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Abstract—Load-balanced switches have received a lot of atten-
tion lately as they are much more scalable than other existing
switch architectures in the literature. One of the most salient
features of load-balanced switches is its simplicity of implement-
ing deterministic and periodic connection patterns for the switch
fabrics. In particular, for an N × N load-balanced switch, its
switch fabric only needs an N × N rotator that is capable of
realizing all the powers of the circular shift permutation. In
this paper, we consider the problem of incremental update of
the number of linecards in load-balanced switches. For this,
our idea is to consider a 2M × 2M degenerated banyan network
that only uses half of the 2M+1 inputs/outputs in the classical
2M+1 × 2M+1 banyan network. We show how one can use the
2M × 2M degenerated banyan network as a p × p rotator for
any 2 ≤ p ≤ 2M . This is done by a specific rule of placing
the p linecards in the 2M input/output ports of the 2M × 2M

degenerated banyan network. In special, when p = 2M , the
2M × 2M degenerated banyan network can also be used as a
crosstalk-free 2M × 2M rotator, where all the routing paths do
not share a common node. As such, one can use a 2M+1× 2M+1

banyan network as the switch fabric for a 2M×2M load-balanced
switch that is capable of providing incremental update of the
number of linecards.

I. INTRODUCTION

Load-balanced switches (see e.g., [2], [8], [7], [6], [3]) have
received a great deal of attention recently as they are much
more scalable than other existing switch architectures in the
literature. A typical load-balanced switch (see Fig. 1) consists
of two stages: the first stage is for load-balancing that converts
incoming traffic into the uniform traffic, and the second stage
is for switching of the uniform traffic. By so doing, it was
shown in [2] that such a switch architecture indeed provides
100% throughput (under a mild technical condition for the
incoming traffic).

One of the most salient features of load-balanced switches is
that the connection patterns in the switch fabrics of both stages
are deterministic and periodic. Specifically, for an N×N load-
balanced switch, its switch fabrics only need to realize in every
period of N time slots any N N × N permutation matrices
P1, P2, . . . , PN that satisfy

P1 + P2 + . . . + PN = e, (1)

where e is the N × N matrix with all its elements being
1. In the literature, there are two well-known conditionally
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Fig. 1. The generic load-balanced switch architecture.

nonblocking switches, the N × N rotator (that implements
all the powers of the circular shift matrix) and the N × N
symmetric TDM switch, that can be used for generating the
needed connection patterns in (1).

Keslassy, Chung, and McKeown [7] studied the problem
of incremental update of the number of linecards in load-
balanced switches. To solve the incremental update problem
for an N × N load-balanced switch, it is required that the
switch is capable of emulating any p×p load-balanced switch
for 2 ≤ p ≤ N , where p is the number of linecards placed
in the N × N load-balanced switch. Instead of using the
three-stage approach in [7], we are interested in finding a
“universal” N ×N switch (fabric) that solves the incremental
update problem. Clearly, either an N×N crossbar switch or an
N×N Benes network [1] can be used as the universal N×N
switch because they both are (rearrangeable) nonblocking
switches that can realize all the N ! permutations. However,
the construction complexity of an N ×N crossbar switch (in
terms of the number of crosspoints) is O(N2) which does not
scale well and thus prevents it from being used for large N . On
the other hand, the lack of self-routing property in the N ×N
Benes network makes it difficult to find routing paths for
realizing an N ×N permutation. In our recent paper [11], we
proposed a new class of multistage interconnection networks,
called twister networks. We showed that twister networks
possess the self-routing property and they can be used as the
universal switch for the incremental update problem in load-
balanced switches.

