
Anchored Desynchronization
Ching-Min Lien, Shu-Hao Chang, Cheng-Shang Chang, and Duan-Shin Lee

Institute of Communications Engineering
National Tsing Hua University
Hsinchu 30013, Taiwan, R.O.C.

Email: keiichi@gibbs.ee.nthu.edu.tw; s9864549@m98.nthu.edu.tw;
cschang@ee.nthu.edu.tw;lds@cs.nthu.edu.tw

Abstract—Distributed algorithms based on pulse-coupled os-
cillators have been recently proposed in [4], [14] for achieving
desynchronization of a system of identical nodes. Though these
algorithms are shown to work properly by various computer
simulations, they are still lack of rigorous theoretical proofs
for both the convergence of the algorithms and the rates of
convergence for these algorithms. On the other hand, all the
nodes are not likely to be identical in many practical applications.
In particular, there might be a node that needs to interact
with the “outside” world and thus may not have the freedom
to adjust its local clock. Motivated by all these, in this paper
we consider the desynchronization problem in a system where
there exists an anchored node that never adjusts the phase of its
oscillator. For such a system, we propose a generic anchored
desynchronization algorithm that achieves ε-desynchrony (de-
fined in [4]) in O(n2 ln(n

ε
)) rounds of firings. We also prove

that our algorithm converges even for the generalized processor
sharing (GPS) scheme, where every node is assigned a weight
and the amount of resource received by a node is proportional
to its weight. In comparison with the original algorithm in [4],
we show that the rate of convergence of the original algorithm
in [4] is not always better than ours and it is only better in the
asymptotic regime.

I. INTRODUCTION

Desynchronization has many applications in resource
scheduling in wireless networks. For example, if there are
n nodes sharing a common wireless channel, a fair resource
scheduling is to perform a simple round-robin schedule. In
such a schedule, time is divided into frames with n equal
time slots in each frame, and every node is assigned exactly
one time slot to transmit in each frame. Such a protocol is
known as Time Division Multiple Access (TDMA) that can
provide collision-free packet transmission and fully utilizes
the channel in heavy load. In order for TDMA to work, it
requires that every node to know the exact time to transmit in
the time slot assigned to the node. This is generally done by
a centralized coordinator (mostly a base station) that notifies
every node in a wireless network.

Instead of using a centralized coordinator, Degesys, Rose,
Patel, and Nagpal [4] considered a general framework for
distributed algorithms to achieve desynchronization needed in
TDMA. In their framework, nodes are modelled by pulse-
coupled oscillators in [16], [11] that were designed for car-
diac/firefly synchronization. They assume that (i) all the n
nodes can communicate with each other, (ii) each node is mod-
elled by an oscillator with the same fundamental frequency,
and (iii) there is no clock drift in every oscillator. Thus, the

state of a node can be represented by the phase of its oscillator.
Without loss of generality, it is convenient to assume that the
fundamental frequency is 1 and the phase is in [0, 1].

Their DESYNC-STALE algorithm in [4] works as follows.
When a node reaches the end of its cycle, i.e., its phase reaches
1, it fires and resets its phase back to 0. The firing also notifies
all the other nodes that it begins a new cycle. Then it waits
for the next node to fire and jumps to a new phase according
to a certain function. Its jumping function only uses the firing
information of the node fires before it and the node fires after
it. It was shown in [4] that the DESYNC-STALE algorithm
achieves desynchronization, i.e., the phases of the n nodes
are spaced as evenly as possible, if the new phase of each
jump in a node is moved toward to an ”estimated” midpoint
of the phases of two neighboring nodes. However, the rate
of convergence of the DESYNC-STALE algorithm is only
conjectured to be O(n2) from various computer simulations.

Pagliari, Hong and Scaglione [14] considered an important
extension of the fair resource scheduling scheme to the gener-
alized processor sharing (GPS) scheme [15], where every node
is assigned a weight and the amount of bandwidth received
by a node is proportional to its weight. If the weights are
rational numbers, a näive implementation of the GPS scheme
is simply to have each node in the DESYNC-STALE algorithm
to maintain an integer number of nodes that is proportional to
its weight. As addressed in [14], such an approach is obviously
inefficient as it increases the number of firings for each node
and thus increases the hardware complexity of each node and
the convergence time. Instead, Pagliari, Hong and Scaglione
[14] proposed a genuine algorithm with two oscillators in each
node and showed that their algorithm indeed converges in the
ideal case where the up-to-date phase information is known.
However, the convergence of the stale case was only verified
by computer simulations.

