages d1, d2, . . . , dN , where Vmax is
the solution of the (S,Lmax)-SIR problem with the basis
set S = {d1, d2, . . . , dN}. In this section, we address the
problem of, given an integer N and the maximum number
of loads Lmax, selecting the basis set S = {d1, . . . , dN}
of cardinality N to maximize Vmax. Our specific steps for
the optimization problem are as follows: in Theorem 4, we
first show a sufficient condition for the basis set so that L
integers can be simultaneously representable. We then argue
in Corollary 5 that Vmax is the sum of all the elements in the
basis set under such a sufficient condition for the basis set.
Finally, in Theorem 6, we show how one can choose the
optimal basis set to maximize Vmax.

In Theorem 4, we first show that a set of L integers are
representable by a basis set S = {d1, d2, . . . , dN} provided
that d1, d2, ..., dN are chosen to satisfy certain inequalities.
Theorem 4. Given an integer N , consider a basis set S =
{d1, d2, . . . , dN} with cardinality N . Suppose that d1 = 1
and for some positive integer L

dk ≤ dk+1 ≤

⌊∑k
ℓ=1 dℓ
L

⌋
+ 1, (9)

for all k = 1, 2, ..., N − 1. If a set X = {X1, X2, . . . , XL} of
L nonnegative integers satisfy

X1 +X2 + ...+XL ≤
N∑

k=1

dk, (10)

then this set X = {X1, X2, . . . , XL} is simultaneously
representable by the basis set S.

Proof. We prove this by induction on N . For N = 1, we
have d1 = 1. Then it is trivial that X is simultaneously
representable by the basis set S = {1} if X1+X2+...+XL ≤
1. Now, as the induction hypothesis, we assume that any X
satisfying (10) is simultaneously representable by a basis set
S = {d1, d2, . . . , dN} that satisfies (9). We now show that
the claim holds for a basis set S = {d1, d2, . . . , dN , dN+1}
that satisfies (9).
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Let i∗ be the index of the largest integer in X , i.e.,

i∗ = argmax(Xi).

We consider the following two cases.

Case 1. Xi∗ ≥
⌊∑N

k=1 dk

L

⌋
+ 1:

It then follows from the assumption in this case and the
assumption in (9) that

Xi∗ ≥

⌊∑N
ℓ=1 dℓ
L

⌋
+ 1 ≥ dN+1.

Let

X ′
j =

{
Xj − dN+1, if j = i∗,
Xj , if j ̸= i∗. (11)

Then X ′
i∗ is still a nonnegative integer. Moreover, for the

set of nonnegative integers X ′ = {X ′
1, X

′
2, . . . , X

′
L},

L∑
i=1

X ′
i =

L∑
i=1

Xi − dN+1. (12)

From the condition in (10), we know (for a basis with N +1
elements) that

X1 +X2 + ...+XL ≤
N+1∑
k=1

dk.

Using this in (12) yields

L∑
i=1

X ′
i ≤

N+1∑
k=1

dℓ − dN+1 =
N∑

k=1

dk.

It then follows from the induction hypothesis that X ′ is
simultaneously representable by the basis set {d1, . . . , dN}.
In conjunction with (11), X is simultaneously representable
by the basis set {d1, . . . , dN , dN+1}.
Case 2. Xi∗ <

⌊∑N
k=1 dk

L

⌋
+ 1:

For this case, we have

Xi∗ ≤

⌊∑N
k=1 dk
L

⌋
≤

∑N
k=1 dk
L

. (13)

In view of (13), we have that

L∑
i=1

Xi ≤ L ·
∑N

k=1 dk
L

=
N∑

k=1

dk.

From the induction hypothesis, we know that X is simul-
taneous representable by the basis set {d1, . . . , dN} and
thus X is also simultaneous representable by the basis set
{d1, . . . , dN , dN+1}.

In Corollary 5, we show that the sum of all the elements
in the basis set is indeed the solution of the (S,Lmax)-
SIR problem if the elements in the basis set satisfy certain
inequalities.

Corollary 5. Consider a basis set S = {d1, d2, . . . , dN} with
d1 = 1 and

dk ≤ dk+1 ≤

⌊∑k
ℓ=1 dℓ
Lmax

⌋
+ 1, (14)

for all k = 1, 2, ..., N − 1. Let Vmax be the solution of the
(S,Lmax)-SIR problem. Then

Vmax =
N∑

k=1

dk.

Proof. Clearly, the solution of the (S,Lmax)-SIR problem
cannot be larger than the sum of all the elements in S,
i.e., Vmax ≤

∑N
k=1 dk. On the other hand, we have already

shown in Theorem 4 that any set of nonnegative integers X
are simultaneously representable by S if

Lmax∑
i=1

Xi ≤
N∑

k=1

dk.