In the paper, we go one step further by showing that the
classical banyan networks (see e.g., the books [14], [9], [4])
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can also be used as the universal switch for the incremental
update problem in load-balanced switches. Our idea is to
consider a 2M × 2M degenerated banyan network that is
obtained from the classical 2M+1 × 2M+1 banyan network
by using only half of the 2M+1 inputs/outputs. We show how
one can use the 2M × 2M degenerated banyan network as a
p × p rotator (and a p × p symmetric TDM switch) for any
2 ≤ p ≤ 2M . This is done by a specific rule of placing the
p linecards in the 2M input/output ports of the degenerated
2M × 2M banyan network. In particular, when p = 2M , the
2M × 2M degenerated banyan network can also be used as a
crosstalk-free 2M × 2M rotator (and p × p symmetric TDM
switch), where all the routing paths do not share a common
node. As such, one can use the classical 2M+1×2M+1 banyan
network as the universal switch for a 2M × 2M load-balanced
switch that is capable of providing incremental update of the
number of linecards.

This paper is organized as follows. In Section II, we
introduce the degenerated banyan networks and prove their
conditionally nonblocking properties. In Section III, we show
how one can use degenerated banyan networks as rotators and
symmetric TDM switches. The paper is then concluded in
Section IV, where we address possible extensions of our work.

II. DEGENERATED BANYAN NETWORK

In this section, we introduce degenerated banyan networks.
For 0 ≤ x ≤ 2M − 1, we denote the binary representation
of x as the M -vector (I1(x), I2(x), . . . , IM (x)), where Ik(x)
is the kth least significant bit of x. Note from the binary
representation that

x =
M∑

k=1

Ik(x)2k−1.

Definition 1 (Degenerated Banyan Network) Suppose that
N = 2M . An N × N degenerated banyan network consists
of M +1 stages with N nodes in each stage. Index the M +1
stages from 0 to M , and the N nodes at each stage from 0 to
N − 1. The N nodes at the 0th (resp., (M + 1)th) stage are
called the input (resp., output) nodes. For k = 1, 2, . . . ,M ,
j = 0, 1, . . . , N − 1, the jth node at the (k − 1)th stage is
connected to the two nodes at the kth stage whose M -bit
binary representations can only differ from the M -bit binary
representation of j in the kth most significant bit.

In Fig. 2, we show a 4 × 4 degenerated banyan network.
In such a network, there are three stages with four nodes
in each stage. Node 1 at the 0th stage has the 2-bit binary
representation (1, 0). It is connected to node 1 at the 1st stage
with the 2-bit binary representation (1, 0) and to node 3 at
the 1st stage with the 2-bit binary representation (1, 1). We
note that an N ×N degenerated banyan network is in fact a
classical 2N×2N banyan network with only half of the inputs
and outputs. To illustrate this, we show a 8×8 classical banyan
network in Fig. 3, where each node (switch) consists of two
input links and two output links. By using only the first N
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Fig. 2. A 4× 4 degenerated banyan network.

input links at the 0th stage and all the output links with even
indices at the last stage, a classical 2N × 2N banyan network
reduces to the N ×N degenerated banyan network (with all
the output links are relabeled in the ascending order as shown
in Fig. 2).
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Fig. 3. An 8× 8 banyan network.

A. Routing Path

In a 2M × 2M degenerated banyan network, a routing path
from an input node i to an output node o can be simply
described by the (M +1)-vector v = (v0, v1, · · · , vM ), where
vj is the index of the node traversed at the jth stage for all
0 ≤ j ≤ M with v0 = i and vM = o.

In the following definition, we specify a unique routing path
in a 2M × 2M degenerated banyan network for each pair of
input/output nodes that will be used in this paper.

Definition 2 (Unique Routing Path) Consider an N × N
degenerated banyan network with N = 2M and an
input/output pair (i, o). Let (I1(i), I2(i), . . . , IM (i)) and
(I1(o), I2(o), . . . , IM (o)) be the binary representations for
input node i and output node o, respectively. Then the routing
path from input node i to output node o is represented by
the (M + 1)-vector v = (v0, v1, . . . , vM ), where the binary
representation of vj is

Ik(vj) =
{

Ik(i), for 1 ≤ k ≤ M − j,
Ik(o), for M − j + 1 ≤ k ≤ M.

