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1 Brownian motions

Definition 1 A stochastic process {B(t), t ≥ 0} is called a Brownian motion
process if

(i) B(0) = 0;

(ii) {B(t), t ≥ 0} has stationary and independent increments;

(iii) for every t > 0, B(t) is normally distributed with mean 0 and variance
σ2t.

When σ = 1, the Brown motion is called standard Brownian motion.

• The first explanation was given by Einstein (1905)

• The above definition was given by Wiener (1918)

Theorem 2 (Donsker’s Theorem (1951)) Let {αi, i ≥ 1} be a sequence of
i.i.d. random variables with mean 0 and variance σ2. Consider the partial
sum

Sk =
k∑
i=1

αi, S0 = 0. (1)

(Note that Sk − Sl =
∑k

i=l+1 αi) Let Yt be the linear interpolation of the
partial sum Sk, i.e.,

Yt = Sbtc + (t− btc)αbtc+1, t ≥ 0, t ∈ IR. (2)

Consider the following sequence of stochastic processes:

X
(n)
t =

Ynt
σ
√
n
. (3)

Then as n → ∞, X
(n)
t converges in distribution to the standard Brownian

motion.

(Sketch of the proof)

• Independent and stationary increments: Consider two disjoint inter-
vals (t1, t2] and (t3, t4]. Since {αi, i ≥ 1} are i.i.d., X(n)(t2)−X(n)(t1)
and X(n)(t4)−X(n)(t3) are (almost) independent. Note that

X(n)(t2)−X(n)(t1) =
Y (nt2)− Y (nt1)

σ
√
n

≈
∑bnt2c

i=bnt1c+1 αi

σ
√
n

. (4)

The argument for stationary increments is similar
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• Normal distribution: Since

X(n)(t) =
Y (nt)

σ
√
n
≈
√
t

∑bntc
l=1 αi

σ
√
nt

. (5)

From the central limit theorem, the RHS of (5) converges to the normal
distribution with mean 0 and variance

√
t.

• From these two observations, it follows that all the finite joint distri-
butions of Xn(t) converge to those of the standard Brownian motion.
(Technical point: need tightness for the weak convergence)

Proposition 3 (Markov property) A Brownian motion process is a Markov
process.

(Sketch of the proof) Let B(t) be a Brownian motion. Then

Pr(B(t+ s) ≤ a|B(s) = x,B(u), 0 ≤ u ≤ s)
= Pr(B(t+ s)−B(s) ≤ a− x|B(s) = x,B(u), 0 ≤ u ≤ s). (6)

From the independent increment property,

Pr(B(t+ s) ≤ a|B(s) = x,B(u), 0 ≤ u ≤ s)
= Pr(B(t+ s)−B(s) ≤ a− x) = Pr(B(t+ s) ≤ a|B(s) = x). (7)

Distribution

• Marginal distribution:

Pr(B(t) ∈ (x, x+ dx)) = ft(x)dx =
1√
2πt

e−x
2/2tdx (8)

• Joint distribution of B(t1), B(t2), . . . , B(tn):

f(x1, x2, . . . , xn) = ft1(x1)ft2−t1(x2−x1) · · · ftn−tn−1(xn−xn−1). (9)

• Conditional distribution: for s < t,

Pr(B(s) ∈ (x, x+ dx)|B(t) = b) (10)

=
fs(x)ft−s(b− x)

ft(b)
dx (11)

= c1 exp
{−x2

2s
− (b− x)2

2(t− s)

}
dx for some constant c1 (12)

= c2 exp
{
− t(x− bs/t)2

2s(t− s)

}
dx for some constant c2 (13)
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The conditional distribution of B(s) given B(t) = b, s < t, is normal
with mean bs/t and variance s(t− s)/t.

Definition 4 (Gaussian process) A stochastic process {X(t), t ≥ 0} is a
Gaussian process if X(t1), . . . , X(tn) has a multivariate normal distribution
for all t1, . . . , tn.

Proposition 5 The standard Brownian motion, denoted by B(t), is a Gaus-
sian process with EB(t) = 0 and EB(t)B(s) = min(t, s). Conversely, if a
Gaussian process has zero mean and the covariance function min(s, t), then
it is the standard Brownian motion.

Proof. It is clear that EB(t) = 0.
Note from the independent increment property that for s ≤ t,

EB(s)B(t) = E[B(s)(B(t)−B(s) +B(s))] (14)

= E[B(s)2] + E[B(s)(B(t)−B(s))] (15)

= E[B(s)2] + E[B(s)]E[B(t)−B(s)] (16)

= E[B(s)2] = s. (17)

To show the converse, note that the joint distribution of a multinormal
distribution is determined by the marginal mean and the covariance values.
�

Proposition 6 (Equivalence transformation) If B(t) is a standard Brow-
nian motion, then the following processes are also the standard Brownian
motion.

(i) Scaling: Z(t) = B(nt)/
√
n for n > 0.

(ii) Time-inversion: Z(t) = tB(1/t) for t > 0 and Z(0) = 0.

(iii) Time-reversal: Z(t) = B(T )−B(T − t) for T > 0.

(iv) Symmetry: Z(t) = −B(t).

Proof. The proofs are similar. We only show (ii). Note that Z(t) in (ii) is
still a zero mean Gaussian process. We only need to check

EZ(t)Z(s) = stmin[
1

s
,
1

t
] = min[s, t]. (18)

�
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Definition 7 (Brownian bridge). Let B(t) be the standard Brownian mo-
tion and {Bb(t) = (B(t)|B(1) = 0), 0 ≤ t ≤ 1} is called the Brownian
bridge,

Proposition 8 The Brownian bridge Bb(t) is a Gaussian process with EBb(t) =
0 and EBb(s)Bb(t) = s(1− t), s < t < 1.

Proof. Using the same argument for (10), one can show that the Brownian
bridge is a Gaussian process. Also, it follows (from the conditional mean)
that E(Bb(t)) = E(B(t)|B(1) = 0) = 0 · t = 0. Now for s < t < 1 (cf. the
conditional variance),

E[Bb(s)Bb(t)] = E[B(s)B(t)|B(1) = 0] (19)

= E[E[B(s)B(t)|B(t), B(1) = 0]|B(1) = 0] (20)

= E[E[B(s)B(t)|B(t)]|B(1) = 0] (21)

= E[B(t)E[B(s)|B(t)]|B(1) = 0] (22)

= E[B(t)
s

t
B(t)|B(1) = 0] (23)

=
s

t
E[B(t)2|B(1) = 0] =

s

t
t(1− t) (24)

= s(1− t). (25)

�

Proposition 9 Let B(t) be the standard Brownian motion, then {Z(t) =
B(t)− tB(1), 0 ≤ t ≤ 1} is the Brownian bridge.

Proof. It is clear that Z(t) is Gaussian (why? conditioning on B(1) first).
Also EZ(t) = EB(t)− tEB(1) = 0− 0 = 0. Thus, one only needs to show
EZ(s)Z(t) = s(1− t) for s < t < 1. Note that

EZ(s)Z(t) = E(B(s)− sB(1))(B(t)− tB(1)) (26)

= EB(s)B(t)− sEB(1)B(t)− tEB(s)B(1) + stEB(1)2 (27)

= s− st− ts+ st = s(1− t) (28)

�
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Definition 10 (Reflected Brownian motion) Let B(t) be the standard Brow-
nian motion and Br(t) = |B(t)|. Then Br(t) is called the reflected Brownian
motion (at the origin).

Note that

Pr(Br(t) ≤ y) = Pr(−y ≤ B(t) ≤ y) (29)

= Pr(B(t) ≤ y)− Pr(B(t) ≤ −y) (30)

= Pr(B(t) ≤ y)− 1 + Pr(B(t) ≥ −y) (31)

= 2P (B(t) ≤ y)− 1 (32)

=
2√
2πt

∫ y

−∞
e−x

2/2tdx− 1 (33)

One can easily compute (homework)

EBr(t) =
√

2t/π (34)

V ar(Br(t)) = (1− 2

π
)t (35)

Definition 11 (Geometric Brownian motion) Let B(t) be the standard Brow-
nian motion and Bg(t) = eB(t). Then Bg(t) is called the geometric Brownian
motion.

Note that E[Bg(t)] = EeB(t) = et/2 (using the moment generating func-
tion of a normal distribution). Also,

V ar(Bg(t)) = E[e2B(t)]− (EeB(t))2 = e2t − et. (36)

Definition 12 (Integrated Brownian motion) Let B(t) be the standard Brow-
nian motion and Bi(t) =

∫ t
0 B(s)ds. Then Bi(t) is called the integrated

Brownian motion.

Proposition 13 The integrated Brownian motion Bi(t) is a Gaussian pro-
cess with EBi(t) = 0 and EBi(s)Bi(t) = s2( t2 −

s
6), s ≤ t.

Proof. Note that if Uj , j = 1, . . . ,m, are independent normal random
variables, then Wi =

∑m
j=1 ai,jUj , i = 1, . . . ,m, are jointly normal. Approx-

imating the integrations by sums, one can show that Bi(t1), . . . , Bi(tn) are
jointly normal for all t1, . . . , tm. Thus, Bi(t) is Gaussian.

Now compute

EBi(t) = E

∫ t

0
B(s)ds =

∫ t

0
EB(s)ds = 0. (37)
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For s ≤ t,

EBi(s)Bi(t) = E
[ ∫ s

0
B(y)dy

∫ t

0
B(u)du

]
(38)

= E
[ ∫ s

0

∫ t

0
B(y)B(u)dydu

]
(39)

=

∫ s

0

∫ t

0
EB(y)B(u)dydu (40)

=

∫ s

0

∫ t

0
min(y, u)dydu (41)

=

∫ s

0

(∫ u

0
ydy +

∫ t

u
udy

)
du (42)

= s2(
t

2
− s

6
). (43)

�

Definition 14 (Brownian motion with drift) Let B(t) be the standard Brow-
nian motion and Bd(t) = µt + B(t). Then Bd(t) is called the Brownian
motion with drift coefficient µ.

Facts: If Bd(t) is the Brownian motion with drift coefficient µ, then

(i) Bd(0) = 0;

(ii) {Bd(t), t ≥ 0} has stationary and independent increments;

(iii) for every t > 0, Bd(t) is normally distributed with mean µt and vari-
ance t.

Hitting time and the reflection principle (Désiré André)
Let B(t) be the standard Brownian motion and

Tb = inf{t ≥ 0 : B(t) = b} (44)

be the first time that B(t) hits the level b. We will argue from ”the reflection
principle” that

Pr(Tb < t) =

√
2

π

∫ ∞
b/
√
t
e−x

2/2dx. (45)
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Note that

Pr(Tb < t) = Pr(Tb < t,B(t) > b)+Pr(Tb < t,B(t) < b)+Pr(Tb < t,B(t) = b).
(46)

The last term in (46) is 0. Also,

Pr(Tb < t,B(t) > b) = Pr(B(t) > b) (47)

since the Brownian motion must have crossed the level b some time before
t given B(t) > b.

By symmetry of Brownian motion (cf. Proposition 6(iv)), for every
sample path in {Tb > t,B(t) < b}, there is a corresponding sample path
(with the same probability) in {Tb > t,B(t) > b} (see Fig. xxx). Thus,

Pr(Tb < t,B(t) < b) = Pr(Tb < t,B(t) > b) = P (B(t) > b). (48)

In conjunction with (46), one has

Pr(Tb < t) = 2Pr(B(t) > b) =

√
2

π

∫ ∞
b/
√
t
e−x

2/2dx. (49)

For further reading on hitting times, see e.g., Karatzas and Shreve [2],
Chapter 2.6, and Ross [7], Chapter 6.

2 Sample path integrals and stochastic integrals

Consider the integral ∫ t

0
φ(s, ω)dX(s, ω). (50)

for the stochastic processes {φ(t, ω), t ≥ 0} and {X(t, ω), t ≥ 0}. For every
ω, {φ(t, ω), t ≥ 0} and {X(t, ω), t ≥ 0} are deterministic functions, i.e.,
the sample paths of these two stochastic processes. Thus, the integral,
conditioning on each ω, is a Lebesgue-Stieltjes integral.

