
11. Appendix A: Combinatorial Designs

In this chapter, we briefly introduce some combinatorial designs that are used
in this book, including Galois fields, finite projective p lanes, perfect differ-
ence sets, orthogonal Latin squares, and tournament designs.

11.1 Galois fields

In this section, we provide a short introduction of Galois fields. More detailed
descriptions and their applications in error control codes can be found in
[20].

11.1.1 Prime fields

The notion of group is one of the most basic mathematical abstraction of an
algebraic structure.

Definition 11.1.1. (Group) A groupG is a set of elements with an operation
∗ that satisfies the following four properties:

(i) Closure: For all a, b in the set, c = a ∗ b is also in the set.
(ii) Associativity: For all a, b, c in the set,

a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(iii) Identity: There is an identity element e that satisfies

a ∗ e = e ∗ a = a.

(iv) Inverses: If a is in the set, then there is some element b in the set, called
an inverse of a, such that

a ∗ b = b ∗ a = e.

If, furthermore, a group G has the additional property,
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(v) Commutativity: For all a, b in the set,

a ∗ b = b ∗ a,

then it is called a commutative group or abelian group.

If the number of elements in a group G is finite, then it is called a finite
group and the number of elements in G is called the order of G.

Definition 11.1.2. (Field) A field F is a set of elements with two operations
+ (addition) and ∗ (multiplication) that satisfy the following properties:

(i) The set is an abelian group under addition. The identity element under
addition is called the zero element.

(ii) The set is closed under multiplication, and the set of nonzero elements is
an abelian group under multiplication. The identity element under mul-
tiplication is called the one element.

(iii) Distributivity: For all a, b, c in the set,

(a+ b) ∗ c = (a ∗ c) + (b ∗ c).

The set of real numbers is a field. So is the set of rational numbers. These
fields have an infinite number of elements. A field with a finite number of
elements q is called a finite field or a Galois field. It is denoted by GF (q).
Denote the q elements in GF (q) as {0, 1, 2, . . . , q − 1}, where 0 is the zero
element (the identity element for addition +) and 1 is the one element (the
identity element for multiplication ∗). We will use−a to denote the (unique)
inverse element of a under +, and a−1 to denote the (unique) inverse element
of a under ∗ for a 6= 0. As we can treat these two operations as usual addition
and multiplication, it is well-known that −(a + b) = (−a) + (−b), a ∗ 0 =
0 ∗ a = 0 and a ∗ (−b) = (−a) ∗ b = −(a ∗ b) for the Galois field GF (q).
Loosely speaking, we can add, subtract, multiply and divide in a field as in
real numbers.

It is well-known that a Galois fieldGF (q) exists if and only if q is a prime
power. In particular, if q = 2, the addition in GF (2) is the exclusive-OR
operation and the multiplication inGF (2) is the AND operation as shown in
the following two tables:

+ 0 1

0 0 1
1 1 0

∗ 0 1

0 0 0
1 0 1

. (11.1)
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When q is a prime, the addition is the usual addition with the modulo q
operation and the multiplication is the usual multiplication with the modulo
q operation, i.e.,

(a+ b) = ((a+ b) mod q),

(a ∗ b) = ((a ∗ b) mod q).

For example, the field GF (3) = {0, 1, 2} has the following addition and
multiplication:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

∗ 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

. (11.2)

A field GF (q) with q being a prime is called a prime filed.
For the field GF (4) = {0, 1, 2, 3}, it has the following addition and mul-

tiplication:

+ 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

∗ 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

. (11.3)

Note that both addition and multiplication in GF (4) are not modulo oper-
ations. Also, GF (2) is contained in GF (4) as the two elements 0 and 1 in
GF (4) operate the same way as they do in GF (2).

Definition 11.1.3. For a field F , a subset of F is called a subfield if it is a
field under the inherited addition and multiplication. The original field F is
called an extension field of the subfield.

In view of (11.3), GF (2) is a subfield of GF (4), and GF (4) is an exten-
sion field of GF (2).

11.1.2 Finite fields based on polynomials

One can extend a finite field GF (q) to another finite field GF (qn) by using
polynomials. Specifically, for a finite field GF (q), let x2 = x ∗ x and xh =
(xh−1) ∗ x for h ≥ 3. A polynomial over a field GF (q) is expressed by

f(x) = fn−1 ∗ xn−1 + fn−2 ∗ xn−2 + . . .+ f1 ∗ x+ f0,
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where fn−1, . . . , f0 are elements in GF (q). A monic polynomial is a poly-
nomial with leading coefficient fn−1 = 1. Two polynomials are equal if
their coefficients are all equal. The degree of a polynomial is the index of the
leading coefficient fn−1.

One can easily extend addition and multiplication in GF (q) to polyno-
mial addition and polynomial multiplication as follows:

f(x) + g(x) =

∞∑
i=0

(fi + gi) ∗ xi,

f(x) ∗ g(x) =
∞∑
i=0

(
i∑

j=0

fj ∗ gi−j) ∗ xi.

A polynomial h(x) is divisible by a polynomial f(x) if there exists a poly-
nomial g(x) such that

h(x) = f(x) ∗ g(x).

Definition 11.1.4. A polynomial f(x) over a field GF (q) that is divisible
only by αf(x) or α, where α is any arbitrary element in GF (q), is called an
irreducible polynomial. A monic irreducible polynomial of degree at least 1
is called a prime polynomial.