Though both the DESYNC-STALE algorithm in [4] and
the extension of the GPS scheme in [14] are shown to work
properly by various computer simulations, they are still lack
of rigorous theoretical proofs in many aspects, including the
rate of convergence of the DESYNC-STALE algorithm and
the convergence of the stale GPS scheme in [14]. On the
other hand, all the nodes are not likely to be identical in many
practical applications. In particular, there might be a node that
needs to interact with the “outside” world and thus may not
have the freedom to adjust its local clock, e.g., the master

Fire

1i⊕

i

1i −

b∆

f∆

Fig. 1. Illustration of the phase adjustment of node i immediately after node
i⊕ 1 fires (the white node indicates the new phase position of node i)

node in Bluetooth, the collector node in a wireless sensor
network, and the master clock in parallel analog-to-digital
converters. Instead of assuming that all the nodes are identical,
in this paper we consider the desynchronization problem with
an anchored node that never adjusts its phase. Except the
anchored node, all the other nodes are identical and they do
not know which node the anchored node is.

For the anchored desynchronization problem, our contri-
butions consist of three parts: (i) We are able to formally
prove that our generic anchored desynchronization algorithm
achieves ε-desynchrony (defined in [4]) in O(n2 ln(n

ε)) rounds
of firings. This partially solves the conjecture for the rate of
convergence for the DESYNC-STALE algorithm in [4]. (ii)
For the generalized processor sharing problem, we show that
our anchored desynchronization algorithm indeed converges
even in the stale case. This provides additional theoretical
support for the convergence problem in [14]. (iii) In compari-
son with the DESYNC-STALE algorithm in [4], we show that
the rate of convergence of the DESYNC-STALE algorithm in
[4] is not always better than ours and it is only better in the
asymptotic regime.

Due to space limitation, all the mathematical proofs are
omitted here and we refer the readers to our full technical
report [9].

II. ANCHORED DESYNCHRONIZATION FRAMEWORK

As in [4], we consider the desynchronization problem in
a complete graph with n nodes, i.e., all the n nodes can
communicate with each other. Each node is modelled by an
oscillator with frequency 1 and there is no clock drift in
every oscillator. Let φi(t) ∈ [0, 1] be the phase of node i
at time t, i = 0, 1, . . . , n − 1. Upon reaching φi(t) = 1,
node i fires (or pulses) indicating the termination of its cycle
to the other nodes. Upon firing, the node resets its phase to
φi(t+) = limε↓0 φi(t + ε) = 0.

The objective of our anchored desynchronization algorithm
is to adjust the phase of each node in a distributed manner
so that the phases of the n nodes can be spaced as evenly as
possible (or as close as possible to the targeted positions). We
outline our anchored desynchronization algorithm as follows.
Algorithm 1. (General framework for anchored desynchro-
nization)
[(i)] Anchored node: node 0 is the anchored node and it never
adjusts its phase when other nodes fire.

Fire

0()mφ +

1()mφ +

2()mφ +

3()mφ +

4()mφ +

1()x m

2()x m 3
()x m

5
()x m

4
()x m

Fig. 2. The state of the system with n = 5 at time m+ (the anchored node
is marked with stripes)

[(ii)] Phase adjustment: except the anchored node, every node
keeps track of three events: the firing time immediately before
it fires, its firing time, and the firing time immediately after it
fires. Call the node that fires immediately after it fires its next
node. Let ∆f (resp. ∆b) be the absolute value of the difference
between the firing time immediately after (resp. before) it fires
and its firing time (see Figure 1). Suppose that the next node
of node i fires at some time τ . Then node i adjusts its phase
by setting

φi(τ+) = fi(φi(τ), ∆b,∆f), (1)

where fi(·, ·, ·) is a deterministic function available to node i.
Without loss of generality, we assume that the phases of the

n nodes are initially ordered as follows:

1 = φ0(0) > φ1(0) > φ2(0) > . . . > φn−1(0) > 0. (2)

Thus, node 0 is the first one to fire at time 0 and the phase of
node 0 is reset to 0, i.e., φ0(0+) = 0. To ease our presentation,
the initial firing of node 0 at time 0 is counted as the 0th time
firing of node 0. Also, we define i⊕ 1 as (i + 1) mod n. As
there is no clock drift, node 0 will fire for the mth time at
time m, m = 1, 2, In order to make sure that every node
fires according to the desired order, i.e., node 0, node 1, node
2, . . ., node n − 1, and then node 0, we need the following
non-overtaking condition.
(Non-overtaking condition) Suppose that node i ⊕ 1 fires
at some time τ for some i = 1, 2, . . . , n − 1. Then, node i
will adjust its phase such that its phase satisfies the following
inequality:

φi−1(τ) > φi(τ+) > φi⊕1(τ+) = 0. (3)

The condition in (3) ensures that the order of the phases is
preserved after the adjustment of the phase of every node. By
so doing, every node fires exactly once in every unit of time.
Also, except the anchored node, every node adjusts its phase
exactly once in every unit of time when its next node fires.

Suppose that the non-overtaking condition is satisfied
(which we will verify later for our algorithm). Then we can
take a snap shot of the phases immediately after node 0 fires
at time m. Let

x(m) = (x1(m), x2(m), . . . , xn(m))T ,

where

xi(m) =

1− φ1(m+) for i = 1
φi−1(m+)− φi(m+) for i = 2, 3, . . . , n− 1
φn−1(m+) for i = n

.

(4)
As shown in Figure 2, xi(m), i = 1, 2, . . . , n−1, is the phase
difference between node i − 1 and node i immediately after
node 0 fires at time m, and and xn(m) is the phase difference
between node n − 1 and node 0 immediately after node 0
fires at time m. In this paper, we will use x(m) as the state
vector of our algorithm. In particular, we have from the initial
condition in (2) that

x(0) = (1− φ1(0), φ1(0)− φ2(0), . . . ,
φn−2(0)− φn−1(0), φn−1(0))T

and the state vector indeed contains nonzero elements. Let
τi(m) be the time that node i fires for the mth time. Then, the
governing dynamics of the system can be derived as follows.

Lemma 1: For some i = 1, 2, . . . , n − 1, suppose that the
non-overtaking condition in (3) is satisfied up to τi(m + 1)+,
i.e., the time immediately after node i fires for the (m + 1)th

time. Under Algorithm 1, the following holds:
(i) The phase of node i when (or immediately before)

node i⊕ 1 fires for the (m + 1)th time is

φi(τi⊕1(m + 1)) = xi+1(m). (5)

(ii) The phase of node i immediately after node i ⊕ 1
fires for the (m + 1)th time is

φi(τi⊕1(m + 1)+)
= fi(xi+1(m), xi(m), xi+1(m)). (6)

(iii) For i = 1, the phase of node i− 1 immediately after
node i⊕ 1 fires for the (m + 1)th time is

φi−1(τi⊕1(m + 1)) = φ0(τ2(m + 1))
= x1(m) + x2(m). (7)

(iv) For i > 1, the phase of node i− 1 immediately after
node i⊕ 1 fires for the (m + 1)th time is

φi−1(τi⊕1(m + 1))
= fi−1(xi(m), xi−1(m), xi(m)) + xi+1(m).

(8)
As a direct consequence of Lemma 1 (ii), (iii) and (iv), the

non-overtaking condition in (3) can be easily checked by the
conditions stated in the following corollary.