2.1 Review of the Lebesgue-Stieltjes integral

Consider a random variable X with the distribution function F (x). Note
that a distribution function has the following properties:

• F (−∞) = 0, F (∞) = 1
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• F (x) is increasing (or nondecreasing)

F (a) ≤ F (b), if a < b.

• F (x) is right continuous.

lim
x↓a

F (x) = F (a).

For a (real valued) function φ : IR 7→ IR, one can write Eφ(X) as follows:

Eφ(X) =

∫
(−∞,∞)

φ(x)dF (x), (51)

where the integral on the right-hand side is the Lebesgue integral. If both
φ(x) and F (x) are continuous, then the Lebesgue integral in (51) is equal
to the Riemann integral, i.e.,∫

(−∞,∞)
φ(x)dF (x) =

∫ ∞
−∞

φ(x)dF (x). (52)

With this mind, one can extend the integral to the case when F is a
bounded increasing function on IR+ which is right continuous. To see this,
let F1(x) = F (x)/F (∞). Then F1(x) is a distribution function.

Definition 15 (Bounded variation) Given a real function G, the variation
of G over a finite interval [a, b] is

T ba = sup
n,(t0,...,tn)

n−1∑
k=0

|G(tk+1)−G(tk)|, (53)

where a = t0 < t1 . . . < tn = b is a partition of the interval [a, b]. The
variation over IR+ is equal to

T∞0 = lim
b→∞

T b0 . (54)

If T ba < ∞ (resp. T∞0 < ∞), then we say G has a bounded variation over
[a, b] (resp. IR+).

Proposition 16 If G has a bounded variation over [a, b], then there ex-
ist two bounded increasing functions G1 and G2 such that G(x) = G(a) +
G1(x)−G2(x) for a ≤ x ≤ b.

10



For the proof of Proposition 16, see e.g. Royden [8].

Example 17 Consider the function G(x) = 1
4 − (x− 1

2)2 over [0, 1]. Then
one has (see Fig. XXX)

G1(x) =

{
1
4 − (x− 1

2)2 if 0 ≤ x ≤ 1/2
1
4 if 1/2 ≤ x ≤ 1

(55)

and

G2(x) =

{
0 if 0 ≤ x ≤ 1/2
(x− 1

2)2 if 1/2 ≤ x ≤ 1
(56)

Now suppose that G is also right continuous. Then the Lebesgue-Stieltjes
integral for a function with bounded variation over [a, b] can be defined as∫

[a,b]
φ(s)dG(s) =

∫
[a,b]

φ(s)dG1(s)−
∫
[a,b]

φ(s)dG2(s) (57)

provided that both integrals on the right-hand side are finite.
In particular, if a function G that has a continuous first derivative G′

over [a, b], then G has a bounded variation over [a, b] since

n−1∑
k=0

|G(tk+1)−G(tk)| =
n−1∑
k=0

|
∫ tk+1

tk

G′(s)ds| (58)

≤
n−1∑
k=0

∫ tk+1

tk

|G′(s)|ds (59)

=

∫ b

a
|G′(s)|ds <∞ (60)

In this case, ∫ b

a
φ(s)dG(s) =

∫ b

a
φ(s)G′(s)ds. (61)

2.2 Sample path properties of Brownian motions

In this section, let B(t) be the standard Brownian motion.

Proposition 18 The sample path of the standard Brownian motion is con-
tinuous in probability, i.e., for any ε > 0

lim
h→0

Pr(|B(t+ h)−B(t)| > ε) = 0. (62)
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Proof. Note that B(t) − B(s) is a normal r.v. with mean 0 and variance
t− s, s < t. Thus,

E(B(t)−B(s))2 = t− s. (63)

Using Chebychev’s inequality,

Pr(|B(t+ h)−B(t)| > ε) = Pr((B(t+ h)−B(t))2 > ε2) ≤ h

ε2
. (64)

Letting h→ 0 completes the argument. �

In fact, a stronger continuity result is available (the proof will not be
discussed here). With probability one, the sample path of the standard
Brownian motion is uniformly continuous on every finite interval, i.e.,

Pr(∪t∈[a,b]{ω : lim
h→0
|B(t+ h)−B(t)| 6= 0}) = 0. (65)

Proposition 19 The sample path of the standard Brownian motion is al-
most surely not differentiable. In fact,

Pr(lim sup
h→0

∣∣∣B(t+ h)−B(t)

h

∣∣∣ =∞) = 1. (66)

Proof. From the stationary increment property, equation (66) is equivalent
to

Pr(lim sup
h→0

∣∣∣B(h)

h

∣∣∣ > d) = 1, (67)

for any d > 0. Define the events

Eh = {ω : sup
0≤s≤h

∣∣∣B(s)

s

∣∣∣ > d}. (68)

For any sequence hn ↓ 0, we have Ehn ⊃ Ehn+1 . Thus,

Pr( lim
n→∞

Ehn) = lim
n→∞

Pr(Ehn). (69)

(Note that limn→∞Ehn = ∩∞n=1Ehn .)
Using the scaling property in Proposition 6(i), one has

Pr(Ehn) ≥ Pr(|B(hn)/hn| > d) = Pr(|B(1)| >
√
hnd), (70)

which tends to one as n→∞ (hn → 0). �
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Proposition 20 (Quadratic variation) Consider the closed interval [a, b].

Let πn = [a = t
(n)
0 < t

(n)
1 < . . . < t

(n)
mn = b], n = 1, 2, . . . , be a sequence of

partitions of [a, b] such that

∆n = max
1≤m≤mn

(t
(n)
m+1 − t

(n)
m )→ 0, (71)

as n→∞. Then

lim
n→∞

E
( mn∑
m=1

(B(t
(n)
m+1)−B(t(n)m ))2 − (b− a)

)2
= 0. (72)

If
∑∞

n=1 ∆n <∞, then with probability one

lim
n→∞

mn∑
m=1

(B(t
(n)
m+1)−B(t(n)m ))2 = b− a. (73)

Proof. To show (72), we write

Sn =

mn∑
m=1

(B(t
(n)
m+1)−B(t(n)m ))2 − (b− a) (74)

=

mn∑
m=1

[(B(t
(n)
m+1)−B(t(n)m ))2 − (t

(n)
m+1 − t

(n)
m )]. (75)

From the independent increment property and (63), it follows that Sn is a
sum of independent random variables with zero mean. Thus, ESn = 0 and

ES2
n =

mn∑
m=1

E[(B(t
(n)
m+1)−B(t(n)m ))2 − (t

(n)
m+1 − t

(n)
m )]2, (76)

since the cross terms are 0. Note that B(t
(n)
m+1)−B(t

(n)
m ) is a normal random

variable with zero mean and variance t
(n)
m+1 − t

(n)
m . Since EX4 = 3 for a

standard normal random variable X,

ES2
n = 2

mn∑
m=1

(t
(n)
m+1 − t

(n)
m )2

≤ 2∆n

mn∑
m=1

(t
(n)
m+1 − t

(n)
m ) = 2∆n(b− a). (77)

Since ∆n → 0,
lim
n→∞

ES2
n = 0. (78)
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For (73), we have from Chebychev’s inequality that

Pr(|Sn| > ε) ≤ ES2
n

ε2
≤ 2(b− a)

∆n

ε2
. (79)

Since we assume that
∑∞

n=1 ∆n <∞, we have for every ε > 0 that

∞∑
n=1

Pr(|Sn| > ε) <∞. (80)

As a direct result of the Borel-Cantelli lemma,

Pr(|Sn| > ε, i.o.) = 0. (81)

Thus,
Pr( lim

n→∞
Sn = 0) = 1. (82)

�

To meet the condition that
∑∞

n=1 ∆n < ∞, one can choose t
(n)
m = a +

(m(b− a)/2n). In this case, ∆n = 1/2n.

Corollary 21 With probability one, the standard Brownian motion has un-
bounded variation over every bounded interval.

Proof. This can be argued by contradiction. Suppose that the sample
path of the standard Brownian motion has a bounded variation over [a, b],
denoted by T ba (almost surely). Since

mn∑
m=1

(B(t
(n)
m+1)−B(t(n)m ))2 ≤ max

1≤m≤mn

|B(t
(n)
m+1)−B(t(n)m )|

mn∑
m=1

|B(t
(n)
m+1)−B(t(n)m )|

≤ max
1≤m≤mn

|B(t
(n)
m+1)−B(t(n)m )|T ba , (83)

letting n→∞ yields (max1≤m≤mn |B(t
(n)
m+1)−B(t

(n)
m )| → 0 from the conti-

nuity of the sample path of the Brownian motion)

mn∑
m=1

(B(t
(n)
m+1)−B(t(n)m ))2 = 0 a.s. (84)

which contradicts Proposition 20 (when
∑∞

n=1 ∆n <∞). �
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2.3 Stochastic integrals

Now we know the standard Brownian motion does not have bounded vari-
ations for its sample paths. How do we define the sample path integral∫ b
a φ(s)dB(s) for the standard Brownian motion B(t)?

In view of the integral, we need to clarify the relation between {φ(t), t ≥
0} and {B(t), t ≥ 0}. To do so, we strengthen the definition of the standard
Brownian motion as follows:

Definition 22 A stochastic process {B(t), t ≥ 0} is called a Brownian mo-
tion process if

(i) Initial condition: B(0) = 0;

(ii) Independent increments: B(t)−B(s) is independent of {B(τ), φ(τ), 0 ≤
τ ≤ s};

(iii) Normal distribution: B(t)−B(s) is normally distributed with mean 0
and variance t− s.

Note that the above definition is the same Definition 1 except we have an
additional assumption on independence between the increment of the stan-
dard Brownian motion and {φ(t)} before the increment. In general, one can
define a ”history” {Ft, t ≥ 0} generated by the σ-algebra of {B(τ), φ(τ), 0 ≤
τ ≤ t} (and other stochastic processes). The independent increment prop-
erty for the standard Brownian motion then holds with respect to the history
{Ft, t ≥ 0}.

Definition 23 (Simple processes) A process {φ(t), t ≥ 0} is called simple
if there exists a strictly increasing sequence of real numbers {tn}∞n=0 with
t0 = 0 such that limn→∞ tn =∞, as well as a sequence of bounded random
variables {ηn}∞n=0, i.e., supn≥0 |ηn| ≤ C <∞, such that

φ(t) = η01{0}(t) +

∞∑
n=0

ηn1{(tn,tn+1]}(t); 0 ≤ t <∞, (85)

where 1(a,b](t) = 1 if t ∈ (a, b] and 0 otherwise.

In words,
if tn < t ≤ tn+1, then φ(t) = ηn. (86)

Also, it follows from the independent increment property of the standard
Brownian motion that B(t + s) − B(t), s > 0, is independent of ηm,m =
1, . . . , n. This observation is crucial in the following development.
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In view of (86),∫ t

0
φ(s)ds =

n−1∑
m=0

ηm(tm+1 − tm) + ηn(t− tn). (87)

Moreover, for any continuous function f , the stochastic process {f(φ(t)), t ≥
0} is also a simple process with the sequence of random variables {f(ηn)}∞n=0.

Definition 24 (Stochastic integrals for simple processes) If {φ(t), t ≥ 0} is
a simple process in Definition 23 and {B(t), t ≥ 0} is the standard Brown-
ian motion, then we define the stochastic integral over the interval [0, t] as
follows:∫ t

0
φ(s)dB(s) =

n−1∑
m=0

ηm[B(tm+1)−B(tm)] + ηn[B(t)−B(tn)] (88)

where tn ≤ t < tn+1.

To simplify the notations, let

It(φ) =

∫ t

0
φ(s)dB(s). (89)

(Note that It(φ) is a random variable.)

Proposition 25 If {φ(t), t ≥ 0} are {ψ(t), t ≥ 0} are simple processes in
Definition 23, then

(i) I0(φ) = 0.

(ii) EIt(φ) = 0.

(iii) E(It(φ))2 = E
∫ t
0 φ

2(s)ds.

(iv) It(c1φ+c2ψ) = c1It(φ)+c2It(ψ) for all c1, c2 ∈ IR (assuming the inde-
pendent increment property holds with respect to the history generated
by φ, ψ and the standard Brownian motion itself).

Proof. Properties (i) and (iv) are obvious (since the definition in (88) is
linear).