Theorem 11.1.5. For a field F and a monic irreducible polynomial p(x),
consider the set of polynomials with degree smaller than that of p(x), to-
gether with polynomial addition and polynomial multiplication modulo p(x).
Denote such a set of polynomials by F [x]/p(x), Define the addition of
two polynomials f(x) and g(x) in F [x]/p(x) by (f(x) + g(x)) mod p(x)
and the multiplication of two polynomials f(x) and g(x) in F [x]/p(x) by
(f(x) ∗ g(x)) mod p(x). Then F [x]/p(x) is a finite field if and only if p(x)
is a prime polynomial.

Theorem 11.1.5 allows us to extend a finite field GF (q) to a finite field
GF (qn) by using a prime polynomial of degree n overGF (q). For example,
to extend GF (2) to GF (4), we consider the prime polynomial x2 + x + 1.
Then the extension field contains the four elements {0, 1, x, x+ 1} with the
following addition and multiplication:

+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1
x+ 1 x+ 1 x 1 0

,
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∗ 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1
x+ 1 0 x+ 1 1 x

.

These are exactly the same as those in (11.3) by mapping x to 2 and x+1
to 3.

Definition 11.1.6. A primitive element of a field F is an element λ in F such
that every field element except zero can be expressed as a power of λ. A
primitive polynomial p(x) over F is a prime polynomial over F with the
property that the extension field F [x]/p(x) has the primitive element x.

That the extension field F [x]/p(x) has the primitive element x means
that every polynomial in F [x]/p(x) can be represented by (xj mod p(x))
for some j.

Theorem 11.1.7. For every finite field GF (q) and positive integer n, there
exists a primitive polynomial over GF (q) of degree n.

As a direct consequence of Theorem 11.1.7, every element in the ex-
tension field GF (qn) constructed by the primitive polynomial p(x) can be
uniquely represented by

(xj mod p(x)) = fn−1 ∗ xn−1 + fn−2 ∗ xn−2 + . . .+ f1 ∗ x+ f0,

for some coefficients fn−1, fn−2, . . . , f1, f0. The vector

(fn−1, fn−2, . . . , f1, f0)

can be viewed as the coordinates of a field element in GF (qn). For exam-
ple, consider GF (4) = {0, 1, x, x + 1} constructed with the prime polyno-
mial x2 + x + 1. Then x is the primitive element of GF (4) with x1 = x,
(x2 modx2+x+1) = x+1, (x3 modx2+x+1) = 1 = x0. The coordinates
for these four elements are (0, 0), (0, 1), (1, 0) and (1, 1).

11.2 Constructions of finite projective planes PG(2, q)

In Section 3.1.4, we discussed the connection between finite projective
planes and the synchronous modular clock algorithm constructed from Ga-
lois fields. In this section, we show that finite projective planes can be in fact
constructed by using projective geometry of Galois fields.
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Definition 11.2.1. A finite projective plane of order N is a collection of
N2 +N + 1 lines and N2 +N + 1 points such that

(P1) every line contains N + 1 points,
(P2) every point is on N + 1 lines,
(P3) any two distinct lines intersect at exactly one point, and
(P4) any two distinct points lie on exactly one line.

To construct a finite projective plane from a Galois field GF (q), we con-
sider a three-dimensional vector space over a Galois fieldGF (q). Each point
in the three-dimensional space can be represented by the three-dimensional
coordinates (x1, x2, x3) with xi being an element in GF (q), i = 1, 2 and
3. A finite projective plane, denoted by PG(2, q), can be constructed by
projecting all the points (k ∗ x1, k ∗ x2, k ∗ x3) to the same point for any
k 6= 0. The parameter 2 in PG(2, q) is the dimension and the parameter
q in PG(2, q) is the order. For such a projection, a set of q − 1 points are
projected to a single point. Excluding the point (0, 0, 0), the projective plane
PG(2, q) thus has (q3 − 1)/(q− 1) = q2 + q+ 1 points. A line (u1, u2, u3)
in PG(2, q) is the set of points that satisfy

u1 ∗ x1 + u2 ∗ x2 + u3 ∗ x3 = 0, (11.4)

where u1, u2, and u3 are elements in GF (q), not all zero. Suppose that u3 6=
0. Then we can write

x3 = −(u−13 ) ∗ (u1 ∗ x1 + u2 ∗ x2).

Note that if x2 6= 0, then (x1, x2, x3) is projected to the same point as (x−12 ∗
x1, 1, x

−1
2 ∗ x3). For x2 = 0, the only choice for x1 is 1. For x2 = 1, x1 can

be any element inGF (q). Thus, there are q+1 points in the line (u1, u2, u3).
In view of the duality between (x1, x2, x3) and (u1, u2, u3) in (11.4), there
are q2 + q + 1 lines. It is straightforward to see that any two distinct lines
intersect at exactly at one point. By duality, any two distinct points lie on
exactly one line. Thus, PG(2, q) satisfies the four properties (P1)-(P4) of a
finite projective plane of order q.

Since GF (q) exists when q is a prime power, a finite projective plane
of order q also exists (from the above construction of PG(2, q)) when q is
a prime power. However, as commented in Section 3.1.4, a finite projective
plane may not exist for arbitrary q. It was shown by Bose [21] that there is
no projective plane of order 6. Moreover, a much more general theorem by
Bruck and Ryser [24] provided a necessary condition for the existence of a
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finite projective plane of order q when q = 4m + 1 or 4m + 2 for some
nonnegative integer m. The necessary condition requires that q to be a sum
of two integer squares. However, such a necessary condition is not sufficient.
In particular, when q = 10 = 12 + 32, it was shown in [85] by computer
enumeration that there is no projective plane of order 10.

11.3 Singer’s construction of perfect difference sets

In Section 4.2, we used difference sets to construct CH sequences that
achieve maximum rendezvous diversity. In this section, we show how to con-
struct a perfect difference set from the finite projective plane PG(2, q). Such
a construction is known as the Singer’s construction [119].