Thus, we also have Vmax ≥
∑N

k=1 dk.
Intuitively, the optimal basis set that maximizes the solu-

tion of the (S,Lmax)-SIR problem (among all the basis sets
with N elements) can be chosen by using the upper bound
in (14). This is formally stated in the following theorem. The
key insight of the proof of Theorem 6 is to show that there
is a collection of integers (not larger than the sum of all
elements in the basis set) that are not representable by the
basis set if the condition in (15) is not satisfied.
Theorem 6. Let d∗1 = 1 and

d∗k+1 =

⌊∑k
ℓ=1 d

∗
ℓ

Lmax

⌋
+ 1, (15)

for all k = 1, 2, ..., N − 1. Then the solution of the (S,Lmax)-
SIR problem for any basis set S with N elements cannot
be larger than

∑N
k=1 d

∗
k. As such, the basis set S∗ =

{d∗1, d∗2, . . . , d∗N} is optimal in the sense of achieving the
largest solution of the (S,Lmax)-SIR problem among all the
basis sets with N elements.

Proof. Consider a basis set S = {d1, d2, . . . , dN}. Without
loss of generality, assume that d1 ≤ d2 ≤ ... ≤ dN . If d1 > 1,
then the solution of the (S,Lmax)-SIR problem for the basis
set S with d1 > 1 is simply 0 as the integer 1 cannot be
represented. Thus, we only need to consider the case with
d1 = 1.

If dk, k = 1, 2, . . . , N − 1, in this basis set satisfy all the
inequalities in (14), then one can easily see by induction and
(15) that dk ≤ d∗k for all k = 2, 3, . . . , N . Thus,

N∑
k=1

dk ≤
N∑

k=1

d∗k.

From Corollary 5, we know the solution of the (S,Lmax)-SIR
problem for this basis set S = {d1, d2, . . . , dN} is

∑N
k=1 dk,

which is not larger than
∑N

k=1 d
∗
k.

On the other hand, suppose that there exists some k ∈
{1, 2, . . . , N − 1} such that the second inequality in (14) is
violated. Let k∗ be the smallest integer such that

dk∗+1 >

⌊∑k∗

ℓ=1 dℓ
Lmax

⌋
+ 1. (16)

Let

r =

k∗∑
ℓ=1

dℓ − Lmax

⌊∑k∗

ℓ=1 dℓ
Lmax

⌋
. (17)



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 6

Then 0 ≤ r < Lmax. Consider the set of integers X =
{X1, X2, . . . , XLmax}, where

Xi =



⌊∑k∗
ℓ=1 dℓ

Lmax

⌋
+ 1, for 1 ≤ i ≤ r + 1,

⌊∑k∗
ℓ=1 dℓ

Lmax

⌋
, for r + 2 ≤ i ≤ Lmax.

Clearly, for i = 1, 2, . . . , Lmax, we have from (16) that

Xi ≤

⌊∑k∗

ℓ=1 dℓ
Lmax

⌋
+ 1 < dk∗+1 ≤ . . . ≤ dN .

As such, the set of integers from dk∗+1 to dN cannot be used
to represent any Xi. In other words, only d1, d2, . . . , dk∗

can be used to represent these Xi’s. But this is impossible
because

Lmax∑
i=1

Xi = Lmax

⌊∑k∗

ℓ=1 dℓ
Lmax

⌋
+ r + 1

=
k∗∑
ℓ=1

dℓ + 1 >
k∗∑
ℓ=1

dℓ,

where we use (17) in the last identity. This shows that the
solution of the (S,Lmax)-SIR problem for this basis set S

cannot be larger than
∑k∗

ℓ=1 dℓ. As k∗ is the smallest integer
such that the second inequality in (14) is not satisfied, we
know that for k = 1, 2, . . . , k∗ − 1,

dk+1 ≤

⌊∑k
ℓ=1 dℓ
Lmax

⌋
+ 1.

This then implies that, dk ≤ d∗k for k = 1, 2, . . . , k∗. Thus,

k∗∑
ℓ=1

dℓ ≤
k∗∑
ℓ=1

d∗ℓ ≤
N∑
ℓ=1

d∗ℓ .

We then conclude that the solution of the (S,Lmax)-SIR
problem for this basis set S cannot be larger than

∑N
ℓ=1 d

∗
ℓ .

As an illustrating example, for Lmax = 2, the optimal
basis set with 8 elements is

S∗ = {d∗1, d∗2, d∗3, d∗4, d∗5, d∗6, d∗7, d∗8}
= {1, 1, 2, 3, 4, 6, 9, 14},

and it is better than the replicated binary basis

S = {d1, d2, d3, d4, d5, d6, d7, d8}
= {1, 1, 2, 2, 4, 4, 8, 8}.