SinceB(tj+1)−B(tj) is independent of {ηm,m = 1, . . . , j} and {B(τ), 0 ≤
τ ≤ tj}, and E[B(tj+1 −B(tj)] = 0, it then follows from (88) that

EIt(φ) =

n−1∑
m=0

EηmE[B(tm+1)−B(tm)] + EηnE[B(t)−B(tn)] = 0. (90)
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To show (iii), note from (88) that

E(It(φ))2 = E
( n−1∑
m=0

ηm[B(tm+1)−B(tm)] + ηn[B(t)−B(tn)]
)2

(91)

= E(

n−1∑
m=0

η2m[B(tm+1)−B(tm)]2 + Eη2n[B(t)−B(tn)]2 (92)

since all the cross terms are 0. To see this, note for i < j

E
(
ηi[B(ti+1 −B(ti)]ηj [B(tj+1 −B(tj)]

)
= E(ηi[B(ti+1 −B(ti)]ηj)E[B(tj+1 −B(tj)] = 0, (93)

where once again we use the facts that B(tj+1) − B(tj) is independent of
{ηm,m = 1, . . . , j} and {B(τ), 0 ≤ τ ≤ tj}, and that E[B(tj+1 − B(tj)] =
0. Using the independent increment property and E[B(tm+1) − B(tm)]2 =
tm+1 − tm in (91), one has

E(It(φ))2 =
n−1∑
m=0

Eη2m(tm+1 − tm) + Eη2n(t− tn) (94)

= E
( n−1∑
m=0

η2m(tm+1 − tm) + η2n(t− tn)
)

(95)

= E

∫ t

0
(φ(s))2ds. (96)

�

Now we define the stochastic integrals for processes that satisfy a L2

condition.

Definition 26 (Stochastic integrals for L2 processes) Consider a stochastic
process {φ(t), t ≥ 0}. If

E

∫ t

0
(φ(s))2ds <∞, (97)

then
∫ t
0 φ(s)dB(s) is defined as the limit of the stochastic integrals of the

sequence of simple processes {φ(n)}∞n=1 that converges to φ, i.e.,

It(φ) = lim
n→∞

It(φ
(n)). (98)
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The convergence of the above limit is in L2, i.e.,

lim
n→∞

E(It(φ)− It(φ(n)))2 = 0. (99)

We sketch the proof for the L2 convergence (for the case that φ is uni-
formly continuous) as follows: suppose that φ is uniformly continuous. Con-
sider the sequence of simple processes

φ(n)(s) = φ(0)1{0}(s) +

2n−1∑
k=0

φ(
kt

2n
)1{(kt/2n,(k+1)t/2n]}(s) 0 ≤ s < t, n ≥ 1.

(100)
Since the sample path is uniformly continuous, one can show the Cauchy
convergence criterion(by the bounded convergence theorem) that

lim
n→∞

sup
m>n

E

∫ t

0
|φ(n)(s)− φ(m)(s)|2ds = 0 (101)

Using Proposition 25(iii) and (iv), one has

lim
n→∞

sup
m>n

E|It(φ(n))− It(φ(m))|2 (102)

= lim
n→∞

sup
m>n

E|It(φ(n) − φ(m))|2 (103)

= lim
n→∞

sup
m>n

E

∫ t

0
|φ(n)(s)− φ(m)(s)|2ds = 0. (104)

Proposition 27 Proposition 25 holds for the stochastic integrals in Defini-
tion 26.

Proof. Properties (i)(ii) and (iv) are obvious. To show (iii), note from
Proposition 25(iii) and the L2 convergence that

E(It(φ))2 = E lim
n→∞

(It(φ
(n)))2 = lim

n→∞
E(It(φ

(n)))2 (105)

= lim
n→∞

E

∫ t

0
(φ(n)(s))2ds = E

∫ t

0
(φ(s))2ds. (106)

�

Corollary 28

E[It(φ)It(ψ)] = E

∫ t

0
φ(s)ψ(s)ds (107)

(assuming the independent increment property holds with respect to the his-
tory generated by φ, ψ and the standard Brownian motion itself).
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Proof. Note from Proposition 25(iv) that

E[It(φ+ ψ)]2 = E[It(φ) + It(ψ)]2 (108)

= E[It(φ)]2 + 2E[It(φ)It(ψ)] + E[It(ψ)]2. (109)

Applying Proposition 25(iii) yields

E[It(φ+ ψ)]2 = E

∫ t

0
(φ(s) + ψ(s))2ds, (110)

E[It(φ)]2 = E

∫ t

0
(φ(s))2ds, (111)

E[It(ψ)]2 = E

∫ t

0
(ψ(s))2ds. (112)

In conjunction with (107), one has

E[It(φ)It(ψ)] = E

∫ t

0
φ(s)ψ(s)ds. (113)

�

Proposition 29 Consider a family of deterministic functions {h(t, s), 0 ≤
s, t} and the stochastic process generated by the following stochastic integrals
{X(t) =

∫ t
0 h(t, s)dB(s), t ≥ 0}. Then {X(t), t ≥ 0} is a Gaussian process

with EX(t) = 0 and

EX(s)X(t) =

∫ min[s,t]

0
h(t, u)h(s, u)du. (114)

Intuitively, one can view X(t) as the output process from a linear time
varying filter subject to the standard Brownian motion input. The impulse
response of the filter is h(t, s).
Proof.

In view of (88) and the argument used in Proposition 13 for the inte-
grated Brownian motion, {X(t), t ≥ 0} is a Gaussian process (X(t) can
be approximated by a sum of independent normal random variables cf.
(88)). That EX(t) = 0, t ≥ 0, follows from Proposition 25(ii). To com-
pute the covariance values, let φ(u) = h(t, u) and ψ(u) = h(s, u). Since
{h(t, s), t, s ≥ 0} are a family of deterministic functions, both φ and ψ are
deterministic functions. It then follows from the independent increment
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property of the standard Brownian motion that Is(φ) is independent of
It(ψ) − Is(ψ) (cf. (88) and note that Is(φ) is determined by the standard
Brownian motion from 0 to s and that It(ψ) − Is(ψ) is determined by the
standard Brownian motion from s to t). Using this “independent increment
property” and EIs(φ) = 0, one has for 0 ≤ s ≤ t,

EX(s)X(t) = EIs(φ)It(ψ) = E
(
Is(φ)[Is(ψ) + It(ψ)− Is(ψ)]

)
(115)

= E[Is(φ)Is(ψ)] + EIs(φ)E(It(ψ)− Is(ψ)) (116)

= E[Is(φ)Is(ψ)]. (117)

It then follows from Corollary 28 that

E[Is(φ)Is(ψ)] =

∫ s

0
φ(u)ψ(u)du (118)

=

∫ s

0
h(t, u)h(s, u)du. (119)

The case for 0 ≤ t ≤ s is similar. �

3 Itô’s calculus

Let f : IR 7→ IR be a function that f ′ is continuous. For a process ψ with a
bounded variation, one has (from the usual calculus)

df(ψ(t)) = f ′(ψ(t))dψ(t), (120)

or equivalently,

f(ψ(t)) = f(ψ(0)) +

∫ t

0
f ′(ψ(s))dψ(s). (121)

One might wonder if the calculus can be extended to Brownian motions.
For instance, do we still have the following identity

f(B(t)) = f(B(0)) +

∫ t

0
f ′(B(s))dB(s)? (122)

The answer is no, and we need an extra correction term. The calculus was
carried out by Itô (1944).
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Theorem 30 (Itô’s calculus, cf. Wong and Hajek [9], Proposition 4.3.2
and Karatzas and Shreve [2], Theorem 3.3.3) Let f : IR 7→ IR be a function
that f ′′ is continuous. Suppose that

φ(t) = φ(0) + ψ(t) +B(t), (123)

where ψ(t) is a continuous process with a bounded variation and B(t) is the
standard Brown motion. Then

f(φ(t)) = f(φ(0)) +

∫ t

0
f ′(φ(s))dψ(s) +

∫ t

0
f ′(φ(s))dB(s)

+
1

2

∫ t

0
f ′′(φ(s))ds, 0 ≤ t <∞, a.s. (124)

Remark 31 Equation (124) can also be written in differential notation:

df(φ(t)) = f ′(φ(t))dψ(t) + f ′(φ(t))dB(t) +
1

2
f ′′(φ(t))dt, (125)

= f ′(φ(t))dφ(t) +
1

2
f ′′(φ(t))dt, 0 ≤ t <∞, a.s. (126)

This is the ”chain-rule” for stochastic calculus.
Though the rule stated in Theorem 30 is for φ(t) = φ(0) + ψ(t) + B(t),

it can be extended to the case that includes stochastic integrals as follows:

φ(t) = φ(0) +

∫ t

0
ψ1(s)ds+

∫ t

0
ψ2(s)dB(s), (127)

where the increment of the standard Brownian motion is independent of the
history of ψ1, ψ2, and the standard Brownian motion itself. In this case,∫ t
0 ψ1(s)ds is the term with a bounded variation and

∫ t
0 ψ2(s)dB(s) is the

generalization from Brownian motions to stochastic integrals. Then for the
function f considered in Theorem 30, one has the following chain-rule:

f(φ(t)) = f(φ(0)) +

∫ t

0
f ′(φ(s))ψ1(s)ds+

∫ t

0
f ′(φ(s))ψ2(s)dB(s)

+
1

2

∫ t

0
f ′′(φ(s))(ψ2(s))

2ds, 0 ≤ t <∞, a.s. (128)

In differential notation, one has

df(φ(t)) = f ′(φ(t))ψ1(t)dt+ f ′(φ(t))ψ2(t)dB(t) +
1

2
f ′′(φ(t))2(ψ2(t))

2dt

= f ′(φ(t))dφ(t) +
1

2
f ′′(φ(t))2(ψ2(t))

2dt, 0 ≤ t <∞, a.s. (129)
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We can further allow the dependence through time. Let f(x1, x2) be a real
valued function that has continuous second partial with respect to x1 and
continuous first partial with respect to x2. Then

f(φ(t), t) = f(φ(0), 0) +

∫ t

0

∂f(φ(s), s)

∂x2
ds+

∫ t

0

∂f(φ(s), s)

∂x1
ψ1(s)ds

+

∫ t

0

∂f(φ(s), s)

∂x1
ψ2(s)dB(s) +

1

2

∫ t

0

∂2f(φ(s), s)

∂x12
(ψ2(s))

2ds,

0 ≤ t <∞, a.s. (130)

In differential notation, one has

df(φ(t), t) =
∂f(φ(t), t)

∂x2
dt+

∂f(φ(t), t)

∂x1
ψ1(t)dt+

∂f(φ(t), t)

∂x1
ψ2(t)dB(t)

+
1

2

∂2f(φ(t), t)

∂x21
(ψ2(t))

2dt, 0 ≤ t <∞, a.s. (131)

Proof. (Sketch of the proof for Theorem 30) Fix t > 0 and consider a
partition π = [0 = t0 < t1 < . . . < tm = t]. Applying Taylor’s expansion
yields

f(φ(t))− f(φ(0)) =

m∑
k=1

{f(φ(tk))− f(φ(tk−1))}

=

m∑
k=1

f ′(φ(tk−1))[φ(tk)− φ(tk−1)] +
1

2

m∑
k=1

f ′′(ξk)[φ(tk)− φ(tk−1)]
2,(132)

where ξk = φ(tk−1) + θk(φ(tk) − φ(tk−1)) for some 0 ≤ θk ≤ 1 (note that
both xk and θk are random variables). Thus, we have

f(φ(t))− f(φ(0)) = J1(π) + J2(π) +
1

2
J3(π), (133)

where

J1(π) =

m∑
k=1

f ′(φ(tk−1))[ψ(tk)− ψ(tk−1)] (134)

J2(π) =
m∑
k=1

f ′(φ(tk−1))[B(tk)−B(tk−1)] (135)

J3(π) =
m∑
k=1

f ′′(ξk)[φ(tk)− φ(tk−1)]
2. (136)
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It is easy to see that J1(π) converges to the Lebesgue-Stieltjes integral∫ t
0 f
′(φ(s))dψ(s) as max1≤k≤m |tk − tk−1| → 0. Similarly, using the ap-

proximation of simple processes, J2(π) converges to the stochastic integral∫ t
0 f
′(φ(s))dB(s). Now write J3(π) as