(2)
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Note that from (2), we have

(I1(vj−1), I2(vj−1), . . . , IM (vj−1))
= (I1(i), . . . , IM−j(i), IM−j+1(i), IM−j+2(o), . . . , IM (o)),
(I1(vj), I2(vj), . . . , IM (vj))
= (I1(i), . . . , IM−j(i), IM−j+1(o), IM−j+2(o), . . . , IM (o)),

for j = 1, 2, . . . , M . It is clear that the M -bit binary represen-
tations of nodes vj−1 and vj can only differ in the jth most
significant bit for all j = 1, 2, . . . ,M , and it then follows from
Definition 1 that the routing path specified in (2) is a feasible
path in the degenerated banyan network. Furthermore, as
v0 =

∑M
k=1 Ik(i)2k−1 = i and vM =

∑M
k=1 Ik(o)2k−1 = o,

it is a feasible path from input node i to output node o.
We note that the routing path defined in (2) is exactly the

same as the routing path in the classical banyan network,
where the kth most significant bit is swaped from the binary
presentation of the input node to that of the output node at the
kth stage.

B. Conditionally Nonblocking Properties

Like a switch or a switching network, a connection matrix
for a 2M × 2M degenerated banyan network is a 2M × 2M

sub-permutation matrix that specifies the connections from a
subset of its 2M input nodes to a subset of its 2M output
nodes. The routing paths specified by a connection matrix is
said to be link-disjoint (resp., node-disjoint) if all the routing
paths from the input nodes to the output nodes specified by the
connection matrix do not share a common link (resp., node). In
the switching context, one can view each node as a switch and
a connection matrix with link-disjoint routing paths is said to
be realizable (or feasible) as there are no conflicting links. On
the other hand, a connection matrix with node-disjoint routing
paths is sometimes said to be crosstalk-free as the crosstalk
problem can be alleviated by allowing only one active input
link in each switch (see e.g., [13], [15], [12], [5] and references
therein). Clearly, a 2M × 2M degenerated banyan network
cannot realize all the 2M × 2M sub-permutation matrices. As
we will show later, it can realize a set of sub-permutation
matrices that satisfy a certain condition. Such a property is
called the conditionally nonblocking property in the literature
[9], [10], and thus degenerated banyan networks can be used
as conditionally nonblocking switches.

For the proof of the conditionally nonblocking property, we
first introduce the N -modulo distance as defined in [11].

Definition 3 The N -modulo distance dN (i, j) between two
integers i and j is defined as

dN (i, j) = min [(i− j) mod N, (j − i) mod N ] . (3)

The distance can be alternatively defined as

dN (i, j) = min [|i− j| mod N,−|i− j| mod N ] . (4)

One can easily see that the two definitions above are equiv-
alent. In the special case that 0 ≤ i, j ≤ N − 1, (4) can be

rewritten as

dN (i, j) = min[|i− j|, N − |i− j|]. (5)

As discussed in [11], the N -modulo distance dN (i, j) is
simply the length of the shorter arc between nodes i and j on
the circle of circumference N when we place all the N input
nodes (and output nodes) on a circle.

The following properties for the N -modulo distance are
shown in [11]. To simplify the notation, we say that i =N j
if i mod N equals j mod N .

Property 4 Let i, j and k be all integers.
(i) (Nonnegativity) dN (i, j) ≥ 0.

(ii) dN (i, j) = 0 if and only if i =N j.
(iii) (Symmetry) dN (i, j) = dN (j, i).
(iv) (Triangle Inequality) dN (i, j) ≤ dN (i, k) + dN (k, j).
(v) (Translation Invariance) dN (i, j) = dN (i + k, j + k).

(vi) dN (i, j) = dN (−i,−j).
(vii) dN (i, j) = dN (i, k) if j =N k.

(viii) dN (i, j) = dN (k, `) if i + k =N j + `.

In the following theorem, we show conditionally nonblock-
ing properties for a degenerated banyan network. The proof
of Theorem 5 is given in the Appendix.