Corollary 2: For some i = 1, 2, . . . , n−1, suppose that the
non-overtaking condition in (3) is satisfied up to τi(m + 1)+,
i.e., the time immediately after node i fires for the (m + 1)th

time. Then the non-overtaking condition in (3) is satisfied up
to τi⊕1(m + 1)+, i.e., the time immediately after node i ⊕ 1
fires for the (m + 1)th time if for i = 1

x1(m) + x2(m) > f1(x2(m), x1(m), x2(m)) > 0, (9)

and for i > 1

fi−1(xi(m), xi−1(m), xi(m)) + xi+1(m)
> fi(xi+1(m), xi(m), xi+1(m)) > 0. (10)

III. GENERIC ANCHORED DESYNCHRONIZATION

In this section, we propose our generic anchored desynchro-
nization algorithm by choosing

fi(φi(τ), ∆b,∆f) = γφi(τ) + (1− γ)
∆b + ∆f

2
, (11)

for 0 ≤ γ < 1 and i = 1, 2, . . . , n − 1. Note that the
phase adjustment rule in (11) is exactly the same as that
in the DESYNC-STALE algorithm in [4]. For γ = 0, the
rule simply adjusts the phase to the stale midpoint of two
neighboring nodes. As such, the parameter 1− γ is called the
jump size parameter in [4]. Thus, the only difference between
the DESYNC-STALE algorithm in [4] and ours is the anchored
node. Though it was shown in [4] that the DESYNC-STALE
algorithm indeed achieves desynchronization, it is still not
clear what the rate of convergence is. With the insertion of
the anchored node, we are able to obtain a formal theoretical
result for the rate of convergence.

For 0 ≤ γ < 1, the governing dynamics of the phases can
be derived as shown in our technical report [9] (Lemma 3), and
the dynamics of phase difference x can be thus represented in
the matrix form as

x(m + 1) = Wx(m), (12)

where x(m) = (x1(m), x2(m), . . . , xn(m))T is the state
vector and W = (Wij) is the n× n tridiagonal matrix with

Wij =

1+γ
2 for i = j = 1 or i = j = n,

γ for i = j = 2, . . . , n− 1,
1−γ

2 for i = j − 1 = 1, 2, . . . , n− 1,
1−γ

2 for i = j + 1 = 2, . . . , n,
0 otherwise.

(13)

For 0 ≤ γ < 1, we have Wij ≥ 0. Moreover, both the row
sums and the column sums of W are equal to 1, i.e.,

n∑

i=1

Wij = 1, j = 1, 2, . . . , n, (14)

and
n∑

j=1

Wij = 1, i = 1, 2, . . . , n. (15)

Such a matrix is known as a doubly stochastic matrix (see
e.g., the book by Marshall and Olkin [10]). In view of the
recursion for the state vectors in (12), there is a partial
ordering, known as the majorization ordering ([10], p 20,
Theorem 2.A.4), among the sequence of the state vectors
x(m). As a direct consequence of the majorization ordering,
we know that

∑n
i=1 g(xi(m)) is decreasing in m for any con-

vex function g ([10], p 108, Proposition 4.B.1). In particular,∑n
i=1 |xi(m) − 1

n | is decreasing in m. To further understand
the rate of convergence, we need to identify the eigenvalues
of the matrix W and this is done in the following proposition.

Proposition 3: The n eigenvalues of the n × n matrix W
are γ + (1− γ) cos(iπ

n), i = 0, 1, . . . , n− 1. Thus, the largest
eigenvalue of W is 1. Moreover, for 0 ≤ γ ≤ 1, the absolute
values of the other eigenvalues of W are bounded above

by γ + (1 − γ) cos(π
n). Thus, the second largest eigenvalue

modulus (SLEM) of W, defined as the maximum of the
absolute values of the other eigenvalue, is γ +(1−γ) cos(π

n).
Analogous to the definition of desynchronization accuracy

in [5], we define the desynchronization accuracy as the sum
of the absolute deviations from perfect desynchrony. We say
that the system is ε-desynchronized after m rounds of firings
if

n∑

i=1

∣∣∣∣xi(m)− 1
n

∣∣∣∣ ≤ ε. (16)

Theorem 4: For 0 ≤ γ < 1, a system of n nodes whose
dynamics are governed by the generic anchored desynchro-
nization algorithm, i.e., Algorithm 1 with fi in (11), achieves
ε-desynchrony in O(n2 ln(n

ε)/(1− γ)) rounds of firings.