J3(π) = J4(π) + J5(π) + J6(π), (137)

where

J4(π) =
m∑
k=1

f ′′(ξk)[ψ(tk)− ψ(tk−1)]
2 (138)

J5(π) = 2
m∑
k=1

f ′′(ξk)[ψ(tk)− ψ(tk−1)][B(tk)−B(tk−1)] (139)

J6(π) =
m∑
k=1

f ′′(ξk)[B(tk)−B(tk−1)]
2 (140)

Since we assume that f ′′ is continuous, sup0≤s≤t f
′′(s) ≤ c1 < ∞ for some

constant c1 (a continuous function in a bounded interval is bounded). Also,
from the assumption that ψ has a bounded variation, we have

m∑
k=1

|ψ(tk)− ψ(tk−1)| ≤ c2 <∞ (141)

for some constant c2. Thus,

|J4(π)|+ |J5(π)|
≤ 2c1c2( max

1≤k≤m
|ψ(tk)− ψ(tk−1)|+ max

1≤k≤m
|B(tk)−B(tk−1)|).(142)

From the continuity of the processes ψ and B, the last term in (142) con-
verges to 0 as max1≤k≤m |tk − tk−1| → 0. Write

J6(π) = J∗6 (π)− J7(π) + J6(π)− J∗6 (π) + J7(π), (143)

where

J∗6 (π) =

m∑
k=1

f ′′(φ(tk−1))[B(tk)−B(tk−1)]
2 (144)

J7(π) =
m∑
k=1

f ′′(φ(tk−1))[tk − tk−1] (145)
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Observe that

|J∗6 (π)− J6(π)| ≤ max
1≤k≤m

|f ′′(ξk)− f ′′(φ(tk))|
m∑
k=1

[B(tk)−B(tk−1)]
2. (146)

In view of (73) and the continuity of f ′′, |J∗6 (π) − J6(π)| converges to 0.
Following the same argument for (73), one can show that |J∗6 (π) − J7(π)|
converges to 0. Thus, we are left with the extra term J7(π). �

Example 32 Let f(x) = x2 and φ(t) = B(t). Then f ′(x) = 2x and f ′′(x) =
2. Thus,

dB2(t) = 2B(t)dB(t) + dt, (147)

or

B2(t) = 2

∫ t

0
B(s)dB(s) + t. (148)

Example 33 Let

φ(t) =

∫ t

0
ψ(s)dB(s)− 1

2

∫ t

0
(ψ(s))2ds (149)

and f(x) = ex. Then

eφ(t) = 1 +

∫ t

0
eφ(s)ψ(s)dB(s)−

∫ t

0
eφ(s)

1

2
(ψ(s))2ds+

1

2

∫ t

0
eφ(s)(ψ(s))2ds

= 1 +

∫ t

0
eφ(s)ψ(s)dB(s) (150)

In particular, for ψ(t) = 1, one has the stochastic integral representation for
the geometric Brownian motion

eB(t) = et/2 + et/2
∫ t

0
eB(s)e−

1
2
sdB(s). (151)
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dt dB(t)

dt 0 0

dB(t) 0 dt

Table 1: The rule of thumb

Remark 34 (Rule of thumb) It is usually more convenient to perform com-
putations using differential notation. For instance, in Example 33, one has

dφ(t) = ψ(t)dB(t)− 1

2
(ψ(t))2dt. (152)

Now use the Taylor’s expansion

df(φ(t)) ≈ f ′(φ(t))dφ(t) +
1

2
f ′′(φ(t))(dφ(t))2, (153)

and the ”multiplication table” It then follows from (153) that

d(φ(t))2 = (ψ(t)dB(t)− 1

2
(ψ(t))2dt)2 (154)

= (ψ(t))2(dB(t))2 − (ψ(t))3dB(t)dt+
1

4
(φ(t))4(dt)2 (155)

= (ψ(t))2dt, (156)

and that

deφ(t) = eφ(t)dφ(t) +
1

2
eφ(t)(dφ(t))2 (157)

= eφ(t)ψ(t)dB(t). (158)

Example 35 (Integration by parts (special cases)) Let f(x1, x2) =
x1g(x2) and

φ(t) = φ(0) +

∫ t

0
ψ1(s)ds+

∫ t

0
ψ2(s)dB(s). (159)

where g : IR 7→ IR has continuous first derivative and the increment of the
standard Brownian motion is independent of the history of ψ1, ψ2, and the
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standard Brownian motion itself. In this case, ∂f(x1,x2)
∂x1

= g(x2),
∂f(x1,x2)

∂x2
=

x1g
′(x2) and ∂2f(x1,x2)

∂x21
= 0. Then it follows from (130) that

φ(t)g(t) = φ(0)g(0) +

∫ t

0
φ(s)g′(s)ds+

∫ t

0
g(s)ψ1(s)ds

+

∫ t

0
g(s)ψ2(s)dB(s), 0 ≤ t <∞, a.s. (160)

In differential notation, one has

dφ(t)g(t) = φ(t)g′(t)dt+ g(t)dφ(t). (161)

4 Stochastic differential equations and diffusion
equations

4.1 Stochastic differential equations

Let B(t) be the standard Brownian motion as in the previous section. Con-
sider the following equation:

dφ(t) = µ(φ(t), t)dt+ σ(φ(t), t)dB(t), (162)

for some functions µ : IR2 → IR and σ : IR2 → IR. The above equation is
called a stochastic differential equation. As in calculus, one might wonder if
there is a solution for the stochastic differential equation and if the solution
in unique. For instance, consider the differential equation:

dφ(t) = |φ(s)|αds, φ(0) = 0. (163)

It can be shown that for 0 < α < 1, all functions of the form

φ(t) =

{
0 if 0 ≤ t ≤ τ
( t−τβ )β τ ≤ t <∞ (164)

with β = 1/(1 − α) and arbitrary 0 ≤ τ < ∞ solve (163). Thus, it is
reasonable to develop a theory by assuming Lipschitz-type conditions.

Theorem 36 (cf. Wong and Hajek [9], Proposition 4.7.1 and Karatzas
and Shreve [2], Theorem 5.2.9 and Proposition 5.2.13) Suppose that the
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coefficients µ(x, t) and σ(x, t) satisfy the global Lipschitz and linear growth
conditions

|µ(x, t)− µ(y, t)|+ |σ(x, t)− σ(y, t)| ≤ K|x− y|, (165)

|µ(x, t)|2 + |σ(x, t)|2 ≤ K2(1 + x2), (166)

for every 0 ≤ t < ∞ and x, y ∈ IR, where K is a positive constant. Then
there is a unique solution for (162).

The idea of the proof for Theorem 36 is to mimic the deterministic case
that construct recursively a sequence of successive approximations by setting
φ(0)(t) = η and

φ(n+1)(t) = η +

∫ t

0
µ(φ(n)(s), s)ds+

∫ t

0
σ(φ(n)(s), s)dB(s). (167)

The one shows the sequence converge to a solution of (162).

Example 37 (Brownian motion with drift) Consider the stochastic dif-
ferential equation

dφ(t) = −µdt+ dB(t), φ(0) = 0. (168)

Then the obvious solution is

φ(t) = µt+B(t), (169)

which is the Brownian motion with drift coefficient µ.

Example 38 (The Ornstein-Uhlenbeck process) Consider the stochas-
tic differential equation

dφ(t) = −αφ(t)dt+ σdB(t), (170)

for some α > 0 and σ > 0. Then the solution of this equation is

φ(t) = φ(0)e−αt + σ

∫ t

0
e−α(t−s)dB(s); 0 ≤ t <∞. (171)

(Verify this via Itô’s calculus using Example 35.) Intuitively, one can view
φ(t) as the output process from the linear time invariant filter with the im-
pulse response h(t) = e−αt (when φ(0) = 0). If φ(0) is normally distributed,
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then it follows from Proposition 29 that φ(t) is a Gaussian process with
Eφ(t) = e−αtEφ(0) and

Eφ(s)φ(t)

= E
(
φ(0)e−αs + σ

∫ s

0
e−α(s−u)dB(u)

)(
φ(0)e−αt + σ

∫ t

0
e−α(t−u)dB(u)

)
= E(φ(0))2e−α(s+t) + σ2E

∫ s

0
e−α(s−u)dB(u)

∫ t

0
e−α(t−u)dB(u) (172)

= [E(φ(0))2 +
σ2

2α
(e2αmin[t,s] − 1)]e−α(t+s). (173)

Example 39 (Brownian bridge) Consider the following stochastic dif-
ferential equation

dφ(t) = − φ(t)

1− t
dt+ dB(t), φ(0) = 0. (174)

Then the solution of this equation is

φ(t) =

∫ t

0

1− t
1− s

dB(s); 0 ≤ t < 1. (175)

(Verify this via Itô’s calculus using Example 35.) From Proposition 29, φ is
a Gaussian process with zero mean and

Eφ(t)φ(s) = min[s, t]− st. (176)

Thus, φ is indeed the Brownian bridge in Definition 7.

Example 40 (Linear equations (see Karatzas and Shreve [2], Sec-
tion 5.5.6)) Consider the stochastic differential equation

dφ(t) = [A(t)φ(t) + U(t)]dt+ σ(t)dB(t), 0 ≤ t <∞, (177)

φ(0) = η, (178)

where A(t), U(t) and σ(t) are deterministic functions. Note that the corre-
sponding linear system equation (without noise) is

η′(t) = A(t)η(t) + U(t), 0 ≤ t <∞, (179)

η(0) = η, (180)
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The solution of (179) is known to be

η(t) = Φ(t)[η(0) +

∫ t

0

U(s)

Φ(s)
ds], (181)

where Φ(t) solves
Φ′(t) = A(t)Φ(t), Φ(0) = 1. (182)

Using the Itô rule, it can be shown that

φ(t) = Φ(t)[φ(0) +

∫ t

0

U(s)

Φ(s)
ds+

∫ t

0

σ(s)

Φ(s)
dB(s)]. (183)

Again, it follows from Proposition 29 that φ is a Gaussian process with

Eφ(t) = Φ(t)[Eφ(0) +

∫ t

0

U(s)

Φ(s)
ds] (184)

E
(

[φ(t)− Eφ(t)][φ(s)− Eφ(s)]
)

= Φ(s)[V (0) +

∫ min[s,t]

0
(
σ(u)

Φ(u)
)2du]Φ(t),

(185)

where V (0) = E(φ(0)− Eφ(0))2.

4.2 Diffusion equations

In this section, we derive intuitively the diffusion equations (forward and
backward equations) associated with the stochastic differential equation

dφ(t) = µ(φ(t), t)dt+ σ(φ(t), t)dB(t), (186)

where µ : IR2 → IR and σ : IR2 → IR and B(t) is the standard Brownian
motion.