Theorem 5 Consider an N×N degenerated banyan network
with N = 2M .

(i) If the connection matrix has the property that

dN (i1, i2) ≤ |o1 − o2| (6)

for arbitrary two input/output pairs (i1, o1) and (i2, o2),
then the routing paths are node-disjoint.

(ii) If the connection matrix has the property that

dN (i1, i2) ≤ 2|o1 − o2|+ 1 (7)

for arbitrary two input/output pairs (i1, o1) and (i2, o2),
then the routing paths are link-disjoint.

In comparison with twister networks in [11], we note that
the condition in (7) is weaker than dN (i1, i2) ≤ 2dN (o1, o2)
in Theorem 11 (with γ = 2) of [11]. Thus, degenerated banyan
networks can realize a richer class of connection matrices than
those specified in Theorem 11 (with γ = 2) of [11]. This
includes rotators and symmetric TDM switches discussed in
the next section.

Banyan networks have been studied extensively in the liter-
ature (see e.g., the books [14], [9], [4]). There are also many
conditionally nonblocking properties for banyan networks. In
particular, the condition in (6) is known as a circular expander
in [9], and all the routing paths in a banyan network are link-
disjoint under (6). By using only half of the input/outputs in
banyan networks, degenerated banyan networks go one step
further by ensuring all the routing paths to be node-disjoint
under (6). Moreover, the condition for link-disjoint routing
paths in degenerated banyan networks is relaxed to (7).
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III. ROTATOR AND SYMMETRIC TDM SWITCH

As mentioned in the Section I, our objective is to show that a
degenerated banyan network can be used as a universal switch
(fabric) that can provide incremental update of the number
of linecards in a two-stage load-balanced switch. For this, we
formally define two kinds of switches that are commonly used
as the switch fabrics for load-balanced switches. First, an N×
N permutation matrix P = (pij) is called a circular shift
matrix if

pij =
{

1, if j = (i + 1) mod N,
0, otherwise, (8)

where 0 ≤ i, j ≤ N − 1.

Definition 6 (Rotator) Let P be the N×N circular shift ma-
trix as defined in (8). An N×N switch (or switching network)
is called a rotator if it can realize the N permutations, Pn,
n = 0, 1, 2, . . . , N − 1.

Note that each input/output pair (i, o) for the permutation
matrix Pn satisfies o =N (i + n).

Definition 7 (Symmetric TDM Switch) For 0 ≤ n ≤ N − 1,
let P̃n be the permutation such that each input/output pair
(i, o) satisfies (i + o) =N n. An N ×N switch (or switching
network) is called a symmetric TDM switch if it can realize
the N permutations, P̃n, n = 0, 1, 2, . . . , N − 1.

It is easy to see that the condition in (1) is satisfied for the
N permutations in an N ×N rotator and the N permutations
in an N ×N symmetric TDM switch. As such, they both can
be used as the switch fabric for load-balanced switches.

Theorem 8 Consider an N×N degenerated banyan network
with N = 2M . Then all the routing paths specified by any
of the N permutation matrices in an N × N rotator (resp.,
symmetric TDM switch) are node-disjoint. As such, an N×N
degenerated banyan network with N = 2M can be used as a
crosstalk-free N ×N rotator (resp., symmetric TDM switch)

Proof: As each input/output pair (i, o) for the permutation
matrix Pn in an N × N rotator satisfies o =N (i + n), we
have for any two input/output pairs (i1, o1) and (i2, o2) that

o1 − o2 =N i1 − i2.

Thus, we have
o1 + i2 =N o2 + i1.

From Property 4 (viii) and (iii), it follows that

dN (o1, o2) = dN (i2, i1) = dN (i1, i2).

As dN (o1, o2) ≤ |o1 − o2| in (5), we then have

dN (i1, i2) ≤ |o1 − o2|,
and the result then follows from Theorem 5 (i).

For the N permutation matrices specified by an N × N
symmetric TDM switch, we also have for any two input/output
pairs (i1, o1) and (i2, o2) that

o1 + i1 =N o2 + i2.