Definition 11.3.1. Let Zn = {0, 1, 2, . . . , n − 1} be the set of nonnegative
integers not larger than n. A set D = {a1, a2, . . . , am} ⊂ Zn is called
a Relaxed Difference Set (RDS) if for every (d mod n) 6= 0, there exists
at least one ordered pair (ai, aj) such that ai − aj = (d mod n), where
ai, aj ∈ D. It is called a perfect difference set if there is exactly one ordered
pair with that property.

As mentioned in Theorem 11.1.7 there exists a primitive polynomial over
GF (q) of degree ` for any positive integer `. For ` = 3, let

p(x) = x3 − a3 ∗ x2 − b3 ∗ x− c3 (11.5)

be a primitive polynomial overGF (q). Then for the extension fieldGF (q3),
x is a primitive element, i.e., every nonzero element in GF (q3) can be ex-
pressed as (xj mod p(x)) for some j = 0, 1, . . . , q3−2 (with xq

3−1 = x0 =
1). Let (αj , βj , γj) be the the coordinates for (xj mod p(x)), i.e.,

(xj mod p(x)) = αj ∗ x2 + βj ∗ x+ γj . (11.6)

Let n = q2 + q + 1. Since GF (q) is a subfield of GF (q3), xjn is in GF (q)
for j = 0, 1, . . . , q − 2. In other words,

(xjn mod p(x)) = k, (11.7)

for some nonzero element k ∈ GF (q). Recall that in PG(2, q) we map
all the points (k ∗ x1, k ∗ x2, k ∗ x3) to the same point for any k 6=
0. Thus, xu and xv are projected to the same point when (umodn) =
(vmodn). In view of this, we know that the n points in PG(2, q) can be
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expressed as (xj mod p(x)) for j = 0, 1, . . . , n − 1. Call these n points,
A0, A1, . . . , An−1. Note from (11.6) that

(xj+1 mod p(x))

= (x ∗ xj mod p(x))

= (x ∗ (αj ∗ x2 + βj ∗ x+ γj) mod p(x))

= ((a3 ∗ αj) + βj) ∗ x2 + ((b3 ∗ αj) + γj) ∗ x+ c3 ∗ αj .

Thus, αj+1

βj+1

γj+1

 =

 a3 1 0
b3 0 1
c3 0 0

 αj
βj
γj

 . (11.8)

Let

T =

 a3 1 0
b3 0 1
c3 0 0

 . (11.9)

The linear transformation T then defines a one-to-one mapping that maps
the point Aj to the point Aj+1 for all j = 0, 1, . . . , n − 1 (with An = A0).
Recall that the line (u1, u2, u3) in PG(2, q) contains the set of pointsAj that
satisfies

u1 ∗ αj + u2 ∗ βj + u3 ∗ γj = 0. (11.10)

Consider the line (u′1, u
′
2, u
′
3) that contains the set of points Aj+1 that satis-

fies

u′1 ∗ αj+1 + u′2 ∗ βj+1 + u′3 ∗ γj+1 = 0. (11.11)

Thus, if the jth point (αj , βj , γj) is in the line (u1, u2, u3), then the (j+1)th

point (αj+1, βj+1, γj+1) is in the line (u′1, u
′
2, u
′
3). Using (11.8) in (11.11),

we have from (11.10) that

(u1, u2, u3) = (u′1, u
′
2, u
′
3)

 a3 1 0
b3 0 1
c3 0 0

 . (11.12)

Note that c3 6= 0 as otherwise p(x) in (11.5) can be factorized into x(x2 −
a3 ∗ x− b3) and it will not be a prime polynomial. Thus, the 3× 3 matrix in
(11.9) is invertible. It is easy to verify that
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T−1 =

 0 0 c−13

1 0 −a3 ∗ c−13

0 1 −b3 ∗ c−13

 , (11.13)

and thus

(u′1, u
′
2, u
′
3) = (u1, u2, u3)

 0 0 c−13

1 0 −a3 ∗ c−13

0 1 −b3 ∗ c−13

 . (11.14)

The linear transformation T−1 also defines a one-to-one mapping that maps
the line (u1, u2, u3) to another line (u′1, u

′
2, u
′
3) that contains the q+1 points

by shifting the q + 1 points in the line (u1, u2, u3) by 1. The one-to-one
mapping of points T and the one-to-one mapping of lines T−1 in a finite
projective plane is called a collineation.

Now suppose that a line (u1, u2, u3) contains a set of q + 1 points
{Aa0 , Aa1 , . . . , Aaq}. Then it follows from the collineation with the 3 × 3
matrix in (11.8) that the set of q + 1 points {Aa0+1, Aa1+1, . . . , Aaq+1} is
also a line. Similarly, the set of q + 1 points {Aa0+d, Aa1+d, . . . , Aaq+d} is
also a line for any 0 ≤ d ≤ n− 1. Consider the array

a0 a0 + 1 a0 + 2 · · · a0 + n− 2 a0 + n− 1
a1 a1 + 1 a1 + 2 · · · a1 + n− 2 a1 + n− 1
a2 a2 + 1 a2 + 2 · · · a2 + n− 2 a2 + n− 1
· · · · · · · · · · · · · · · · · ·
aq aq + 1 aq + 2 · · · aq + n− 2 aq + n− 1

 . (11.15)