In view of (186), the solution (if it exists) is a Markov process (since
the small change in the near future, i.e., dφ(t), only depends on its current
“state”, φ(t)). Moreover, one can derive intuitively from Proposition 27(ii)
and (iii) that

E[φ(t+ h)− φ(t)|φ(t) = y] = µ(y, t)h+ o(h), (187)

and
E[(φ(t+ h)− φ(t))2|φ(t) = y] = σ2(y, t)h+ o(h). (188)
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To see these, use the approximation

φ(t+ h)− φ(t) =

∫ t+h

t
µ(φ(s), s)ds+

∫ t+h

t
σ(φ(s), s)dB(s) (189)

≈ µ(φ(t), t)h+ σ(φ(t), t)(B(t+ h)−B(t)). (190)

To simplify the derivation, we further assume that µ(x1, x2) = µ(x1) and
that σ(x1, x2) = σ(x1). Under these assumptions, the solution of

dφ(t) = µ(φ(t))dt+ σ(φ(t))dB(t) (191)

is a time homogeneous Markov process.
Define the transition (density) function

p(x, t, y)dx = Pr(x ≤ φ(t) ≤ x+ dx|φ(0) = y). (192)

It then follows from the Chapman-Kolmogorov equation that for all 0 ≤ s ≤
t

p(x, t, y) =

∫ ∞
−∞

p(z, s, y)p(x, t− s, z)dz. (193)

Note that the random variable φ(s) (when conditioning on φ(0) = y) has
the density p(z, s, y). One can write (193) as

p(x, t, y) = E[p(x, t− s, φ(s)]. (194)

To derive the backward equation, we use Taylor’s expansion on p(x, t −
s, φ(s)), i.e.,

p(x, t− s, φ(s)) = p(x, t, y)− s ∂
∂t
p(x, t, y) (195)

+(φ(s)− y)
∂

∂y
p(x, t, y) +

(φ(s)− y)2

2

∂2

∂y2
p(x, t, y) + ... (196)

Assuming the expectation and the expansion can be exchanged (in general,
this is not true), one has from (187) and (188) that

p(x, t, y) = p(x, t, y)− s ∂
∂t
p(x, t, y) (197)

+µ(y)s
∂

∂y
p(x, t, y) +

σ2(y)

2
s
∂2

∂y2
p(x, t, y) + o(s). (198)

Dividing by s and letting s→ 0 yields the backward diffusion equation

∂

∂t
p(x, t, y) = µ(y)

∂

∂y
p(x, t, y) +

σ2(y)

2

∂2

∂y2
p(x, t, y). (199)
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To derive the forward equation, we rewrite the Chapman-Kolmogorov
equation as follows:

p(x, t+ s, y) =

∫ ∞
−∞

p(z, t, y)p(x, s, z)dz. (200)

Note that
∂p(x, t+ s, y)

∂t
=
∂p(x, t+ s, y)

∂s
. (201)

Thus,
∂p(x, t+ s, y)

∂t
=

∫ ∞
−∞

p(z, t, y)
∂p(x, s, z)

∂s
dz. (202)

Now use the backward equation in (202) and one has

∂p(x, t+ s, y)

∂t
=

∫ ∞
−∞

p(z, t, y)
[
µ(z)

∂

∂z
p(x, s, z) +

σ2(z)

2

∂2

∂z2
p(x, s, z)

]
dz.

(203)
Apply integration by parts (once for the first term and twice for the second
term) and assume all the boundary terms vanishes. We have

∂p(x, t+ s, y)

∂t
=

∫ ∞
−∞

[
− ∂

∂z
(p(z, t, y)µ(z)) +

∂2

∂z2
(p(z, t, y)

σ2(z)

2
)
]
p(x, s, z)dz.

(204)
Note p(x, s, z) becomes the delta function δ(x− z) as s → 0. Thus, letting
s→ 0 yields the forward diffusion equation

∂p(x, t, y)

∂t
= − ∂

∂x
(p(x, t, y)µ(x)) +

∂2

∂x2
(p(x, t, y)

σ2(x)

2
). (205)

Analogous to the fundamental limit theorem for ergodic Markov chains,
one should also expect that

lim
t→∞

p(x, t, y) = π(x), (206)

where π(x) is the stationary distribution of the Markov process associated
with the stochastic differential equation in (191). Note that the stationary
distribution should satisfy

π(x) =

∫ ∞
−∞

π(y)p(x, t, y)dy. (207)

Mimicking the derivation for the Markov chains, we can let

lim
t→∞

∂p(x, t, y)

∂t
= 0. (208)
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In conjunction with (206) and the forward diffusion equation in (205), one
has (when t→∞)

0 = − ∂

∂x
(π(x)µ(x)) +

∂2

∂x2
(π(x)

σ2(x)

2
). (209)

Integrating (209) yields

c1
2

= −π(x)µ(x) +
d

dx
(π(x)

σ2(x)

2
), (210)

where c1 is a constant. Multiplying by the integrating factor

s(x) = exp
(
−
∫ x 2µ(z)

σ2(z)
dz
)
, (211)

we can write (210) in

d(s(x)σ2(x)π(x))

dx
= c1s(x). (212)

Another integration yields

π(x) = c1
S(x)

s(x)σ2(x)
+ c2

1

s(x)σ2(x)
, (213)

where

S(x) =

∫ x

s(z)dz. (214)

The (normalization) constants c1 and c2 are determined to guarantee the
constraints π(x) ≥ 0 and

∫∞
−∞ π(x) = 1.

Example 41 (The Ornstein-Uhlenbeck process) Consider the O-U
process in Example 38. In this example, µ(x) = −αx and σ(x) = σ. Thus,
s(x) = exp(γx2) with γ = α/σ2 and

π(x) = c1(

∫ x

eγz
2
dz)e−γx

2
+ c2e

−γx2 . (215)

To insure that
∫∞
−∞ π(x) = 1, one must have limx→∞ π(x) = 0. Thus, c1 = 0

and the stationary distribution of the O-U process is the normal distribution,
π(x) = ce−γx

2
. This agrees with the direct computation from (172) (letting

s = t→∞).
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Example 42 Consider the following stochastic differential equation

dφ(t) = −φ(t)dt+
√

2(1 + φ2(t))dB(t). (216)

Then µ(x) = −x and σ(x) =
√

2(1 + x2). Thus, s(x) =
√

1 + x2. To ensure
that

∫∞
−∞ π(x) = 1, c1 = 0 in (213) (Why? If c1 6= 0, then π(x) ≈ 1/x for

large x). Thus,

π(x) = c2
1

(1 + x2)3/2
. (217)

From
∫∞
−∞ π(x) = 1, one has c2 = 1/2

For further reading on diffusion, consult Wong and Hajek [9], Chapter
5, Karatzas and Shreve [2] Chapter 5, and Karlin and Taylor [3], Chapter
15.

5 Filtering and Control

5.1 Kalman-Bucy filter

Consider the linear system

η′(t) = −αη(t), 0 ≤ t <∞, (218)

η(0) = η, (219)

where η is normally distributed with mean µ0 and variance σ20. Suppose
that we are not able to observe the system directly and that our observation
is perturbed by a noise (modelled by the standard Brownian motion) as
follows:

φ(t) =

∫ t

0
η(s)ds+B(t), (220)

where {η(s), 0 ≤ s ≤ t} and {B(s), 0 ≤ s ≤ t} are independent. The
question is how we obtain a good (or optimal) estimate for η(t) based on
the observation process {φ(s), 0 ≤ s ≤ t}.

To formalize the problem, we consider the family of linear filters in
Proposition 29. An estimate of η(t) can be obtained by passing the ob-
servation process through a linear time varying filter, i.e.,

η̂(t) =

∫ t

0
h(t, s)dφ(s). (221)
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The mathematical question is then to find the best filter h(t, s) that mini-
mizes the mean square error (MSE), i.e.,

minE(η(t)− η̂(t))2. (222)

Proposition 43 (Wiener-Hopf equation) A necessary and sufficient condi-
tion for the optimal filter is that

h(t, s) = E[η(t)η(s)]−
∫ t

0
h(t, u)E[η(s)η(u)]du. (223)

Proof. Consider the variation problem.

J(ε) = E[η(t)−
∫ t

0
(h(t, u) + εδ(t, u))dφ(u)]2 (224)

= E
[
η(t)2 − 2η(t)

∫ t

0
(h(t, u) + εδ(t, u))dφ(u) (225)

+

∫ t

0

∫ t

0
(h(t, u1) + εδ(t, u1))(h(t, u2) + εδ(t, u2))dφ(u1)dφ(u2)

]
(226)

= Aε2 +Bε+ C. (227)

A necessary condition for the optimal solution is

dJ(ε)

ε
|ε=0 = B = 0. (228)

Thus,

B = −2E[η(t)

∫ t

0
δ(t, u)dφ(u)]+2E[

∫ t

0

∫ t

0
h(t, u1)δ(t, u2)dφ(u1)dφ(u2)] = 0.

(229)
Note from (220) that dφ(t) = η(t)dt + dB(t). Since {η(s), 0 ≤ s ≤ t} and
{B(s), 0 ≤ s ≤ t} are independent,

E[η(t)

∫ t

0
δ(t, u)dφ(u)] (230)

= E[η(t)

∫ t

0
δ(t, u)η(u)d(u)] + E[η(t)

∫ t

0
δ(t, u)dB(u)] (231)

=

∫ t

0
δ(t, u)E[η(t)η(u)]d(u) + E[η(t)]E[

∫ t

0
δ(t, u)dB(u)] (232)

=

∫ t

0
δ(t, u)E[η(t)η(u)]d(u)], (233)
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where E[
∫ t
0 δ(t, u)dB(u)] = 0 follows from Proposition 27(ii). Similarly,

E[

∫ t

0

∫ t

0
h(t, u1)δ(t, u2)dφ(u1)dφ(u2)] (234)

= E[

∫ t

0

∫ t

0
h(t, u1)δ(t, u2)η(u1)du1η(u2)du2] + E[

∫ t

0

∫ t

0
h(t, u1)δ(t, u2)η(u1)du1dB(u2)]

+E[

∫ t

0

∫ t

0
h(t, u1)δ(t, u2)dB(u1)η(u2)du2] + E[

∫ t

0

∫ t

0
h(t, u1)δ(t, u2)dB(u1)dB(u2)](235)

=

∫ t

0

∫ t

0
h(t, u1)δ(t, u2)E[η(u1)η(u2)]du1du2] +

∫ t

0
h(t, u)δ(t, u)du, (236)

where we apply Corollary 28 in the last identity. In conjunction with (229),
one has∫ t

0
δ(t, s)

[
E[η(t)η(s)]−

∫ t

0
h(t, u)E[η(s)η(u)]du− h(t, s)

]
ds = 0. (237)

Since (237) holds for arbitrary δ(t, s), it must

E[η(t)η(s)]−
∫ t

0
h(t, u)E[η(s)η(u)]du = h(t, s). (238)

To prove the sufficient part, one needs to verify that

E[η(t)−
∫ t

0
h1(t, s)dφ(s)]2 ≥ E[η(t)−

∫ t

0
h(t, s)dφ(s)]2, (239)

when h(t, s) satisfies the Wiener-Hopf equation. Write

E[η(t)−
∫ t

0
h1(t, s)dφ(s)]2 = E[η(t)−

∫ t

0
h(t, s)dφ(s) +

∫ t

0
h(t, s)dφ(s)−

∫ t

0
h1(t, s)dφ(s)]2

= E[η(t)−
∫ t

0
h(t, s)dφ(s)]2 + E[

∫ t

0
h(t, s)dφ(s)−

∫ t

0
h1(t, s)dφ(s)]2

+2E[η(t)−
∫ t

0
h(t, s)dφ(s)][

∫ t

0
h(t, s)dφ(s)−

∫ t

0
h1(t, s)dφ(s)]. (240)

It is obvious that

E[

∫ t

0
h(t, s)dφ(s)−

∫ t

0
h1(t, s)dφ(s)]2 (241)

= E[

∫ t

0
(h(t, s)− h1(t, s))dφ(s)]2 ≥ 0. (242)
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Also, using the Wiener-Hopf equation, one can show the last term in (240)
is 0.

�

Proposition 44 If h(t, s) is the optimal filter, then

h(t, t) = E(e(t))2, (243)

where e(t) = η(t)− η̂(t) is the error of the estimate η̂(t) =
∫ t
0 h(t, s)dφ(s).