From Property 4 (viii), it follows that

dN (o1, o2) = dN (i1, i2).

The rest of the proof then follows the same argument for a
crosstalk-free N ×N rotator.

As commented immediately after Theorem 5, degenerated
banyan networks can realize a richer class of connection
matrices than those specified in Theorem 11 (with γ = 2)
of [11] for twister networks. In [11], it was shown that an
2M ×2M twister network can be used as a p×p rotator and a
p×p symmetric TDM switch provided that the p linecards are
placed as evenly as possible. Specifically, for any 2 ≤ p ≤ 2M ,
there exists 0 ≤ m ≤ M − 1 such that 2m < p ≤ 2m+1,
and p can be written as 2m + `, where 1 ≤ ` ≤ 2m. For
i = 0, 1, 2, . . . , p − 1, place the ith linecard in the f(i)th

input/output port, where

f(i) =
{

i · 2M−m−1, for 0 ≤ i ≤ 2`− 1,
(i− `) · 2M−m, for 2` ≤ i ≤ p− 1.

(9)

Here we adopt the same placement rule for the p linecards
in a 2M × 2M degenerate banyan network. Note that the
gap between the placement of two consecutive linecards is
either 2M−m−1 or 2M−m. Thus, the maximum gap between
two consecutive linecards is exactly twice of the minimum
gap between two consecutive linecards. Following the same
argument as in Theorem 14 of [11], one can show (the detailed
proof is omitted here due to space limitation) that for any
two input/output pairs (i1, o1) and (i2, o2) specified by any
p × p permutation of a p × p rotator, the corresponding
input/output pairs (f(i1), f(o1)) and (f(i2), f(o2)) in the
2M × 2M degenerate banyan network satisfies

dN (f(i1), f(i2)) ≤ 2dN (f(o1), f(o2)).

As dN (f(o1), f(o2)) ≤ |f(o1) − f(o2)|, the condition in (7)
is satisfied and the 2M × 2M degenerate banyan network can
be used as a p×p rotator. The argument for a p×p symmetric
TDM switch is similar. The result is stated in the following
theorem.

Theorem 9 Consider a 2M × 2M degenerated banyan net-
work. Suppose that there are p linecards, indexed from
0, 1, . . . , p−1 and they are placed in a 2M ×2M degenerated
banyan network according to the placement rule in (9). Then,
a 2M × 2M degenerated banyan network can be used as a
p× p rotator and a p× p symmetric TDM switch for these p
linecards.

As commented in [11], such a placement rule also allows
one to incrementally update the number of linecards in a
2M × 2M degenerated banyan network without repositioning
the existing linecards. Specifically, suppose that there are
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already p linecards placed in a 2M × 2M degenerated banyan
network, and we would like to add a new linecard. As in the
placement rule, write p = 2m + `. If ` < 2m, then the new
one is placed in ((2`+1)2M−m−1)th input/output port of the
2M × 2M degenerated banyan network. On the other hand,
if ` = 2m, then the new one is placed in the (2M−m−2)th

input/output port. For example, for an 8×8 degenerated banyan
network, the order of placing new linecards in the input/output
ports is 0,4,2,6,1,3,5,7.

For a 2M × 2M degenerated banyan network, all the nodes
can be made by 2 × 2 switches (with 2M 1 × 2 switches
for the 2M input nodes and 2M 2 × 1 switches for the 2M

output nodes). To use a 2M×2M degenerated banyan network
as a p× p rotator, we first place the p linecards according to
Theorem 9. For each (mapped) p×p connection matrix needed
for a p × p rotator, we can find the routing paths according
to the routing rule in (2). As such, all the connection patterns
of the 2 × 2 switches in a degenerated banyan network can
be determined accordingly. Specifically, consider the jth node
at the kth stage, denoted by node (k, j), for some 1 ≤ k ≤
M − 1. Note that such a node is neither an input node nor an
output node. If nodes (k − 1, j) and (k + 1, j) are connected
through node (k, j), we say that the 2 × 2 switch for node
(k, j) is in the “bar” state and in the “cross” state otherwise.
Also, the jth input (resp., output) node, denoted by node (0, j)
(resp., (M, j)), is said to be in the “bar” state if it connects to
node (1, j) (resp., node (M − 1, j)) and in the “cross” state
otherwise. A switch is said to be in the state “don’t care” if
the connection matrix of the degenerated banyan network is
implemented no matter which state the switch is in.