To further see the gain from using the optimal selection,
we define the efficiency of a basis set S as the ratio of
the binary logarithm of the solution of the (S,Lmax)-SIR
problem to the size of the basis set, i.e., log2 Vmax/|S|. In
Fig. 4, we show the comparison of efficiency between the
optimal basis and the replicated binary basis for Lmax = 2.
One can find the optimal basis recursively from (15) and
then use that to numerically compute the efficiency. When
N is large, the optimal efficiency is approximately 0.585. On
the other hand, the efficiency of the replicated binary basis is
only 0.5. Clearly, for any given N , the efficiency, defined as
log(Vmax)/N , is uniquely maximized by the optimal basis
in Theorem 6.

Number of battery packs
0 5 10 15 20 25

lo
g(

V
m

ax
)

0

5

10

15

20
Binary basis
Optimal basis

Fig. 4. Efficiency between the optimal basis and the repli-
cated binary basis for Lmax = 2.

2.3 Alternating C-transform

We note that Theorem 6 does not illustrate how one might
solve the simultaneous integer representation problem (4)–
(6). In this section, we present an algorithm, called the
alternating C-transform in this paper, that takes a basis set
S = {d1, d2, ..., dN} (satisfying (9) and d1 = 1) and a set of L
integers X1, X2, ..., XL (satisfying (10)) as its input. The al-
gorithm will output the indicator variables Ci(k) that satisfy
(4)–(6). The detail of the algorithm is shown in Algorithm 1.
We note the alternating C-transform is a generalization of
the C-transform in [20], [21] that was proposed to solve the
representation problem for a single integer.

Now we describe the basic idea behind the alternating
C-transform. Consider a basis set S = {d1, d2, . . . , dN} with
d1 ≤ d2 ≤ ... ≤ dN−1 ≤ dN . At the beginning, the algorithm
takes as an input L nonnegative integers X1, X2, . . . , XL

and the basis set S. Then we would like to find the integer
representations of these integers by using the elements in
the basis set S. As suggested in the proof of Theorem 4,
the alternating C-transform first finds the largest integer,
say Xk, among all the L integers. If Xk is not smaller than
dN , then dN is included in the subset that will be used for
representing Xk. We then deduct dN from Xk. By doing so,
the problem is then reduced to another simultaneous integer
representation problem with the basis set {d1, d2, . . . , dN−1}
that only has N − 1 elements. Also, the L integers are now
X1, X2, . . . , Xk − dN , . . . , XL. On the other hand, if Xk is
smaller than dN , then Xi, i = 1, 2, . . . , L, are all smaller
than dN (as Xk is the largest integer). Thus, dN cannot be
included in any subset for representing any integer. As such,
the problem is then reduced to another simultaneous integer
representation problem with the basis set {d1, d2, . . . , dN−1}
that only has N − 1 elements. Now the L integers are
still X1, X2, . . . , Xk, . . . , XL. In both cases, the number of
elements in the basis set is reduced from N to N − 1. One
can apply the alternating C-transform iteratively to solve the
simultaneous integer representation problem. For instance,
there are four elements in the basis set {d1, d2, d3, d4} =
{1, 1, 2, 3} and two integers (X1, X2) = (X1(1), X2(1)) =
(3, 3). First, we find the largest integer, i.e., X1(1) = 3.
Since X1(1) ≥ d4 = 3, d4 is selected to represent X1. We
then subtract d4 from X1(1) and this leads to the updated



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 7

integers (X1(2), X2(2)) = (0, 3). In the second step, the
largest integer is X2(2) = 3. As X2(2) ≥ d3 = 2, d3
is selected to represent X2. This further reduces the two
integers to (X1(3), X2(3)) = (0, 1). In the third step, the
largest integer is X2(3) = 1. As X2(3) ≥ d2 = 1, d2 is also
selected to represent X2. Now the two integers are reduced
to (X1(4), X2(4)) = (0, 0) and the algorithm is completed.
For this particular example, we then have X1 = d4 and
X2 = d3 + d2. Note that the computational complexity
of the alternating C-transform is O(NL) as it takes O(L)
steps to find the largest elements in the loads by using a
simple linear search The computational complexity can also
be reduced by using a more sophisticated data structure,
e.g., a heap, when L is large. As pointed by one of the
reviewers, the complexity of the alternative C-transform is
in fact at most O(N log(L)) if N ≥ L. To see this, one first
sorts X1, . . . , XL in ascending order, which has complexity
O(L log(L)). In the tth iteration, once the integers Xj(t),
j = 1, . . . , L have been updated, one can sort these integers
in ascending order again. Since the sequence of integers
are previously sorted, and each iteration only changes one
component of this sequence, this sorting can be done via
binary search, which takes O(log(L)) number of steps. It
follows that the complexity of this algorithm is at most
O(L log(L) + N log(L)). Thus, if N ≥ L, the complexity
of the alternative C-transform is at most O(N log(L)).