Then every column of the array corresponds to a line in PG(2, q), and the n
columns also correspond to the n distinct lines in PG(2, q). Also, every row
is a cyclic permutation of (0, 1, 2 . . . , n) and corresponds to the n points in
PG(2, q). Without loss of generality, let us assume that a0 = 0 and consider
the columns (resp. lines) that contains 0 (resp. point A0). As PG(2, q) is a
finite projective plane of order q, there are q+ 1 lines that contains point A0.
These q + 1 lines correspond to the following q + 1 columns in (11.15):

a0 − a0 a0 − a1 a0 − a2 · · · a0 − an−1
a1 − a0 a1 − a1 a1 − a2 · · · a1 − an−1
a2 − a0 a2 − a1 a2 − a2 · · · a2 − an−1
· · · · · · · · · · · · · · ·
aq − a0 aq − a1 aq − a2 · · · aq − an−1

 . (11.16)

Note that the q+1 diagonal elements in the (q+1)× (q+1) array in (11.16)
are 0. As these q + 1 lines already contain point A0, all the other points in
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these q+ 1 lines must be distinct. Thus, (ai − aj) must be distinct for i 6= j,
i, j = 0, 1, . . . , q. This shows that D = {a0, a1, . . . , aq} a perfect difference
set in Zn, where n = q2 + q + 1.

In view of (11.16), it is also clear that for a perfect difference set
D = {a0, a1, . . . , aq} in Zn, then Di = {{a0 + i, a1 + i, . . . , aq + i},
i = 0, 1, . . . , n are the n lines in a finite projective plane of order n with the
n points in Zn. Also, if t is coprime to n, then the set {t∗a0, t∗a1, . . . , t∗aq}
is a perfect difference set in Zn. This is because t ∗ (ai − aj) modn are also
distinct for i 6= j, i, j = 0, 1, . . . , q when t is coprime to n. Such a property
was used in [122, 130] for searching for disjoint perfect difference sets.

As an illustrating example, we use the following cubic primitive polyno-
mial over GF (2) to construct a perfect different set in Z7:

p(x) = x3 + x+ 1. (11.17)

The corresponding collineation mapping T is

T =

 0 1 0
1 0 1
1 0 0

 . (11.18)

Since T (xj) = xj+1 for all j, the coordinates of xj = (αj , βj , γj), j =
0, 2, . . . , 6 are

x0 = (0, 0, 1) (11.19)

x1 = (0, 1, 0)

x2 = (1, 0, 0)

x3 = (0, 1, 1)

x4 = (1, 1, 0)

x5 = (1, 1, 1)

x6 = (1, 0, 1).

As expected, we have x7 = x0 = (0, 0, 1).
Consider the line (u1, u2, u3) = (1, 0, 0). Call this line L0. Then it fol-

lows from (11.10) that L0 contains the three points {x0, x1, x3}. Note that

T−1 =

 0 0 1
1 0 0
0 1 1

 . (11.20)

Thus, the collineation mapping T−1 can be used for constructing Lj , j =
1, . . . , 6, by
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(u′1, u
′
2, u
′
3) = (u1, u2, u3)

 0 0 1
1 0 0
0 1 1

 . (11.21)

This leads to

L0 = (1, 0, 0) = {x0, x1, x3} (11.22)

L1 = (0, 0, 1) = {x1, x2, x4}
L2 = (0, 1, 1) = {x2, x3, x5}
L3 = (1, 1, 1) = {x3, x4, x6}
L4 = (1, 1, 0) = {x4, x5, x0}
L5 = (1, 0, 1) = {x5, x6, x1}
L6 = (0, 1, 0) = {x6, x0, x2}.

Note that the seven lines in (11.22) and the seven points in (11.19) form the
finite projective plane PG(2, 2) (see Figure 11.1). The perfect difference set
in Z7 constructed from using the primitive polynomial in (11.17) is D =
{0, 1, 3}.

Fig. 11.1. The finite projective plane PG(2, 2).

11.4 Constructions of orthogonal Latin squares

In this section, we discuss the connection between orthogonal Latin squares
and CH sequences used in this book, including the synchronous modular
clock algorithm in a Galois field in Section 3.1.2 and the ORTHO-CH se-
quence in Section 6.3.1.

Definition 11.4.1. (Latin square and orthogonal Latin squares) A Latin
square with the set of symbols S is an |S| × |S| matrix such that every sym-
bol appears exactly once in every row and every column. Two N ×N Latin
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squares A = (ai,j) and B = (bi,j) are said to be orthogonal if the ordered
pairs (ai,j , bi,j) are all different for all i, j = 0, 1, . . . , N − 1.

In the following, we show two 4× 4 orthogonal Latin squares with S =
{0, 1, 2, 3}.


0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

 ,


0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1

 . (11.23)

Merging these two matrices together yields
(0, 0) (1, 1) (2, 2) (3, 3)
(1, 3) (0, 2) (3, 1) (2, 0)
(2, 1) (3, 0) (0, 3) (1, 2)
(3, 2) (2, 3) (1, 0) (0, 1)

 . (11.24)

Thus, each of the 16 ordered pairs appears exactly once.
The number of mutually orthogonal Latin squares of order N is not

greater than N − 1. If N is a prime power, then there exist N − 1 mutually
orthogonal Latin squares. These N − 1 mutually orthogonal Latin squares
can be constructed by using a Galois filed GF (N) with the N elements
{0, 1, . . . , N − 1}. Specifically, denote the N − 1 orthogonal Latin squares
by {C(r) = (c

(r)
i,j ), r = 1, 2, . . . , N − 1}. Then for r = 1, 2, . . . , N − 1 and

i, j = 0, 1, . . . , N − 1, let

c
(r)
i,j = (r ∗ i+ j),

where + and ∗ are the addition and multiplication in GF (N). For N = 5,
the four orthogonal Latin squares are as follows:

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

 ,


0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2

 , (11.25)


0 1 2 3 4
3 4 0 1 2
1 2 3 4 0
4 0 1 2 3
2 3 4 0 1

 ,


0 1 2 3 4
4 0 1 2 3
3 4 0 1 2
2 3 4 0 1
1 2 3 4 0

 . (11.26)
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These four orthogonal Latin squares are also the four orthogonal (5, 5)-
MACH matrices in Section 6.3.1.