We illustrate how one uses an 8 × 8 degenerated banyan
network as a 5×5 rotator (see Fig. 4). According to Theorem
9, the five linecards are placed in the 0th, 1st, 2nd, 4th and 6th

input/output ports of the 8 × 8 degenerated banyan network.
The five connection matrices that need to be implemented are
Pn, n = 0, 1, · · · , 4, where P is a 5× 5 circular shift matrix.
In Table I, we show all the states of nodes in this degenerated
banyan network. The element in the mth row and nth column
represents the states of switches with the same index m for
the connection matrix Pn, where the states are represented
as a sequence of “bar” (b), “cross” (x) and “don’t care” (z),
in the increasing order of their stages (from left to right).
For example, the sequence xbzx in the 2th row and the 1st

column of Table I indicates that the 2 × 2 switch for node
(0,2) (resp., (1,2), (2,2) and (3,2)) should be set to the cross
(resp., bar, don’t care, cross) state for the 5× 5 circular shift
matrix P . Moreover, Table II shows all the states of nodes in
this degenerated banyan network if they are used as a 5 × 5
symmetric TDM switch.

IV. CONCLUSION

In the paper, we studied the problem of incremental update
of the number of linecards in load-balanced switches. We
showed that a 2M×2M degenerated banyan network, obtained
from the classical 2M+1×2M+1 banyan network by using only
half of the 2M+1 inputs/outputs, can be used as a p×p rotator
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Fig. 4. Using an 8× 8 degenerated banyan network as a 5× 5 rotator.

0 1 2 3 4
0 bbbb bbxb bxbb xxxb xbbx
1 bbbb bxzx xzzx xzzx bbxx
2 bbbb xbzx xbxb bxbb bxxb
3 zzzz zzbz zzzz zzzz zzzz
4 bbbb bxxb xzzx xxbb xbxb
5 zzzz zzzz zxxz zbzz zzzz
6 bbbb xbxb xxbb xzzx bxxb
7 zzzz zzzz zzzz zzbz zzzz

TABLE I
STATES OF SWITCHES IN AN 8× 8 DEGENERATED BANYAN NETWORK FOR

A 5× 5 ROTATOR.

(and a p × p symmetric TDM switch) for any 2 ≤ p ≤ 2M .
This is done by a specific rule of placing the p linecards
in the 2M input/output ports of the degenerated 2M × 2M

banyan network. In particular, when p = 2M , the 2M × 2M

degenerated banyan network can also be used as a crosstalk-
free 2M ×2M rotator (and 2M ×2M symmetric TDM switch),
where all the routing paths do not share a common node. As
such, one can use the classical 2M+1×2M+1 banyan network
as the universal switch for a 2M × 2M load-balanced switch
that is capable of providing incremental update of the number
of linecards.

Finally, we note that it is possible to extend our results
to generalized banyan networks, where the interconnections
between two consecutive stages are characterized by the

0 1 2 3 4
0 bbbb bbxx bxxb xxbb xxxb
1 xzzx bbxx bbbb bxzx xzzx
2 xbxb xxbb bxxb bxzx bbbb
3 zzzz zzzz zzzz zzbz zzzz
4 xzxb bbbb bxxb xxbb xbzx
5 zbzz zzzz zzzz zzzz zxxz
6 xbzx xxbb bxxb bbbb xzxb
7 zzbz zzzz zzzz zzzz zzzz

TABLE II
STATES OF SWITCHES IN AN 8× 8 DEGENERATED BANYAN NETWORK FOR

A 5× 5 SYMMETRIC TDM SWITCH.
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generalized r-ary representation like twister networks in [11].