IV. GENERALIZED PROCESSOR SHARING

An important extension of the fair resource scheduling
scheme is the generalized processor sharing (GPS) scheme
addressed in [15], [14]. In the GPS scheme, every node is
assigned a weight and the amount of bandwidth assigned to a
node should be proportional to its weight. For this purpose, we
will extend the generic anchored desynchronization algorithm
so that the phase differences are proportional to the weights.
Specifically, let αi > 0 be the weight assigned to node i,
i = 0, 1, . . . , n− 1. The objective of this section is to propose
an anchored desynchronization algorithm so that for all i

lim
m→∞

∣∣∣∣∣xi(m)− αi−1∑n−1
j=0 αj

∣∣∣∣∣ = 0. (17)

For this objective, we choose for i = 1, 2, . . . , n− 1,

fi(φi(τ),∆b, ∆f) = γφi(τ) + (1− γ)βi(∆b + ∆f), (18)

where
0 < βi = αi/(αi−1 + αi) < 1. (19)

Note that for this algorithm to work, node i needs to have
the information of αi and αi−1. If every node knows its
own weight at the beginning, every node still needs to pass
its own weight to its next node. This information might be
embedded when a node fires. Another trick, as proposed in
[14], is for every node to have two oscillators and a universal
weight δ that is known to every node. In such a setting, every
node behaves as if it has two virtual nodes and the system
can thus be viewed as a system of 2n nodes with weights
α0, δ, α1, δ, . . . , αn−1, δ. As δ is known to each node, each
node now has the information of the weight of the node fired
before it. For such a system, the amount of bandwidth received
by node i is then proportional to αi + δ. As discussed in
[14], the constant δ needs to be relatively small to ensure
“proportional fairness.”

Analogous to the derivation for the recursive equation for
the state vector in (12), the governing dynamics of the system
with generalized processor sharing can be represented as

x(m + 1) = W̃x(m), (20)

where W̃ = (W̃ij) is the n× n tridiagonal matrix with

W̃ij =

1− (1− γ)β1, for j = i = 1,
(1− γ)(1− βi), for j = i + 1,
γ + (1− γ)(βi−1 − βi), for j = i 6= 1 or n,
(1− γ)βi−1, for j = i− 1,
1− (1− γ)(1− βn−1) for j = i = n,
0, otherwise.

(21)

Then, the convergence of the system with generalized proces-
sor sharing can be guaranteed as follows.

Theorem 5: Suppose that the functions fi, i = 1, 2, . . . , n−
1, are chosen in (18) with 1/2 ≤ γ < 1. Under Algorithm
1, the state vector x of the system of n nodes converge to
α = (α0, α1, . . . , αn−1), .i.e.,

lim
m→∞

∣∣∣∣∣xi(m)− αi−1∑n−1
j=0 αj

∣∣∣∣∣ = 0, i = 1, 2, . . . , n.

V. COMPARISON WITH THE DESYNC-STALE
ALGORITHM

In this section, we compare the rate of convergence of our
anchored desynchronization and that of the DESYNC-STALE
algorithm in [4]. As we mentioned before, the only difference
between these two algorithms is that there is an anchored node
in ours that never adjusts its phase. In Figure 3, we consider
the case for five nodes, i.e., n = 5, and plot the second largest
eigenvalue modulus (SLEM) of the matrix W in (12), i.e.,
γ + (1 − γ) cos(π

n) in Proposition 3, and the SLEM of the
matrix in (10) of [4] for n firings. From this figure, it is clear
that the DESYNC-STALE algorithm is not always better. To
explain this, we replace the jump size α in (12) of [4] by
1− γ, and the characteristic polynomial in (10) of [4] can be
rewritten as

λn+1 − 1− γ

2
λ2 − γλ− 1− γ

2
= 0. (22)

Note that the DESYNC-STALE algorithm may not converge
if the jump size is chosen to be 1 (the maximum jump size).
This is because there is an eigenvalue −1 in (22) if the jump
size 1 − γ is set to be 1 and n is an odd number. As such,
when the jump size is close to 1 and n is an odd number, the
rate of convergence of our algorithm is better than that of the
DESYNC-STALE algorithm in [4].