Proof. Note that

E(e(t))2 = E(η(t))2 − 2E[η(t)

∫ t

0
h(t, u)dφ(u)] (244)

+

∫ t

0

∫ t

0
h(t, u)h(t, s)dφ(u)dφ(s). (245)

Recall that dφ(t) = η(t)dt + dB(t). Analogous to the computations in the
proof of Proposition 43, one has

E[η(t)

∫ t

0
h(t, u)dφ(u)] =

∫ t

0
h(t, u)E[η(t)η(u)]du, (246)

and

E

∫ t

0

∫ t

0
h(t, u)h(t, s)dφ(u)dφ(s)

=

∫ t

0

∫ t

0
h(t, u)h(t, s)E[η(u)η(s)]duds+

∫ t

0
(h(t, u))2du. (247)

Thus, applying the Wiener-Hopf equation in Proposition 43 yields

E(e(t))2 = E(η(t))2 −
∫ t

0
h(t, u)E[η(t)η(u)]du

−
∫ t

0
h(t, u)

(
E[η(t)η(u)]−

∫ t

0
h(t, s)E[η(u)η(s)]ds− h(t, u)

)
du(248)

= h(t, t). (249)

�

Note that both Proposition 43 and Proposition 44 are general results for
the observation process in (220). We have not used the knowledge of the
linear system in (218). With the knowledge of the linear system, the Wiener-
Hopf equation can be further simplified as in the following proposition.
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Proposition 45 A sufficient condition for the Wiener-Hopf equation in
Proposition 43 is

∂h(t, s)

∂t
= (−α− h(t, t))h(t, s). (250)

Proof. Taking the partial derivatives on both sides of the Wiener-Hopf
equation yields

∂h(t, s)

∂t
=
∂E[η(t)η(s)]

∂t
− ∂

∂t
(

∫ t

0
h(t, u)E[η(s)η(u)]du). (251)

Recall that η′(t) = −αη(t). Thus,

∂E[η(t)η(s)]

∂t
= E[η′(t)η(s)] = −αE[η(t)η(s)], (252)

where the interchange of the derivative and the expectation can be justified
by the Lipschitz continuous condition (in general, if the derivative exists,
then it is Lipschitz continuous). By the chain rule

∂

∂t
(

∫ t

0
h(t, u)E[η(s)η(u)]du) (253)

= h(t, t)E[η(s)η(t)] +

∫ t

0

∂h(t, u)

∂t
E[η(s)η(u)]du. (254)

(255)

In conjunction with (251) and (252), one has

∂h(t, s)

∂t
= (−α− h(t, t))E[η(s)η(t)]−

∫ t

0

∂h(t, u)

∂t
E[η(s)η(u)]du. (256)

Applying the Wiener-Hopf equation in (256) yields

0 = −∂h(t, s)

∂t
+(−α−h(t, t))(h(t, s)+

∫ t

0
h(t, u)E[η(s)η(u)]du)−

∫ t

0

∂h(t, u)

∂t
E[η(s)η(u)]du

(257)
It is clear that (250) is a sufficient condition of (257). �

Proposition 46 If η̂(t) is the optimal estimate, then it satisfies the recur-
sive equation

dη̂(t) = −αη̂(t)dt+ h(t, t)dν(t), (258)

where
dν(t) = dφ(t)− η̂(t)dt = (η(t)− η̂(t))dt+ dB(t). (259)

37



Proof. Recall that

η̂(t) =

∫ t

0
h(t, s)dφ(s). (260)

By the chain rule,

dη̂(t) = h(t, t)dφ(t) +

∫ t

0

∂h(t, u)

∂t
dtdφ(u). (261)

It then follows from (250) that

dη̂(t) = h(t, t)dφ(t) +

∫ t

0
(−α− h(t, t))h(t, u)dφ(u)dt (262)

= h(t, t)dφ(t) + (−α− h(t, t))

∫ t

0
h(t, u)dφ(u)dt (263)

= h(t, t)dφ(t) + (−α− h(t, t))η̂(t)dt (264)

= −αη̂(t)dt+ h(t, t)dν(t). (265)

�

Now the only unknown is h(t, t).

Proposition 47 Let k(t) = h(t, t). Then it satisfies the Riccati equation

dk(t)

dt
= −2αk(t)− k2(t). (266)

Note that the equation can be solved offline .

Proof. Note from (258) and (259) that

de(t) = dη(t)− dη̂(t) (267)

= −αη(t)dt+ αη̂(t)dt− k(t)((η(t)− η̂(t))dt+ dB(t)) (268)

= (−α− k(t))e(t)dt− k(t)dB(t). (269)

By Itô’s rule (see Remark 31) and (129),

d(e(t))2 = 2e(t)de(t) +
1

2
2(k(t))2dt (270)

= 2e(t)[(−α− k(t))e(t)dt− k(t)dB(t)] + k2(t)dt. (271)
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Thus,

(e(t))2 = 2

∫ t

0
(e(s))2(−α− k(s))ds− 2

∫ t

0
e(s)k(s)dB(s) +

∫ t

0
k2(s)ds.

(272)
Taking expectation on both sides yields

E(e(t))2 = 2

∫ t

0
E(e(s))2(−α− k(s))ds+

∫ t

0
k2(s)ds, (273)

where the stochastic integral term vanishes. It then follows from Proposition
44 that

k(t) = 2

∫ t

0
k(s)(−α− k(s))ds+

∫ t

0
k2(s)ds (274)

= −2α

∫ t

0
k(s)ds−

∫ t

0
k2(s)ds (275)

�

Theorem 48 (Kalman-Bucy filter) The optimal estimate that minimizes
the MSE can be generated by the recursive equation

dη̂(t) = −αη̂(t)dt+ k(t)(dφ(t)− η̂(t)dt), (276)

where k(t) is obtained by the Riccati equation

dk(t)

dt
= −2αk(t)− k2(t). (277)

Though we only show that the Kalman-Bucy filter is optimal among all
the time varying linear filters. This result can be extended to all nonlinear
filters. This is due to the fact that the optimal filter for a Gaussian process
is linear.

For further reading on filtering, we refer to Wong and Hajek [9], Chapter
7.

5.2 Stochastic control

In this section, we discuss Linear Quadratic Gaussian (LQG) regulators and
the associated control problems.
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Consider the linear system in (218). Suppose that we add control {u(t), t ≥
0} to the system with the constant gain b, i.e.,

η′(t) = −αη(t) + bu(t), 0 ≤ t <∞, (278)

η(0) = η0, (279)

The objective of adding control is to minimize the following cost function

min

∫ t

0
(gη2(s) + hu2(s))ds (280)

for some constants g and h. In view of the quadratic form of the objective
function, the control problem is called a quadratic regulator. To solve the
control problem, we use an approach in dynamic programming. Let V (s, x)
be the optimal value of the cost function for the problem that starts from
time s and η(s) = x. Thus,

V (0, η0) = min

∫ t

0
(gη2(s) + hu2(s))ds. (281)

Also, one has the boundary condition

V (t, x) = 0, (282)

for all states x.
Analogous to the derivation of the backward equation, one has

V (s− ds, x) = min
{u(τ),s−ds≤τ≤s}

[ ∫ s

s−ds
(gη2(τ) + hu2(τ))dτ + V (s, η(s))

]
.

(283)
Applying Taylor’s expansion yields

V (s, η(s)) = V (s, x) +
∂V (s, x)

∂x
dη(s). (284)

In conjunction with (283), one has

0 = min
{u(τ),s−ds≤τ≤s}

[ 1

ds

∫ s

s−ds
(gη2(τ)+hu2(τ))dτ+

V (s, x)− V (s− ds, x)

ds
+
∂V (s, x)

∂x

dη(s)

ds

]
.

(285)
Letting ds→ 0,

dη(s)

ds
−→ −αx+ bu(s) (286)

1

ds

∫ s

s−ds
gη2(τ) + hu2(τ)dτ −→ gx2 + hu2(s) (287)

V (s, x)− V (s− ds, x)

ds
−→ ∂V (s, x)

∂s
. (288)
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Thus,

0 = min
u

[gx2 + hu2 +
∂V (s, x)

∂s
+
∂V (s, x)

∂x
(−αx+ bu)]. (289)

The above equation is known as the Hamilton-Jacobi-Bellman (HJB) equa-
tion.

Proposition 49 (Verification Theorem) If there exists V ∗(t, x) that satis-
fies the HJB equation in (289), then

V (s, x) ≥ V ∗(s, x), 0 ≤ s ≤ t. (290)

Proof. Consider the problem that starts from time s and η(s) = x. For
a particular control {u(τ), s ≤ τ ≤ t}, there is an associate path {η(τ), s ≤
τ ≤ t}. Integrating along the path yields

0 = V ∗(t, η(t)) = V ∗(s, η(s)) +

∫ t

s

∂V ∗(τ, η(τ))

∂τ
dτ +

∫ t

s

∂V ∗(τ, η(τ))

∂x
dη(τ).

(291)
Using (278), one has

0 = V ∗(s, η(s)) +

∫ t

s

[∂V ∗(τ, η(τ))

∂τ
+
∂V ∗(τ, η(τ))

∂x
(−αη(τ) + bu(τ))

]
dτ.

(292)
Since we assume V ∗ satisfies the HJB equation, for any control u(·)

0 ≤ gx2 + hu2 +
∂V ∗(s, x)

∂s
+
∂V ∗(s, x)

∂x
(−αx+ bu). (293)

In conjunction with (292), one has∫ t

s
(gη2(τ) + hu2(τ))dτ ≥ V ∗(s, x). (294)

�

In view of Proposition 49, one could solve the quadratic regulator prob-
lem by guessing the right solution. Guess

V (s, x) = k(s)x2 (295)
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for some function k(s). Note that ∂V (s,x)
∂s = k′(s)x2 and ∂V (s,x)

∂x = 2k(s)x.
Thus, the HJB equation in (289) is

0 = min
u

[gx2 + hu2 + k′(s)x2 + 2xk(s)(−αx+ bu)]. (296)

The optimization problem can then be solved by

u = −bk(s)x

h
. (297)

Replacing (297) in (296) yields

k′(s) = −g + 2αk(s) +
b2

h
k2(s), (298)

with the boundary condition k(t) = 0 (since V (t, x) = 0).
Now we extend the control problem to the stochastic setting. Assume

there is perturbation in the linear system in (278) and the system is governed
by the following equation

dη(t) = (−αη(t) + bu(t))dt+ cdB(t), 0 ≤ t <∞, (299)

η(0) = η0, (300)

where B(t) is the standard Brownian motion. The objective of this control
problem is to minimize the expected cost as follows:

minE

∫ t

0
(gη2(s) + hu2(s))ds (301)

for some constants g and h.
Analogous to the deterministic setting, let V (s, x) be the optimal value

of the cost function for the problem that starts from time s and η(s) = x.
Similarly, one has the boundary condition

V (t, x) = 0, (302)

for all states x and the“backward” equation

V (s− ds, x) = min
{u(τ),s−ds≤τ≤s}

E
[ ∫ s

s−ds
(gη2(τ) + hu2(τ))dτ + V (s, η(s))

]
.

(303)
Applying Ito’s rule (Taylor’s expansion to the second order term) yields

V (s, η(s)) = V (s, x) +
∂V (s, x)

∂x
dη(s) +

1

2

∂2V (s, x)

∂x2
(dη(s))2. (304)
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When ds is small,

dη(s) −→ (−αx+ bu(s))ds+ cdB(s) (305)

(dη(s))2 −→ c2ds (306)∫ s

s−ds
gη2(τ) + hu2(τ)dτ −→ (gx2 + hu2(s))ds (307)

V (s, x)− V (s− ds, x) −→ ∂V (s, x)

∂s
ds. (308)

Note that E[cdB(s)] = 0 and one has the following HJB equation

0 = min
u

[gx2 +hu2 +
∂V (s, x)

∂s
+
∂V (s, x)

∂x
(−αx+ bu)+

∂2V (s, x)

∂x2
c2

2
]. (309)

Proposition 50 (Verification Theorem) If there exists V ∗(t, x) that satis-
fies the HJB equation in (309), then

V (s, x) ≥ V ∗(s, x), 0 ≤ s ≤ t. (310)

Guess the solution

V (s, x) = k0(s) + k2(s)x
2 (311)

for some function k0(s) and k2(s). One can show that

u = −bk2(s)x
h

(312)

k′2(s) = −g + 2αk2(s) +
b2

h
k22(s) (313)

k′0(s) = −c2k2(s) (314)

with the boundary conditions k2(t) = k0(t) = 0.
The above problem is with complete observation. Let us now consider the

problem with incomplete observation as in (218) and (220) (the observation
is perturbed by a noise). Assume the system is governed by the following
equations:

dη(t) = (−αη(t) + bu(t))dt, 0 ≤ t <∞, (315)

η(0) = η0, (316)

φ(t) =

∫ t

0
η(s)ds+B(t), (317)
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where η0 is normally distributed and B(t) is the standard Brownian motion.
In this system, φ is the process we can observe. The objective of this control
problem is once again to minimize the expected cost as follows:

minE

∫ t

0
(gη2(s) + hu2(s))ds (318)

for some constant g and h.
The solution of this problem is based on the separation principle: the

estimation part and the control part can be optimized separately. In view of
the Kalman-Bucy filter in Theorem 48, the estimation part can be carried
out by the recursive equation (though we have the extra control term)

dη̂(t) = (−αη̂(t) + bu(t))dt+ k(t)dν(t), (319)

where dν(t) = dφ(t)−η̂(t)dt is the innovation process and k(t) is the Kalman
gain obtained by the Riccati equation

dk(t)

dt
= −2αk(t)− k2(t). (320)

It can be shown that ν(t) is in fact the standard Brownian motion. In view
of (309), one has the corresponding HJB equation for (319)

0 = min
u

[gx2 + hu2 +
∂V (s, x)

∂s
+
∂V (s, x)

∂x
(−αx+ bu) +

∂2V (s, x)

∂x2
k2(s)

2
],

(321)
where V (s, x) is the best performance starting at η̂(s) = x. The problem
can then be solved by guessing the solution

V (t, x) = v0(t) + v2(t)x
2, (322)

where

v′2(s) = −g + 2αv2(s) +
b2

h
v22(s) (323)

v′0(s) = −k2(s)v2(s) (324)

with the boundary conditions v2(t) = v0(t) = 0.
For further reading on stochastic control, see e.g. M.H.A. Davis and

R.B. Vinter [1] and V. Krishnan [4].