Algorithm 1 Alternating C-transform

Input: A basis set S = {d1, d2, ..., dN} (satisfying (9) and
d1 = 1) and a set of L integers X1, X2, ..., XL (satisfying
(10));

Output: The indicator variables Ci(k) that satisfy (4)–(6);
1: Initially, set Xi(1) = Xi, ∀ i = 1, 2, ..., L;
2: for t = 1, 2, ..., N do
3: Let i(t) = argmax(Xi(t));
4: if Xi(t)(t) ≥ dN+1−t then
5: Ci(t)(N + 1− t) = 1;
6: Xi(t)(t+ 1) = Xi(t)(t)− dN+1−t;
7: else
8: Ci(t)(N + 1− t) = 0;
9: Xi(t)(t+ 1) = Xi(t)(t);

10: end if
11: for j ̸= i(t) do
12: Cj(N + 1− t) = 0;
13: Xj(t+ 1) = Xj(t);
14: end for
15: end for

2.4 Multi-stage Feedforward Battery Switching Net-
work
One of the salient properties of the alternating C-transform
is that there is an order (from N to 1) of computing the indi-
cator variables Ci(k), i = 1, 2, . . . , L and k = 1, 2, . . . , N . In
view of this, one can construct a battery switching network
by using a multistage feedforward network (see Fig. 5). In
such a network, there are N stages and the kth stage is made
of Lmax 1 × 2 and 2 × 1 switching elements and a battery
pack with voltage dk (see Figure 6). The indicator variables
Ci(k), i = 1, 2, . . . , L, and k = 1, 2, . . . , N , obtained from

Fig. 5. A multistage feedforward battery switching network.

Fig. 6. The detailed implementation of each stage in a multi-
stage feedforward battery switching network.

the alternating C-transform are then used for setting up the
connection patterns in each stage. Specifically, the ith load is
connected to the battery pack in the kth stage if Ci(k) = 1.
By choosing di, i = 1, 2, . . . , N , to satisfy the condition in
Corollary 5, the multistage feedforward network in Figure
5 can then be operated as a (Vmax, Lmax)-battery switching
network, where Vmax =

∑N
k=1 dk. In comparison with the

construction by using a single crossbar switch, the hardware
complexity is greatly reduced from O((N + Lmax)

2) to
O(NLmax). In fact, if we use 2 on/off switches to implement
a 1× 2 switch and a 2× 1 switch in Figure 5, then the total
number of on/off switches in an N -stage network is only
4NLmax. Even with the replicated binary basis, we have

Vmax =

N∑
k=1

dk ≈ 2N/Lmax

for large N . Thus, the number of stages N is O(log Vmax)
with such a basis. For a system with B batteries, if we
assign the kth battery pack with the number of batteries
proportional to dk (the uniform battery allocation scheme
in the next section), then Vmax is proportional to B and
the number of stages N is thus O(logB). In comparison
with the O(B) battery switch array system in [5], the saving
of the number of on/off switches is very significant in the
multistage feedforward network even with the replicated
binary basis.

3 CAPACITY ASSIGNMENT AND BATTERY
ALLOCATION
Once we determine the voltages d1, d2, ..., dN in the multi-
stage battery switching network in Figure 5, our next design
problem is to determine the capacity of each battery pack.
Suppose that we are given B identical batteries. The battery
allocation problem is then to allocate these B identical
batteries to the N battery packs so that the system life
(defined as the first time that one of the N battery packs
depletes its energy) is maximized. A naı̈ve allocation is
simply to allocate the B batteries uniformly to the N battery
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packs so that every battery pack has roughly the same
capacity. However, as the energy consumed by each battery
pack is different, such a uniform allocation scheme may not
perform well. The key idea to prolong the system life is thus
to allocate batteries so that the capacity of each battery pack
is roughly proportional its average energy consumption
rate. For this, we need to address the problem of computing
the average energy consumption rate.

3.1 Average Energy Consumption Rate

It is obvious that the average energy consumption rate
depends on the load profiles. In this section, we consider
stochastic load profiles. Assume there are J types of loads,
indexed from 1, 2, . . . , J . A type j load is characterized by
three parameters, the required voltage Vj , the required cur-
rent Ij , and the mean service time τj . Type j loads arrive at
the system according to a Poisson process with rate λj and
such a Poisson process is independent of everything else. We
note that for the operation of the battery switching network,
we only need the information of the required voltage, and
the other parameters in the stochastic load profiles are used
for computing the average energy consumption rates that in
turn will be used for battery capacity allocation. Specifically,
for a (Vmax, Lmax)-battery switching network, an arriving
load can only be admitted to the system provided that

n1 + n2 + ...+ nJ ≤ Lmax, (18)
V1n1 + V2n2 + ...+ VJnJ ≤ Vmax, (19)

where nj is the number of type j loads in the system. An
arriving load that cannot be admitted to the system is simply
lost. The condition in (18) is simply the constraint on the
maximum number of loads in (1) and the condition in (19)
is simply the constraint on the maximum total voltage that
can be supported by the system in (2).