APPENDIX

In this appendix, we prove Theorem 5.
(i) We prove the theorem by contradiction. Suppose that

the routing paths of the pair of input/output ports (i1, o1) and
(i2, o2) share a node at stage j. Note that the shared node
cannot be an input node or an output node as otherwise we
would have either i1 = i2 or o1 = o2 that contradicts to
the assumption that a connection matrix is a sub-permutation
matrix. Thus, we know that 1 ≤ j ≤ M − 1. As these two
routing paths traverse a common node at stage j, we have
from the routing rule in (2) that

Ik(i1) = Ik(i2), for 1 ≤ k ≤ M − j, (10)
Ik(o1) = Ik(o2), for M − j + 1 ≤ k ≤ M. (11)

From (10) and (11), we have that

|o1 − o2| =

∣∣∣∣∣
M∑

k=1

Ik(o1)2k−1 −
M∑

k=1

Ik(o2)2k−1

∣∣∣∣∣

=

∣∣∣∣∣
M−j∑

k=1

Ik(o1)2k−1 −
M−j∑

k=1

Ik(o2)2k−1

∣∣∣∣∣

≤
M−j∑

k=1

|Ik(o1)− Ik(o2)| 2k−1 ≤ 2M−j − 1.(12)

Similarly, we also have from (10) and (11) that

|i1 − i2| =
∣∣∣∣∣

M∑

k=1

Ik(i1)2k−1 −
M∑

k=1

Ik(i2)2k−1

∣∣∣∣∣

=

∣∣∣∣∣∣

M∑

k=M−j+1

Ik(i1)2k−1 −
M∑

k=M−j+1

Ik(i2)2k−1

∣∣∣∣∣∣
(13)

≤
M∑

k=M−j+1

|Ik(i1)− Ik(i2)| 2k−1

≤ N − 2M−j . (14)

On the other hand, we note from (13) that

|i1 − i2| =
∣∣∣∣∣∣

M∑

k=M−j+1

Ik(i1)2k−1 −
M∑

k=M−j+1

Ik(i2)2k−1

∣∣∣∣∣∣

= 2M−j

∣∣∣∣∣
j∑

k=1

(Ik+M−j(i1)− Ik+M−j(i2))2k−1

∣∣∣∣∣ . (15)

Notice that
∑j

k=1(Ik+M−j(i1) − Ik+M−j(i2))2k−1 cannot
be zero as otherwise we have i1 = i2 from (15). Thus,
|∑j

k=1(Ik+M−j(i1) − Ik+M−j(i2))2k−1| is greater or equal
to one, and hence

|i1 − i2| = 2M−j

∣∣∣∣∣
j∑

k=1

(Ik+M−j(i1)− Ik+M−j(i2))2k−1

∣∣∣∣∣
≥ 2M−j . (16)

From (5), (14) and (16), we see that

dN (i1, i2) = min[|i1 − i2|, N − |i1 − i2|]
≥ 2M−j (17)

From (17) and (12), it then follows that

dN (i1, i2) ≥ 2M−j > |o1 − o2|,
which contradicts to the assumption in (6).

(ii) Suppose that the routing paths for two input/output pairs
(i1, o1) and (i2, o2) share a common link between stages j−1
and j. Notice that 2 ≤ j ≤ M − 1 as otherwise they share
the same input port or output port. Again, according to the
routing rule (2), we have that

Ik(i1) = Ik(i2), for 1 ≤ k ≤ M − j + 1
Ik(o1) = Ik(o2), for M − j + 1 ≤ k ≤ M.

By using the same procedure as used in the proof of part (i),
one can verify that |o1 − o2| ≤ 2M−j − 1 and dN (i1, i2) ≥
2M−j+1. It then follows that

dN (i1, i2) ≥ 2M−j+1 > 2|o1 − o2|+ 1,

which contradicts to the assumption in (7).
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