Orthogonal Latin squares also correspond to the CH sequences from the
synchronous modular clock algorithm with nonzero slopes. For instance, if
N = 5, there are four mutually orthogonal Latin squares. The (b + 1)th

row (b = 0, 1, 2, 3, 4) of the rth (r = 1, 2, 3, 4) Latin square is generated
by the CH sequence from the synchronous modular clock algorithm with the
nonzero slope r and bias b for t = 1, 2, 3, 4, 5. This can be seen from (3.4)
and (3.5) by removing the first columns of these four matrices. Note that even
the matrix generated from r = 0 is not a Latin square, it is still orthogonal to
the four matrices in the sense that the ordered pairs (i, j) are all different for
all i, j = 1, 2, . . . , N .

Remark 11.4.2. The study of the existence of two orthogonal Latin squares
(also known as the Graeco-Latin square) was first proposed by L. Euler in
1782 [59]. He was not able to construct two orthogonal Latin squares of
order 6 (known as the 36 officers problem) and then conjectured that there
do not exist two orthogonal Latin squares of orderN forN = 4m+2, where
m is a nonnegative integer. It was confirmed later by G. Tarry via exhaustive
enumeration that there do not exist two orthogonal Latin squares of order 6.
However, via extensive computer enumeration, two orthogonal Latin squares
of order 10 and order 22 were found and it was later shown that Euler’s
conjecture is false for all N ≥ 10. We now know that two orthogonal Latin
squares exist for all N ≥ 3 except N = 6.

In the following, we show how to construct two N ×N orthogonal Lain
squares for any odd N by using rotators and reflectors.

Definition 11.4.3. (Rotator) An N ×N rotator is a Latin square with the set
of symbols S = {0, 1, 2, . . . , N − 1}, where symbol n = 0, 1, 2, . . . , N − 1
appears at the (i, j)th element of the Latin square (with i, j = 0, 1, 2, . . . , N−
1), when

j = (i+ n) mod N. (11.27)

Here is the 3× 3 rotator. 0 1 2
2 0 1
1 2 0

 . (11.28)
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Definition 11.4.4. (Reflector) An N ×N reflector is a Latin square with the
set of symbols S = {0, 1, 2, . . . , N−1}, where symbol n = 0, 1, 2, . . . , N−1
appears at the (i, j)th element of the Latin square (with i, j = 0, 1, 2, . . . , N−
1) when

n = (i+ j) mod N. (11.29)

Here is the 3× 3 reflector. 0 1 2
1 2 0
2 0 1

 . (11.30)

Lemma 11.4.5. The N ×N rotator and the N ×N reflector are orthogonal
if N is an odd number.

Proof. It suffices to show that the ordered pair (n1, n2) appears exactly once.
To see this, we note from (11.27) and (11.29) that the ordered pair (n1, n2)
appears at the (i, j)th element with

j = (i+ n1) mod N,

and
n2 = (i+ j) mod N.

Thus, we have

2j = (n1 + n2) mod N (11.31)

and

2i = (n2 − n1) mod N. (11.32)

Since N is an odd number, there is a unique j in {0, 1, 2 . . . , N − 1} that
satisfies (11.31). Similarly, there is a unique i in {0, 1, 2 . . . , N − 1} that
satisfies (11.32).

As in Section 4.8.1, one can also use the direct product construction
to construct larger orthogonal Latin squares [99]. Specifically, if {A(r) =

(a
(r)
i,j ), r = 1, 2, . . . , R − 1} are N1 × N1 orthogonal Latin squares with

symbols in {0, 1, . . . , N1− 1}, and {B(r) = (b
(r)
i,j ), r = 1, 2, . . . , R− 1} are

N2×N2 orthogonal Latin squares with symbols in {0, 1, . . . , N2− 1}, then
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{C(r) = (c
(r)
i,j ), r = 1, 2, . . . , R−1} are (N1×N2)× (N1×N2) orthogonal

Latin squares with symbols in {0, 1, . . . , N1N2 − 1}, where

c
(r)
i,j = a

(r)
ia,ja
∗N2 + b

(r)
ib,jb

,

ia = bi/N2c,
ja = bj/N2c,
ib = i− ia ∗N2,

jb = j − jb ∗N2.

For instance, let A(1) and A(2) be the two 3× 3 orthogonal Latin squares in
(11.28) and (11.30), and B(1) and B(2) be the two 4 × 4 orthogonal Latin
squares in (11.23). Then we have the following two 12×12 orthogonal Latin
squares C(1) and C(2):

0 1 2 3 4 5 6 7 8 9 10 11
1 0 3 2 5 4 7 6 9 8 11 10
2 3 0 1 6 7 4 5 10 11 8 9
3 2 1 0 7 6 5 4 11 10 9 8

8 9 10 11 0 1 2 3 4 5 6 7
9 8 11 10 1 0 3 2 5 4 7 6
10 11 8 9 2 3 0 1 6 7 4 5
11 10 9 8 3 2 1 0 7 6 5 4

4 5 6 7 8 9 10 11 0 1 2 3
5 4 7 6 9 8 11 10 1 0 3 2
6 7 4 5 10 11 8 9 2 3 0 1
7 6 5 4 11 10 9 8 3 2 1 0