Let n = (n1, n2, ..., nJ ) be the state vector and Γ be
the set of admissible states that satisfy (18) and (19). From
the classical queueing theory (see e.g., the book [22]), such
a queueing system is known as a loss system (or a loss
network) in the literature and has the following steady state
probabilities for the corresponding Markov chain in the state
vector n:

π(n) = G−1 · (
J∏

j=1

ρ
nj

j

nj !
),

where
ρj = λjτj ,

and G is the normalization constant, i.e.,

G =
∑
n∈Γ

J∏
j=1

ρ
nj

j

nj !
.

To compute the average energy consumption rate, we
note that the connection pattern in a (Vmax, Lmax)-battery
switching network needs to be reconfigured every time
there is a state change, i.e., an arrival or a departure of a
load. For every admissible state n in Γ, let

X(n) = {V1, ..., V1︸ ︷︷ ︸
n1

, V2, ..., V2︸ ︷︷ ︸
n2

, ..., VJ , ..., VJ︸ ︷︷ ︸
nJ

}

be the required voltages of the loads in state n. The con-
nection pattern in state n is determined by applying the
alternating C-transform for the required voltages in X(n).
Let Cj,k(n) be the indicator variable to indicate whether the
kth battery pack is used by a type j load when the system is
in state n, i.e., Cj,k(n) = 1 if the kth battery pack is used by
a type j load when the system is in state n and 0 otherwise.
The average energy consumption rate for the kth battery
pack, denoted by rk, can then be computed as follows:

rk =
∑
n∈Γ

J∑
j=1

Cj,k(n) · Ij · π(n), (20)

where Ij is the required current for a type j load.

3.2 Max-min Fairness Allocation

Once we obtain the voltages dk, k = 1, 2, . . . , N , and the
average energy consumption rates rk, k = 1, 2, . . . , N , for
all the N battery packs, we may formulate the battery
allocation problem with a total number of B batteries as
the following max-min fairness problem:

max min
1≤k≤N

bk
rk

subject to
N∑

k=1

bkdk ≤ B,

where bk is the number of batteries allocated to the kth

battery pack, k = 1, 2, . . . , N . The intuition for this is to
assign the capacity of each pack roughly proportional to
its average energy consumption rate. Without the constraint
that bk’s are positive integers, the optimal solution can be
found as follows:

bk =
B · rk∑N
ℓ=1 rℓ · dℓ

. (21)

To see this, note that

( min
1≤k≤N

bk
rk

)
N∑

k=1

rkdk ≤
N∑

k=1

bk
rk

rkdk ≤ B.

However, as bk’s need to be positive integers, one can start
from the basic allocation

⌊
B·rk∑N

ℓ=1 rℓ·dℓ

⌋
and then repeatedly

increase the capacity of the battery pack with the minimum
value of bk/rk by 1. The details of the heuristic algorithm
to approximate the optimal solution in (21) is shown in
Algorithm 2.

4 FAULT TOLERANT BATTERY SWITCHING NET-
WORKS

In the previous section, the system life of a (Vmax, Lmax)-
battery switching network is defined as the first time that
one of the battery packs has depleted its energy. Such a def-
inition of the system life seems plausible as a (Vmax, Lmax)-
battery switching network with a depleted battery pack
cannot support the loads specified in Definition 1. However,
if we choose the basis set properly, we might still be able
to operate such a device as another (V ′

max, Lmax)-battery
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Algorithm 2 Max-min fairness battery allocation algorithm

Input: B, rk, dk, k = 1, 2, . . . , N ;
Output: The capacity of each battery pack b1, b2, ..., bN ;

1: Initially, start with b
(0)
k =

⌊
B·rk∑N

ℓ=1 rℓ·dℓ

⌋
;

2: Let B(0) = B −
∑N

k=1 b
(0)
k dk;

3: Set s = 0;
4: Find k∗ = argmin

b
(s)
k

rk
;

5: if B(s) ≥ dk∗ then
6: b

(s+1)
k∗ ← b

(s)
k∗ + 1;

7: b
(s+1)
k ← b

(s)
k for all k ̸= k∗;

8: B(s+1) = B(s) − dk∗ ;
9: s← s+ 1;

10: Repeat from step (4.);
11: end if
12: if B(s) < dk∗ then
13: Uniformly allocate the remaining batteries to those

battery packs with dk = 1;
14: end if

switching network with V ′
max ≤ Vmax. If this is possible,

we might be able to prolong the system life of a battery
switching network even though some of its battery packs
have depleted their energy. This motivates us to consider
fault tolerant battery switching networks.
Definition 7. (Fault tolerant battery switching network) A

multistage feedforward battery switching network constructed
by using a basis set S = {d1, d2, . . . , dN} is called a
(Vmax, Lmax, Fmax)-battery switching network if it can still
be operated as a (Vmax, Lmax)-battery switching network even
when any F ≤ Fmax battery packs have depleted their energy.