Homework
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1. Let φ(t) = (b− 1
2σ

2)t+ σB(t). Find eφ(t).

2. Solve the stochastic differential equation dψ(t) = bψ(t)dt+ σψ(t)dB(t).

3. (Fractional Brownian motion [5]) Let X(t) =
∫ t
0 (t−s)H−1/2dB(s), where

0 < H < 1 and B(t) is the standard Brownian motion. Show that
X(nt)
nH has the same distribution as X(t). Find the covariance process
EX(s)X(t). Note that X(t) does not have independent increment.
When t → ∞, its increment is stationary and is called the fractional
Brownian motion.

4. (Orthogonality principle) Use the Wiener-Hopf equation in (223) to verify
the last term in (240) is 0, i.e.,

E[η(t)−
∫ t

0
h(t, s)dφ(s)][

∫ t

0
h(t, s)dφ(s)−

∫ t

0
h1(t, s)dφ(s)] = 0 (325)

This shows that the error term e(t) and the observation process {φ(s), 0 ≤
s ≤ t} are uncorrelated. Since the process is Gaussian, they are in fact
independent.

5. Show Proposition 50 and derive (312)-(314).

5.3 Applications to economics: optimal consumption and in-
vestment

Let us consider a market in which two assets (or securities) are traded con-
tinuously. The first asset, called the bond, has a price P0(t) which evolves
according to the differential equation

dP0(t) = rP0(t)dt, P0(0) = p0. (326)

The constant r is simply the interest rate. The second asset, call the stock,
is risky and has a price P1(t) that is modelled by the linear stochastic dif-
ferential equation

dP1(t) = bP1(t)dt+ σP1(t)dB(t), P1(0) = p1. (327)

The constants b and σ are called the mean rate of return and the dispersion
coefficient, respectively.

Suppose an investor who starts with some initial endowment x ≥ 0 and
invest it in the two assets. Let Ni(t), i = 0 and 1, be the number of shares
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of asset i owned by the investor at time t, and X(t) be the investor’s wealth
at time t. Then X(0) = x = N0(0)p0 +N1(0)p1 and

X(t) = N0(t)P0(t) +N1(t)P1(t). (328)

If trading of shares happens at discrete time, and there is no infusion or
withdrawal of funds, then

X(t+h)−X(t) = N0(t)(P0(t+h)−P0(t))+N1(t)(P1(t+h)−P1(t)). (329)

If, furthermore, the investor chooses at time t + h to consume an amount
hC(t+ h), then one should modify (329) as

X(t+h)−X(t) = N0(t)(P0(t+h)−P0(t))+N1(t)(P1(t+h)−P1(t))−hC(t+h).
(330)

For the continuous time model, one has from (330) that

dX(t) = N0(t)dP0(t) +N1(t)dP1(t)− C(t)dt. (331)

Let π(t) = N1(t)P1(t) be the amount invested in the stock at time t. Using
(326) and (327), one has

dX(t) = (rX(t)− C(t) + (b− r)π(t))dt+ σπ(t)dB(t). (332)

In view of (327), we have two controls: the portfolio process π(·) and the
consumption process C(·). The portfolio process decides how the investor
invests his wealth in the stock and the consumption process decides how he
consumes his wealth. (The rest is of course in the bond.) The objective of
the control problem is to maximum the following value function

maxE

∫ t

0
(C(s))δds, 0 < δ < 1. (333)

Note that for 0 < δ < 1, the function g(c) = cδ is an increasing concave
function. The function g(c), usually called the utility function, measures
how happy the investor is when he consumes at the rate c. The objective is
then equivalent to maximize the expected “happiness” over the period [0, t].
The reason that g(c) should be increasing is obvious. The concavity of g(c)
implies that the gain of happiness is small when he is already happy.

To solve this control problem, let V (s, x) be the optimal value of the
value function when the investor starts at time s with the initial endowment
x. Analogous to the derivation of the HJB equation in (309), one has

0 = max
π,c

[cδ+
∂V (s, x)

∂s
+
∂V (s, x)

∂x
(rx−c+(b−r)π)+

∂2V (s, x)

∂x2
σ2π2

2
]. (334)
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Now guess the solution of the HJB equation in (334) with

V (s, x) = (k(s))1−δxδ, (335)

for some function k(s). Note that

∂V (s, x)

∂s
= (1− δ)(k(s))−δk′(s)xδ (336)

∂V (s, x)

∂x
= (k(s))1−δδxδ−1 (337)

∂2V (s, x)

∂x2
= (k(s))1−δδ(δ − 1)xδ−2. (338)

Replacing them in (334) yields

0 = max
π,c

[cδ + (1− δ)(k(s))−δk′(s)xδ

+(k(s))1−δδxδ−1(rx− c+ (b− r)π) + (k(s))1−δδ(δ − 1)xδ−2
σ2π2

2
].

(339)

The optimization problem can be solved by

π =
(b− r)x
σ2(1− δ)

(340)

c =
x

k(s)
. (341)

Replacing π and c in (339) yields

k′(s) = αk(s)− 1, (342)

where

α = − 1

1− δ
(rδ +

1

2

(b− r)2

σ2
δ

1− δ
). (343)

Since the boundary condition V (t, x) = 0 for all x implies k(t) = 0, one has

k(s) =
1− e−α(t−s)

α
. (344)

The results in (340) and (341) show both the optimal portfolio process π(s)
and the consumption process C(s) are proportional to the wealth process
X(t).
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Now substituting the optimal controls π(·) in (340) and C(·) in (341)
into (332) yields

dX(s) = X(s)(r − 1

k(s)
+

(b− r)2

σ2(1− δ)
)ds+X(s)

(b− r)
σ(1− δ)

dB(s). (345)

Solve the stochastic differential equation (cf. Homework 2) and one has

X(s) = x exp
(∫ s

0
r − 1

k(u)
+

(b− r)2

σ2(1− δ)
− (b− r)2

2σ2(1− δ)
du+

∫ s

0

(b− r)
σ(1− δ)

dB(u)
)
.

(346)
Observe that ∫ t

0

1

k(u)
du =

∫ t

0

α

1− e−α(t−u)
du =

∫ t

0

α

1− e−αu
du (347)

≥
∫ t

0

α

αu
du =∞. (348)

Thus, we have from (346) that (with probability one) X(t) = 0. This result
is expected since there is no reason to have any wealth left at the end of the
optimization period (the investor should consume all in order to maximize
his happiness over [0, t]).

For further reading on applications to economics, see e.g. Karatzas and
Shreve [2], Section 5.8.

6 Extensions and generalizations

To extend from the one dimensional Brownian motion to the multidimen-
sional Brownian motion, it is better to work on a common ”history”, {Ft, t ≥
0}. The history is generated by the σ-algebra of all stochastic processes of
interest.

Definition 51 A stochastic process {(B1(t), . . . , Bd(t)), t ≥ 0} is called a
d-dimensional Brownian motion process if

(i) Initial condition: Bi(0) = 0, i = 1, . . . , d;

(ii) Independent increments: Bi(t)−Bi(s), i = 1, . . . , d, are independent of
the history Fs;

(iii) Normal distribution: Bi(t) − Bi(s), i = 1, . . . , d, are normally dis-
tributed with mean 0 and covariance matrix (t− s)Id, where Id is the
d× d identity matrix.
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dt dBi(t) dBj(t)

dt 0 0 0

dBi(t) 0 dt 0

dBj(t) 0 0 dt

Table 2: The rule of thumb

Theorem 52 (Itô’s calculus ) Let f : IRm+1 7→ IR be a function that has
continuous second partial with respect to x1, . . . , xm and continuous first
partial with respect to xm+1. Suppose that

φi(t) = φi(0) +

∫ t

0
ψi(s)ds+

d∑
k=1

∫ t

0
ξi,k(s)dBk(s), i = 1, . . . ,m, (349)

where
∫ t
0 ψi(s)ds is the term with a bounded variation and

∑d
k=1

∫ t
0 ξi,k(s)dBk(s)

is the sum of stochastic integrals. Then

f(φ1(t), . . . , φm(t), t) = f(φ1(0), . . . , φm(0), 0) +

∫ t

0

∂f(φ1(s), . . . , φm(s), s)

∂s
ds

+

m∑
i=1

∫ t

0

∂f(φ1(s), . . . , φm(s), s)

∂xi
ψi(s)ds+

m∑
i=1

∫ t

0

∂f(φ1(s), . . . , φm(s), s)

∂xi

d∑
k=1

ξi,k(s)dBk(s)

+
1

2

m∑
i=1

m∑
j=1

∫ t

0

∂2f(φ1(s), . . . , φm(s), s)

∂xi∂xj

d∑
k=1

ξi,k(s)ξj,k(s)ds (350)

This can be easily verified using the multiplication table in Table 2.
Now consider a set of stochastic differential equations:

dφi(t) = µi(φ1(t), . . . , φm(t))dt+

d∑
k=1

σi,k(φ1(t), . . . , φm(t))dBk(t), i = 1, . . . ,m,

(351)
where µi : IRm 7→ IR and σi,k : IRm 7→ IR. Define the transition (density)
function

p(x1, . . . , xm, t, y1, . . . , ym)dx1 · · · dxm
= Pr(xi ≤ φi(t) ≤ xi + dxi, i = 1, . . . ,m|φi(0) = yi, i = 1, . . . ,m).(352)
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Then the corresponding backward equation is

∂p(x1, . . . , xm, t, y1, . . . , ym)

∂t

=
m∑
i=1

µi(y1, . . . , ym)
∂

∂yi
p(x1, . . . , xm, t, y1, . . . , ym)

+
1

2

m∑
i=1

m∑
j=1

ai,j(y1, . . . , ym)
∂2

∂yi∂yj
p(x1, . . . , xm, t, y1, . . . , ym), (353)

where

ai,j(y1, . . . , ym) =
d∑

k=1

σi,k(y1, . . . , ym)σj,k(y1, . . . , ym). (354)

The corresponding forward equation is

∂p(x1, . . . , xm, t, y1, . . . , ym)

∂t

= −
m∑
i=1

∂

∂xi
[µi(x1, . . . , xm)p(x1, . . . , xm, t, y1, . . . , ym)]

+
1

2

m∑
i=1

m∑
j=1

∂2

∂xi∂xj
[ai,j(x1, . . . , xm)p(x1, . . . , xm, t, y1, . . . , ym)].(355)

One can also extend the Kalman-Bucy filter and the LQG regulators to the
multidimensional case. See e.g. V. Krishnan [4]. The extension is based on
the notion of conditional expectation. For the filtering problem in Section
5.1, let Fot be the σ-algebra generated by {φ(s), 0 ≤ s ≤ t}, i.e., Fot is the
observed history. We will argue that the best estimate that minimizes the
mean square error is E(η(t)|Fot ), i.e.,

E(η(t)− E(η(t)|Fot ))2 ≤ E(η(t)− η̂(t))2 (356)

for all η̂(t) that is Fot -measurable (η̂(t) is determined by the observed his-
tory). To see this, note that

E(η(t)− η̂(t))2

= E(η(t)− E(η(t)|Fot ) + E(η(t)|Fot )− η̂(t))2

= E
(
η(t)− E(η(t)|Fot ))2 + E(E(η(t)|Fot )− η̂(t)

)2
+2E

(
(η(t)− E(η(t)|Fot ))(E(η(t)|Fot )− η̂(t))

)
. (357)
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Note that E(E(X|Y )) = E(X). Conditioning on Fot , the last term in (357)
becomes

E
(
E
(

(η(t)− E(η(t)|Fot ))(E(η(t)|Fot )− η̂(t))
∣∣∣Fot ))

= E
(

(E(η(t)|Fot )− η̂(t))E
(

(η(t)− E(η(t)|Fot ))
∣∣∣Fot ))

= E
(

(E(η(t)|Fot )− η̂(t))
(
E(η(t)|Fot )− E(η(t)|Fot )

))
= 0. (358)

Since E(E(η(t)|Fot ) − η̂(t))2 ≥ 0, one derives (356). Thus, the Kalman-
Bucy filter is equivalent to finding the conditional expectation E(η(t)|Fot ).
Let e(t) = η(t) − E(η(t)|Fot ) be the error term. This is also equivalent to
finding the error term such that

E(e(t)|Fot ) = 0. (359)

Equation (359) is exactly the notion of martingale. Based on the notion of
conditional expectation, the stochastic integral with respect to the Brownian
motion can be extended to the integrals with respect to martingales. The Itô
calculus is then enlarged and known as the martingale calculus. For further
reading on martingale calculus, see e.g., Karatzas and Shreve [2], Wong and
Hajek [9].