, (11.33)

and

0 1 2 3 4 5 6 7 8 9 10 11
3 2 1 0 7 6 5 4 11 10 9 8
1 0 3 2 5 4 7 6 9 8 11 10
2 3 0 1 6 7 4 5 10 11 8 9

4 5 6 7 8 9 10 11 0 1 2 3
7 6 5 4 11 10 9 8 3 2 1 0
5 4 7 6 9 8 11 10 1 0 3 2
6 7 4 5 10 11 8 9 2 3 0 1

8 9 10 11 0 1 2 3 4 5 6 7
11 10 9 8 3 2 1 0 7 6 5 4
9 8 11 10 1 0 3 2 5 4 7 6
10 11 8 9 2 3 0 1 6 7 4 5



. (11.34)
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11.5 Constructions of balanced tournament deigns

A tournament design with side N , denoted by TD(N), is to arrange the
N(2N − 1) distinct unordered pairs {{i, j} : 0 ≤ i 6= j ≤ 2N − 1} into an
N × (2N − 1) array with the following property:

(i) Every element in {0, 1, . . . , 2N − 1} is contained in precisely one cell of
each column.

In Section 3.1.3, we have shown a simple construction of a TD(N) by using
the SYNC-ETCH algorithm (Algorithm 1 in [144]). A balanced tournament
design with side N , denoted by BTD(N), is a TD(N) that satisfies the
following additional property:

(ii) No element in {0, 1, . . . , 2N − 1} is contained in more than two cells of
any row.

11.5.1 BTD(N) constructions whenN is an odd number

In this section, we show how one can apply the perfect rainbow matching
algorithm in [144] to construct a BTD(N) when N is an odd number. For
this, we view the 2N − 1 columns (in the N(2N − 1) array) as 2N − 1 time
slots, indexed from 0, 1, . . . , 2N − 2, and the N rows (in the N(2N − 1)
array) as the N channels, indexed from 0, 1, . . . , N − 1.

Fig. 11.2. The Monochromatic Complete Bipartite graph MCBi,j .
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Fig. 11.3. A chain of 5 MCBs.

The detailed steps of the perfect rainbow matching algorithm are shown
below:
Step 1. (Initial assignment at time 0) At time 0, assign theN unordered pairs
{2k, 2k + 1} to channel k, k = 0, 1, . . . , N − 1. For instance, suppose that
N = 5 and 2N − 1 = 9. Then after Step 1, {0, 1} is assigned to channel 0 at
time 0, {2, 3} is assigned to channel 1 at time 0, {4, 5} is assigned to channel
2 at time 0, {6, 7} is assigned to channel 3 at time 0, {8, 9} is assigned to
channel 4 at time 0.

Step 2. (MCBs) Excluding the N unordered pairs assigned at time 0, there
are N(2N − 2) unordered pairs remained to be assigned. As N is an
odd number, 2N − 2 is an integer multiple of 4. These N(2N − 2) un-
ordered pairs can be partitioned intoN(N −1)/2 groups, each with four un-
ordered pairs. Call the four unordered pairs {{2i, 2j}, {2i+1, 2j}, {2i, 2j+
1}, {2i+ 1, 2j + 1}} the Monochromatic Complete Bipartite (MCB) graph
induced from the two unordered pairs {2i, 2i + 1} and {2j, 2j + 1} (as
the two left-hand side nodes and the two right-hand side nodes of the bi-
partite graph shown in Figure 11.2). We denote it by MCBi,j . Note that
MCBi,j = MCBj,i as they both represent the same four unordered pairs
{{2i, 2j}, {2i + 1, 2j}, {2i, 2j + 1}, {2i + 1, 2j + 1}}. As such, there are
N(N − 1)/2 distinct MCBs. Also, as there are four unordered pairs in an
MCB, each MCB needs four time slots (in theN(2N−1) array). ForN = 5,
there are 10 MCBs.

Step 3. (Channel assignments for MCBs) For k = 0, 1, . . . , N − 1, and
d = 1, 2, . . . , (N − 1)/2, assign MCB(k+d)modN,(k−d)modN to channel k
for the four consecutive time slots 4(d− 1) + 1, 4(d− 1) + 2, 4(d− 1) + 3,
and 4(d − 1) + 4. This ensures that every symbol appears exactly twice in
channel k, except symbols 2k and 2k + 1 (that appear once at time 0). As
such, Property (ii) is satisfied. For N = 5, we have d = 1 or 2.
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For d = 1 and k = 0, MCB1,4 = {{2, 8}, {3, 8}, {2, 9}, {3, 9}} is assigned
to channel 0 for time slots 1,2,3,4.
For d = 1 and k = 1, MCB2,0 = {{4, 0}, {5, 0}, {4, 1}, {5, 1}} is assigned
to channel 1 for time slots 1,2,3,4.
For d = 1 and k = 2, MCB3,1 = {{6, 2}, {7, 2}, {6, 3}, {7, 3}} is assigned
to channel 2 for time slots 1,2,3,4.
For d = 1 and k = 3, MCB4,2 = {{8, 4}, {9, 4}, {8, 5}, {9, 5}} is assigned
to channel 3 for time slots 1,2,3,4.
For d = 1 and k = 4, MCB0,3 = {{0, 6}, {1, 6}, {0, 7}, {1, 7}} is assigned
to channel 4 for time slots 1,2,3,4.
For d = 2 and k = 0, MCB2,3 = {{4, 6}, {5, 6}, {4, 7}, {5, 7}} is assigned
to channel 0 for time slots 5,6,7,8.
For d = 2 and k = 1, MCB3,4 = {{6, 8}, {7, 8}, {6, 9}, {7, 9}} is assigned
to channel 1 for time slots 5,6,7,8.
For d = 2 and k = 2, MCB4,0 = {{8, 0}, {9, 0}, {8, 1}, {9, 1}} is assigned
to channel 2 for time slots 5,6,7,8.
For d = 2 and k = 3, MCB0,1 = {{0, 2}, {1, 2}, {0, 3}, {1, 3}} is assigned
to channel 3 for time slots 5,6,7,8.
For d = 2 and k = 4, MCB1,2 = {{2, 4}, {3, 4}, {2, 5}, {3, 5}} is assigned
to channel 4 for time slots 5,6,7,8.