In the following theorem, we show how to choose a basis
set to construct a fault tolerant battery switching network.
The intuition of this theorem is to ensure that the inequal-
ities in (14) still hold after any Fmax elements are removed
from the basis set.
Theorem 8. Consider a basis set S = {d1, d2, . . . , dN} with

dk = 1, k = 1, 2, . . . , Fmax + 1 and

dk ≤ dk+1 ≤

⌊∑k−Fmax

ℓ=1 dℓ
Lmax

⌋
+ 1, (22)

for all k = Fmax + 1, Fmax + 2, ..., N − 1. Then the
multistage feedforward battery switching network constructed
by using such a basis set S = {d1, d2, . . . , dN} is a
(Vmax, Lmax, Fmax)-battery switching network, where

Vmax =

N−Fmax∑
k=1

dk.

Proof. Assume that there are F ≤ Fmax battery packs that
have depleted their energy. Let d̃k, k = 1, 2, . . . , N − F , be
the voltages in the remaining N −F battery packs. Without
loss of generality, we assume that d̃1 ≤ d̃2 ≤ . . . ≤ d̃N−F .
Clearly, d̃k = dj for some k ≤ j ≤ k + F . As we assume
that dk ≤ dk+1 for all k in (22), it follows that

dk ≤ d̃k ≤ dk+F , (23)

for all k = 1, 2, . . . ,M − F .

We first show that the solution of the (S̃, Lmax)-SIR prob-
lem with the basis set S̃ = {d̃1, d̃2, . . . , d̃N−F } is

∑N−F
k=1 d̃k.

For this, it suffices to show that the basis set S̃ satisfies the
condition in Corollary 5, i.e., d̃1 = 1 and

d̃k ≤ d̃k+1 ≤

⌊∑k
ℓ=1 d̃ℓ
Lmax

⌋
+ 1, (24)

for all k = 1, 2, ..., N − F − 1.
As dk = 1 for k = 1, 2, . . . , Fmax + 1 and F ≤ Fmax, we

have
1 = d1 ≤ d̃1 ≤ dF+1 = 1.

Thus, d̃1 = 1. It is also clear that d̃k ≤ d̃k+1 for all k =
1, 2, . . . , N − F − 1. For 1 ≤ k ≤ Fmax − F , we have from
(23) and dk = 1 for k = 1, 2, . . . , Fmax + 1 that

d̃k+1 ≤ dk+1+F = 1 ≤

⌊∑k
ℓ=1 d̃ℓ
Lmax

⌋
+ 1.

Similarly, for Fmax−F +1 ≤ k ≤ N −F − 1, we have from
(23), (22), and F ≤ Fmax that

d̃k+1 ≤ dk+1+F ≤

⌊∑k+F−Fmax

ℓ=1 dℓ
Lmax

⌋
+ 1

≤

⌊∑k
ℓ=1 d̃ℓ
Lmax

⌋
+ 1.

Thus, the inequalities in (24) are all satisfied.
Since F ≤ Fmax and dk ≤ d̃k for all k in (23), we have

N−F∑
k=1

d̃k ≥
N−Fmax∑

k=1

d̃k ≥
N−Fmax∑

k=1

dk.

This implies that the solution of the (S̃, Lmax)-SIR prob-
lem with the basis set S̃ = {d̃1, d̃2, . . . , d̃N−Fmax

} is not
smaller than

∑N−Fmax

k=1 dk. As such, the multistage feed-
forward battery switching network with F depleted bat-
tery packs can still be operated as a (Vmax, Lmax)-battery
switching network with Vmax =

∑N−Fmax

k=1 dk. Thus, it is a
(Vmax, Lmax, Fmax)-battery switching network.

For example, the basis set {1, 1, 1, 2, 2, 3, 4, 6, 8} can be
used for constructing a (20, 2, 1)-battery switching network
and the basis set {1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8} can be used for
constructing a (20, 2, 2)-battery switching network.