7 The Karhunen-Loéve expansions and Einstein’s
construction of the Brownian motion

Consider a complex valued stochastic process X(t). Let X∗(t) be the con-
jugate of X(t) and

R(t, s) = E[X(t)X∗(s)] (360)

be its autocorrelation function.

Theorem 53 (The Karhunen-Loéve expansion) Suppose that {X(t), 0 ≤
t ≤ T}, is continuous in the L2 sense, i.e.,

lim
h→0

E|X(t+ h)−X(t)|2 = 0. (361)

(i) If {φn(t)} are orthonormal eigenfunctions of∫ T

0
R(t, s)φ(s)ds = λφ(t), (362)
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and {λn} the eigenvalues, then

E|X(t)− X̂(t)|2 = 0, 0 ≤ t ≤ T, (363)

where

X̂(t) =

∞∑
n=1

cnφn(t) (364)

cn =

∫ T

0
X(t)φ∗n(t)dt (365)

and
Ecnc

∗
m = λnδn,m. (366)

(ii) Conversely, if X(t) has an expansion of the form (364) with∫ T

0
φm(t)φ∗n(t)dt = δn,m =

Ecnc
∗
m

λn
, (367)

then {φn(t)} and {λn} must be the eigenfunctions and eigenvalues of
(362).

The proof of Theorem 53 is based on Mercer’s theorem on the eigenfunc-
tions and eigenvalues of the integral equation in (362).

1. Any eigenvalue of (362) must be real and positive.
To see this, note that R∗(t, s) = R(s, t). Thus, taking the conjugate
on both sides of (362) yields∫ T

0
R(s, t)φ∗(s)ds = λ∗φ∗(t). (368)

This implies∫ T

0

∫ T

0
φ(t)R(s, t)φ∗(s)dsdt = λ∗

∫ T

0
φ∗(t)φ(t)dt. (369)

Similarly, we have from (362) that∫ T

0

∫ T

0
φ∗(t)R(t, s)φ(s)dsdt = λ

∫ T

0
φ(t)φ∗(t)dt. (370)

Note that the right hand sides of (369) and (370) are equal. Thus,

λ = λ∗ (since
∫ T
0 φ∗(t)φ(t)dt > 0).
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To see that λ is positive, note that the autocorrelation function is
positive definite, i.e., for any m, and ai, i = 1, . . . ,m,

m∑
i=1

m∑
j=1

aia
∗
jR(ti, tj) ≥ 0. (371)

This is due to the identity

0 ≤ E|
m∑
i=1

aiX(ti)|2 =

m∑
i=1

m∑
j=1

aia
∗
jEX(ti)X

∗(tj). (372)

Thus, the right hand side of (370) is nonnegative and this in turn
implies λ is positive (the case λ = 0 is trivial).

2. If R(t, s) is not identical zero, there is at least one eigenvalue for (362).
The largest eigenvalue λ1 is given by

λ1 = max
||φ(·)||=1

∫ T

0

∫ T

0
φ∗(t)R(t, s)φ(s)dsdt, (373)

where

||φ(·)|| =
(∫ T

0
φ∗(t)φ(t)dt

) 1
2
. (374)

The proof is not easy and will not be presented here.

3. Let φ1(t) be the normalized eigenfunction corresponding to the eigenvalue
λ1, i.e., ∫ T

0
φ1(t)φ

∗
1(t)dt = 1. (375)

4. Let R2(t, s) = R(t, s)−λ1φ1(t)φ∗1(s). Then R2(t, s) is the autocorrelation
function of the process

Y (t) = X(t)− φ1(t)
∫ T

0
X(s)φ∗1(s)ds, (376)
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and thus R2(t, s) is positive definite. To see this, note that

EY (t)Y ∗(s) = EX(t)X∗(s)− E
[
X(t)φ∗1(s)

∫ T

0
X∗(u1)φ1(u1)du1

]
−E
[
X∗(s)φ1(t)

∫ T

0
X(u2)φ

∗
1(u2)du2

]
+E
[
φ1(t)φ

∗
1(s)

∫ T

0

∫ T

0
X(u2)X

∗(u1)φ1(u1)φ
∗
1(u2)du1du2

]
= R(t, s)− λ1φ1(t)φ∗1(s)
= R2(t, s) (377)

5. Observe that ∫ T

0
R2(t, s)φ1(s)ds = 0. (378)

Now repeat step 2 and find λ2 and φ2(·) for R2(t, s). Then∫ T

0
R2(t, s)φ2(s)ds = λ2φ2(t). (379)

It follows that∫ T

0
φ2(t)φ

∗
1(t)dt =

1

λ2

∫ T

0
φ2(s)(

∫ T

0
R2(s, t)φ1(t)dt)

∗ds = 0. (380)

Thus, φ2(·) is orthogonal to φ1(·). Moreover,∫ T

0
R(t, s)φ2(s)ds

=

∫ T

0
R2(t, s)φ2(s)ds+ λ1φ1(t)

∫ T

0
φ2(s)φ

∗
1(s)ds

= λ2φ2(t). (381)

This implies λ2 and φ2(·) are eigenvalue and eigenfunction of (362).

6. Iterating the procedure yields a decreasing sequence of eigenvalues λ1, λ2, . . . , ...
and a corresponding sequence of eigenfunctions φ1(·), φ2(·), . . .. More-
over, these eigenfunctions are orthonormal, i.e.,∫ T

0
φn(t)φm(t)dt = δn,m. (382)
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7. (Mercer’s theorem)

R(t, s) =

∞∑
n=1

λnφn(t)φ∗n(s), 0 ≤ s, t ≤ T. (383)

The number of terms in the sum might be finite. If it is infinite, then
λn → 0 as n→∞.

Proof. (Sketch of the Proof of Theorem 53) (Below, we assume that all
expectations and all infinite sums can be interchanged.) (i) From (365) and
the orthonormality of φn(·), it follows that

EcnX
∗(s) =

∫ T

0
R∗(s, t)φ∗n(t)dt = λnφ

∗
n(s), (384)

where we use the fact that λn is real. This implies

Ecnc
∗
m = Ecn

∫ T

0
X∗(t)φm(t)dt = λm

∫ T

0
φ∗n(t)φm(t)dt = λnδn,m. (385)

Hence

EcnX̂
∗(t) = Ecn

∞∑
m=1

c∗mφ
∗
m(t) =

∞∑
m=1

Ecnc
∗
mφ
∗
m(t) = λnφ

∗
n(t). (386)

Thus, it follows from the Mercer theorem in (383) that

EX̂(t)X̂∗(t) = E

∞∑
n=1

cnφn(t)X̂∗(t) =

∞∑
n=1

λnφn(t)φ∗n(t)

= R(t, t) = EX̂∗(t)X(t) = E|X(t)|2 = E|X̂(t)|2. (387)

Thus, we derive (363).
(ii) To see the converse, assume that X(t) has the expansion in (364).

From the expansion and (367), it follows that

EX(t)c∗m =

∞∑
n=1

Ecnc
∗
mφm(t) = λmφm(t). (388)

Using cn in (365) yields

EX(t)c∗m =

∫ T

0
EX(t)X∗(s)φm(s)ds =

∫ T

0
R(t, s)φm(s)ds. (389)
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From (388) and (389), we show that λ and φ(·) are eigenvalue and eigen-
function of (362). �

For the standard Brownian motion, we have shown in Proposition 5 that
the autocorrelation function is

R(t, s) = min(t, s). (390)

The corresponding integral equation is∫ T

0
min(t, s)φ(s)ds = λφ(t), 0 ≤ t ≤ T, (391)

or ∫ t

0
sφ(s)ds+ t

∫ T

t
φ(s)ds = λφ(t). (392)

Differentiating with respect to t yields∫ T

t
φ(s)ds = λφ′(t). (393)

Differentiating once more, we obtain

λφ′′(t) + φ(t) = 0, (394)

with the obvious boundary conditions φ(0) = 0 (see (392)) and φ′(T ) = 0
(see (393)). The solution of (394) with φ(0) = 0 is

φ(t) = A sin
1√
λ
t (395)

for some constant A. Using the condition φ′(T ) = 0 yields

cos
1√
λ
T = 0. (396)

Thus, the eigenvalues are

λn =
T 2

(n− 1
2)2π2

, n = 1, 2, . . . (397)

The normalized eigenfunctions are

φn(t) =

√
2

T
sin[(n− 1

2
)π(

t

T
)]. (398)

56



From Theorem 53, we have the expansion of the standard Brownian motion

B̂(t) =
∞∑
n=1

cnφn(t), (399)

where

cn =

∫ T

0
B(t)φ∗n(t)dt =

∫ t

0
B(t)φn(t)dt, (400)

with φn(t) in (398). Moreover, cn’s are uncorrelated. In view of the Gaussian
nature of the standard Brownian motion, cn’s are (joint) Gaussian random
variables and hence they are in fact independent. This leads to a way to
construct the standard Brownian motion, namely the Einstein construction.

Theorem 54 (Einstein’s construction of the standard Brownian motion)
Let cn, n = 1, 2, . . ., be a sequence of independent Gaussian random variables
with mean 0 and variance

λn =
T 2

(n− 1
2)2π2

. (401)

Then

B(t) =

∞∑
n=1

cnφn(t), 0 ≤ t ≤ T (402)

is the standard Brownian motion, where

φn(t) =

√
2

T
sin[(n− 1

2
)π(

t

T
)]. (403)

Proof. (Sketch of the proof of Theorem 54) Since cn’s are independent
Gaussian random variables, B(t) in (402) is a Gaussian process. Since Ecn =
0, EB(t) = 0. It remains to verify that EB(t)B(s) = min(t, s). From
Mercer’s theorem in (383) and the Karhunen-Loéve expansion in (399), it
follows that

min(t, s) =
∞∑
n=1

λnφn(t)φn(s), (404)

with φn(·) and λn specified in (403) and (401) (note that φn(·)’s are real-
valued functions). Since Ecncm = λnδn,m, one has

EcnB(s) = Ecn

∞∑
m=1

cmφm(s) =

∞∑
m=1

Ecncmφm(s) = λnφn(s). (405)
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Thus,

EB(t)B(s) = E

∞∑
n=1

cnφn(t)B(s) =

∞∑
n=1

λnφn(s)φn(t). (406)

In conjunction with (404), we derive EB(t)B(s) = min(t, s). �

From the construction, one can “simulate” a sample path of the stan-
dard Brownian motion by simulating a large number of Gaussian random
variables as in Theorem 54. We note that other L2-complete orthonormal
basis can also be used to construct the standard Brownian motion. For
other constructions of the standard Brownian motion, see e.g., Karatzas
and Shreve [2]. For further reading on Karhunen-Loéve expansion, see e.g.
Wong and Hajek [9], or Papoulis [6].
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