Step 4. (A chain of MCBs) A set of L MCBs is called a chain of MCBs
(CMCBs) if they can be arranged in the way that

MCBi0,i1 →MCBi1,i2 → . . . →MCBiL−2,iL−1 →MCBiL−1,i0 .

(11.35)

In Figure 11.3, we show a chain of 5 MCBs. For a fixed d, if N and d are
coprime, then there exists a unique ` ∈ {0, 1, . . . , N − 1} such that k =
(−2`d) modN for any k ∈ {0, 1, . . . , N − 1}. Now we can rearrange the N
MCBs (for a fixed d) in Step 3 in the order of
MCB(d−2`d)modN,(−d−2`d)modN , ` = 0, 1, . . . , N − 1. Since

(−d− 2`d) modN = (d− 2(`+ 1)d) modN,

we have

MCBd,−dmodN →MCB−dmodN,−3dmodN → . . .

→MCB5dmodN,3dmodN →MCB3dmodN,d.

Thus, the N MCBs arranged this way form a chain of N MCBs. For the
case that N and d are not coprime, then MCB(d−2`d)modN,(−d−2`d)modN ,
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` = 0, 1, . . . , N − 1, can be further partitioned into several smaller CM-
CBs. For N = 5 and d = 1, MCB1,4, MCB4,2, MCB2,0, MCB0,3,
and MCB3,1 form a CMCB. Similarly, for N = 5 and d = 2, MCB2,3,
MCB3,4, MCB4,0, MCB0,1, and MCB1,2 form a CMCB.

Step 5. (Time slot assignments for a chain of MCBs) Call the four unordered
pairs {2i, 2j}, {2i+ 1, 2j}, {2i, 2j + 1}, and {2i+ 1, 2j + 1} in a MCBi,j
the 00, 10, 01 and 11 pairs of MCBi,j . For a chain of L MCBs in (11.35)
(with L being an odd number not smaller than 3), let T0 be the set of pairs
consisting of the 00 pair from MCBi0,i1 , the 11 pair from MCBiL−1,i0 , and
the 10 pair from the rest of MCBs, i.e.,

00→ 10→ 10→ 10→ . . .→ 10→ 10→ 11.

Let T1 be the set of pairs consisting of the 11 pair from MCBi0,i1 , the 00
pair from MCBiL−1,i0 , and the 01 pair from the rest of MCBs, i.e.,

11→ 01→ 01→ 01→ . . .→ 01→ 01→ 00.

Let T2 be the set of pairs consisting of the 01 pair from MCBi0,i1 , the 10
pair from MCBiL−1,i0 , the 00 pair from MCBi`,i`+1

for an odd `, and the
11 pair from MCBi`,i`+1

for an even `, i.e.,

01→ 00→ 11→ 00→ . . .→ 11→ 00→ 10.

Let T3 be the set of pairs consisting of the 10 pair from MCBi0,i1 , the 01
pair from MCBiL−1,i0 , the 11 from MCBi`,i`+1

for an odd `, and the 00
pair from MCBi`,i`+1

for an even `, i.e.,

10→ 11→ 00→ 11→ . . .→ 00→ 11→ 01.

Assign the set of pairs in Ts, s = 0, 1, 2, 3 in the sth time slot. By doing so,
we ensure that every symbol in a chain of MCBs appears exactly once in a
time slot. In Figure 11.4, we show the assignment of the four time slots, T0,
T1, T2 and T3 for a chain of 5 MCBs.

ForN = 5 and d = 1, the time slot assignments for the CMCB,MCB1,4,
MCB4,2, MCB2,0, MCB0,3, and MCB3,1, are

T0 = {{2, 8}, {9, 4}, {5, 0}, {1, 6}, {7, 3}},
T1 = {{3, 9}, {8, 5}, {4, 1}, {0, 7}, {6, 2}},
T2 = {{2, 9}, {8, 4}, {5, 1}, {0, 6}, {7, 2}},
T3 = {{3, 8}, {9, 5}, {4, 0}, {1, 7}, {6, 3}}.
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Fig. 11.4. The assignment of the four time slots, T0, T1, T2 and T3 for a chain of 5 MCBs.

Similarly, for N = 5 and d = 2, the time slot assignments for the CMCB,
MCB2,3, MCB3,4, MCB4,0, MCB0,1, and MCB1,2, are

T0 = {{4, 6}, {7, 8}, {9, 0}, {1, 2}, {3, 5}},
T1 = {{5, 7}, {6, 9}, {8, 1}, {0, 3}, {2, 4}},
T2 = {{4, 7}, {6, 8}, {9, 1}, {0, 2}, {3, 4}},
T3 = {{5, 6}, {7, 9}, {8, 0}, {1, 3}, {2, 5}}.