For a (Vmax, Lmax, Fmax)-battery switching network, the
system life is the first time there are Fmax + 1 battery packs
that have depleted their energy. One salient feature of a fault
tolerant battery switching network with N battery packs is
that we now have the freedom to choose any N − Fmax

battery packs to operate. In view of this, we propose the
Largest Remaining Capacity First (LRCF) policy for schedul-
ing the usage of the N battery packs. For the LRCF policy,
we need to monitor the remaining capacity of each battery
pack, i.e., the state of charge (SOC) of each battery pack.
When there is a state change, we select the N−Fmax battery
packs that have the largest remaining capacities and apply
the alternating C-transform by using the basis set from these
N−Fmax battery packs. For the LRCF policy, we can simply
do uniform battery allocation so that each battery pack
roughly has the same capacity at the beginning. As such,
there is no need to know the load profile. In the simulation
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section, we will show that the LRCF policy (implemented
on a fault tolerant battery switching network) performs
well even without the knowledge of the load profile and
in some load conditions it even performs better than the
max-min fairness battery allocation scheme that requires the
knowledge of the load profile.

5 SIMULATION
In this section, we perform various computer simulations
to compare the performance of three battery allocation
schemes: the uniform allocation scheme and the max-min
fairness allocation scheme in a battery switching network
and the Largest Remaining Capacity First (LRCF) scheme in
a fault tolerant battery switching network.

5.1 Experimental Setup

We first describe the stochastic load profile used in our
simulations. There are two types of loads, i.e., J = 2. The
three parameters, voltage, current, and mean service time,
for the first type are (V1, I1, τ1)=(5, 1, 1) and those for the
second type are (V2, I2, τ2)=(12, 1, 1). As in Section 3.1, the
arrivals of type 1 (resp. 2) loads are modeled by a Poisson
process with arrival rate λ1 (resp. λ2). In our experiments,
we fix the mean service times of both types, i.e., τ1 = 1 and
τ2 = 1, and vary the corresponding Poisson arrival rates.

The total number of batteries B is 7650 and each is
fully charged with one unit of capacity (Ah). We consider
a six-stage (17, 2)-battery switching network with the basis
d1 = 1, d2 = 1, d3 = 2, d4 = 3, d5 = 4, and d6 = 6. For
such a battery switching network, the maximum number of
loads Lmax is 2 and the maximum supportable total voltage
Vmax is 17. As such, there are five admissible states for the
stochastic load profile, i.e.,

n = (n1, n2) = (0, 0), (0, 1), (1, 0), (1, 1) and (2, 0). (25)

For the uniform allocation scheme, each battery pack is
allocated a fixed 450 units of capacity (Ah).

We also consider the LRCF scheme in several fault tol-
erant battery switching networks with Fmax = 1, 2, 5,
and 20, respectively. The basis sets of these four bat-
tery switching network are {1, 1, 1, 2, 2, 3, 4, 6, 8} for
Fmax = 1, {1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8} for Fmax = 2,
{1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 8} for Fmax = 5, and 22
1’s and {2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9} for Fmax = 20.
The allocation of the 7650 batteries in these fault tolerant
battery switching networks is performed by using the uni-
form allocation scheme. In order to have a fair comparison
with the other two schemes, the admissible states for these
fault tolerant battery switching networks are set to be the
five states in (25).

In Figure 7, we show the average system life for the
uniform allocation scheme, the max-min fairness allocation
scheme, and the LRCF scheme in the fault tolerant battery
switching networks with Fmax = 1, 2, 5, and 20. In Figure
7a, we fix ρ2 = 1 and vary the Poisson arrival rate ρ1 of
type 1 loads. On the other hand, we fix ρ1 = 1 and vary
the Poisson arrival rate ρ2 of type 2 loads in Figure 7b.
Each average system life is measured by averaging over 100
independent experiments.

5.2 Comparison Between the Max-min Fairness Alloca-
tion Scheme and the Uniform Allocation Scheme
It is clear from Figure 7a that the average system life
of the max-min fairness allocation scheme is significantly
longer than that of the uniform allocation scheme. A similar
conclusion can also be drawn from Figure 7b. The gain of the
average system life in Figure 7a can be up to 25%. However,
the gain in Figure 7b is not as large as that in Figure 7a.

To further understand this, we plot in Figure 8 the average
energy consumption rate for each pack by using (20) and in
Figure 9 the capacity of each battery pack by using the max-
min fairness allocation scheme in Section 3.2. As we can
see from Figure 8a and Figure 9a that the average energy
consumption rates are roughly proportional to the capaci-
ties, in particular, r2, r3, r4, r5 in Figure 8a and b2, b3, b4, b5
in Figure 9a are all increasing with respect to ρ1. On the
other hand, we can see from Figure 8b and Figure 9b that
r1, r3, r4, r5 and r6 are increasing with respect to ρ2 but b4
and b5 are not increasing with respect to ρ2. This is due
to the integer constraint of the max-min fairness allocation
scheme. In particular, for the fifth battery pack, its average
energy consumption rate r5 is the largest among all the six
battery packs. That means the system uses the fifth pack
more frequently than the other battery packs. As b5 is not
increasing with respect to ρ2, it is expected that the gain
of using the max-min fairness allocation scheme in this
scenario is not as significant as that in Figure 7a.