This then leads to the BTD(5) shown in Table 11.1.
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Table 11.1. A BTD(5) from the perfect rainbow matching algorithm

0 1 2 3 4 5 6 7 8
0 {0, 1} {2, 8} {3, 9} {2, 9} {3, 8} {4, 6} {5, 7} {4, 7} {5, 6}
1 {2, 3} {5, 0} {4, 1} {5, 1} {4, 0} {7, 8} {6, 9} {6, 8} {7, 9}
2 {4, 5} {7, 3} {6, 2} {7, 2} {6, 3} {9, 0} {8, 1} {9, 1} {8, 0}
3 {6, 7} {9, 4} {8, 5} {8, 4} {9, 5} {1, 2} {0, 3} {0, 2} {1, 3}
4 {8, 9} {1, 6} {0, 7} {0, 6} {1, 7} {3, 5} {2, 4} {3, 4} {2, 5}

11.5.2 The doubling construction

In this section, we show there exists a BTD(N) for N 6= 2. The approach
is based on the doubling construction. A factored BTD(N), denoted by
FBTD(N), satisfies the following additional property:

(iii) In each row there exist N cells, called a factor, that contain all the 2N
elements in {0, 1, 2, . . . , 2N − 1}.

In Table 11.2, we showed an FBTD(4) from [87], where the 4 underlined
cells in each row form a factor that contains all the symbols in {0, 1, . . . , 7}.

Table 11.2. An FBTD(4) with a factor in each row that contains the underlined cells in that
row

0 1 2 3 4 5 6
0 {3, 4} {5, 6} {1, 2} {0, 7} {4, 5} {6, 7} {0, 3}
1 {1, 6} {2, 4} {3, 5} {4, 6} {0, 2} {1, 3} {5, 7}
2 {2, 7} {0, 1} {4, 7} {1, 5} {3, 6} {0, 4} {2, 6}
3 {0, 5} {3, 7} {0, 6} {2, 3} {1, 7} {2, 5} {1, 4}

Now we argue that a BTD(N) constructed from the perfect rainbow
matching algorithm is also an FBTD(N). In Step 3 of the perfect rainbow
matching algorithm,MCB(k+d)modN,(k−d)modN , d = 1, 2, . . . , (N−1)/2,
are assigned to channel k. The two unordered pairs {2((k+d) modN), 2((k−
d) modN)+1} and {2((k+d) modN)+1, 2((k−d) modN)} are assigned
to two time slots on channel k for each d = 1, 2, . . . , (N − 1)/2. Along with
the initial assignment of the unordered pair {2k, 2k+1} to channel k at time
0, we know that for each row, there exist N cells that contain all the 2N
elements in {0, 1, 2, . . . , 2N − 1}.

The doubling construction can be used to construct an FBTD(2N) if
there exists an FBTD(N) and two 2N × 2N orthogonal Latin squares.
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Fig. 11.5. The doubling construction of an FBTD(2N) by stacking two FBTD(N)’s and
appending two 2N × 2N orthogonal Latin squares.

The idea is to stack two FBTD(N)’s in the front and then append two
orthogonal Latin squares in the end (see Figure 11.5). The detailed steps are
depicted as follows:
Step 1. Partition {0, 1, . . . , 4N − 1} into two sets S1 = {0, 1, . . . , 2N − 1}
and S2 = {2N, 2N + 1, . . . , 4N − 1}.

Step 2. (Factor cells and non-factor cells) For the FBTD(N), call the cells
in a factor of a row the factor cells. The rest of cells are called non-factor
cells. As such, there are N2 factor cells and N(N − 1) non-factor cells.
Since each symbol appears exactly once in the factor cells in a row, and at
most twice in a row, it appears at most once in the non-factor cells in a row.

Step 3. (Stacking two FBTD(N)’s) Since an FBTD(N) is an N × (2N −
1) array, we stack two FBTD(N)’s to form a 2N × (2N − 1) array. Call
the array that contains the first N rows the upper FBTD(N) and the array
that contains the last N rows the lower FBTD(N).

Step 4. (Interleaving assignments) For the N(2N − 1) unordered pairs
{{i, j} : i ∈ S1, j ∈ S1}, we assign them to the factor cells in the upper
FBTD(N) and the non-factor cells in the lower FBTD(N). On the other
hand, for the N(2N − 1) unordered pairs {{i, j} : i ∈ S2, j ∈ S2}, we as-
sign them to the factor cells in the lower FBTD(N) and the non-factor cells
in the upper FBTD(N). By doing so, every element in {0, 1, . . . , 4N − 1}
is contained in precisely one cell of each column for the first 2N−1 columns.

Step 5. (Appending two orthogonal Latin squares) Append the two 2N×2N
orthogonal Latin squares to the 2N×(2N−1) array to form a 2N×(4N−1)
array. Map S1 to the symbols in the first Latin square and S2 to the symbols
in the second Latin square. As these two Latin squares are orthogonal, each
of the N2 unordered pairs {{i, j} : i ∈ S1, j ∈ S2} appears exactly once.
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Moreover, the 2N cells in the last 2N columns of a row form a factor for the
constructed FBTD(2N).

Theorem 11.5.1. ( [86]) There exists an FBTD(N) for all N 6= 2.

Proof. We have shown an FBTD(4) in Table 11.2. Using the perfect rain-
bow matching algorithm, one can construct an FBTD(N) for an odd N .
The doubling construction allows us to construct an FBTD(2N) if there
exists an FBTD(N) and two 2N × 2N orthogonal Latin squares. Since
there exist two 2N × 2N orthogonal Latin squares except for N = 1 and
N = 3, we know that there exists an FBTD(N) except for N = 2 and
N = 6. In Figure 11.6, we show an FBTD(6) from [87]. By an exhaustive
enumeration of cases, it is easy to see that there does not exist a BTD(2).

Fig. 11.6. An FBTD(6) from [87] (with a factor in each row that contains the underlined
cells in that row).