We note that our computation of the average energy
consumption rates in (20) is based on the steady state prob-
abilities of the corresponding Markov chain for modelling
the loss system. Thus, if the average system life is not sig-
nificantly longer than the mixing time of the corresponding
Markov chain, then the actual energy consumption rates in
the transient period might be quite different from those
obtained from (20). As such, the gain of using the max-
min fairness allocation scheme over the uniform allocation
scheme might not be that great if the average system life
is not significantly longer than the mixing time of the
corresponding Markov chain.

5.3 The LRCF Scheme
Recall that in the LRCF scheme, there is no need to know
the load profile. However, it is assumed that the remaining
capacity of each battery pack can be monitored and it is
known to the system. For an N -stage fault tolerant battery
switching network that can tolerate Fmax faulty battery
packs, the LRCF scheme only uses the N − Fmax battery
packs that have the largest remaining capacities. Also, the
system life of such a fault tolerant battery switching network
is the first time there are Fmax + 1 battery packs that have
depleted their energy.

It is clear from Figure 7 that increasing the fault tolerant
capability in general increases the average system life. How-
ever, increasing the fault tolerance capability also increases
the hardware complexity as we might need more stages
for the constructions of fault tolerant battery switching
networks that have larger fault tolerance capability. We note
the gap between the max-min fairness allocation scheme
and the LRCF scheme in the battery switching network with
Fmax = 2 is not that much. Moreover, the gap is narrowed
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Fig. 7. Comparison of average system life.
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Fig. 8. Average energy consumption rate of each battery pack.
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Fig. 9. Capacity of each battery pack.

when we further increase the fault tolerance capability. For Fmax = 20, the average system life of the LRCF scheme in
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the fault tolerant battery switching network is even better
than that of the max-min fairness allocation scheme for the
traffic profiles in Figure 7b. This shows that the knowledge
of the load profile may not be needed if one can monitor the
remaining capacity of each battery pack.

6 CONCLUSIONS

In this paper, we proposed and analyzed a multistage
battery switching network that can support a maximum
number of Lmax loads under the constraint that the total
voltages of these loads do not exceed a design constant
Vmax. The voltage of each battery pack can be determined
optimally by solving a Simultaneous Integer Representation
(SIR) problem. If the average energy consumption rates are
known, we proposed a max-min fairness battery allocation
scheme to determine the capacity of each battery pack.
If the average energy consumption rates are not known,
we also proposed the Largest Remaining Capacity First
(LRCF) policy in a fault tolerant battery switching net-
work that can still be operated properly even after Fmax

battery packs fail. Extensive simulations were carried out
to compare the performance of various battery allocation
schemes. Our simulation results showed that the max-min
fairness battery allocation scheme outperforms the uniform
allocation scheme. (that assigns each battery pack with the
same capacity) and the LRCF scheme also performs well
even without the knowledge of the load profile.

Though it might be still difficult to use our theory to
construct large battery systems for practical use by using
the current state-of-the-art technology, one can make our
multistage battery switching network more realizable by
addressing the following research problems: (i) allowing
a matching error to compensate the effect of non-ideal
batteries, (ii) reducing the manufacturing cost for battery
packs by limiting the number of shapes, (iii) minimizing the
discharge current of individual batteries to prolong battery
life, (iv) determining the order of turning on/off switches
to avoid short circuits during the reconfiguration process,
and (v)constructing fault tolerant battery packs that allow
reconfiguration in battery packs. In addition to these, there
are other physical characteristics of real batteries that need
to be taken into account (see e.g., the handbook [23]). In
particular, the storage capacities of non-ideal batteries vary
and might decrease in time. As such, the max-min fairness
allocation scheme might not work well as it assumes that
the storage capacities are all the same. On the other hand,
the LRCF policy does not require that assumption, and it
might be a better choice than the max-min fairness allocation
scheme in this regard. Another issue is the life time of a
battery. A non-ideal battery can only be recharged for a
limited amount of cycles, and there is a tradeoff between
the depth-of-discharge (DoD) in a cycle and the life time of
a battery. In practice, large DoD in a cycle decreases the life
time of a battery. Thus, in order to prolong the life time of
a battery, one should avoid large DoD. In this regard, the
LRCF policy that tries to balance the DoD of batteries has
the advantage over the max-min fairness allocation scheme.
Finally, we note that for the safety reason, one might need
to implement charge equalizer circuits (see e.g., [24], [25]) to
ensure the balance of the SOC of the battery cells in a battery

pack. The circuit-level problems are beyond the scope of this
paper.
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