To better understand the rate of convergence of the
DESYNC-STALE algorithm in [4], let λ2 be one of the roots
in (22) that correspond to the SLEM of the matrix in (10)
of [4]. As shown in [4], the polynomial in (22) is a stable
polynomial and thus |λ2| < 1 for 0 < γ < 1. In the
following, we derive an approximation for |λ2|n. Our approach
is to represent the roots in (22) by their polar coordinates.
Specifically, we let λ2 = R2e

iθ2 , where R ≥ 0, 0 ≤ θ < 2π
and i =

√−1. Since λ2 corresponds to the SLEM of the
characteristic polynomial in (22), it seems plausible to make
the following approximation

R2 ≈ 1. (23)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 0.754
Y: 0.516

1−γ

X: 0.743
Y: 0.4866

Anchored

1−2γ

DESYNC−STALE

γ+(1−γ)cos(2π/n)

Fig. 3. Numerical results for the SLEM of the anchored desynchronization
algorithm with n = 5 (marked in blue) and that of the corresponding
DESYNC-STALE algorithm in [4] (marked in red) with respect to various
jump size 1− γ in (0, 1)

Then, one can verify that

|λ2|n = Rn
2 ≈ max

[
γ + (1− γ) cos

(
2π

n

)
, 1− 2γ

]
(24)

for an odd n, and

|λ2|n = Rn
2

≈ max
[
γ + (1− γ) cos

(
2π

n

)
,−γ + (1− γ) cos

(π

n

)]

(25)

for an even n. As clearly shown in Figure 3, the approxima-
tions in (24) matches very well to the true numerical values
for n = 5. Through extensive numerical computations, we find
that the approximations in (24) and (25) are also extremely
good for other values of n. For more discussions, especially
for the connections to the distributed averaging problem [18],
please see the full report [9].

VI. CONCLUSION

In this paper, we considered the desynchronization problem
in a system based on pulse-coupled oscillators. Unlike the
schemes in [4], [14], we assume there exists an anchored node
that never adjusts the phase of its oscillator. For such a system,
we proposed a generic anchored desynchronization algorithm
similar to the DESYNC-STALE algorithm in [4]. Though
the only difference between our anchored desynchronization
algorithm and the DESYNC-STALE algorithm in [4] is the
anchored node, we are able to rigourously prove the rate of
convergence of our algorithm. Specifically, we show that our
algorithm achieves ε-desynchrony in O(n2 ln(n

ε)) rounds of
firings. We also proved that our anchored desynchronization
algorithm converges even for the generalized processor sharing
(GPS) scheme previously studied in [14]. In terms of the rate
of convergence, the DESYNC-STALE algorithm in [4] is not
always better than ours. For this, we derived an approximation
for the SLEM of the matrix in (10) of [4] for n firings.

There are two possible extensions.
(i) Randomized algorithms: here we only assume that fi’s
are deterministic functions. Analogous to the extension of the
deterministic distributed averaging algorithms in [18] to the
randomized gossip algorithms in [2], we note that it is also

possible to extend our analysis to random functions, e.g., with
a certain probability a node will not adjust its phase when its
next node fires.
(ii) Multihop setting: here we consider the setting with a com-
plete graph, i.e., every node can hear (and interfere with) every
other node. Extension to the setting with a general interfere
graph (see e.g., [6], [12]) appears to be much more difficult.
Unlike the single hop setting, where perfect desynchrony is
capacity achieving, approaches like graph coloring only yield
feasible transmission schemes (or matchings) and they are not
guaranteed to be capacity achieving as the maximum weighted
matching in [17] and the dynamic frame sizing algorithm in
[8].

REFERENCES

[1] S. Boyd, P. Diaconis, L. Xiao, “Fastest mixing markov chain on a graph,”
SIAM Review, Vol. 46, No. 4, pp. 667-689, 2004.

[2] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, Vol. 52, No. 6,
pp. 2508–2530, 2006.

[3] P. Diconis and D. Stroock, “Geometric bounds for eigenvalues of markov
chains, The Annals of Applied Probability, Vo. 1, pp. 36–61, 1991.

[4] J. Degesys, I. Rose, A. Patel, and R. Nagpal, “Desync: Self-organizing
desynchronization and TDMA on wireless sensor networks,” in Interna-
tional Conference on Information Processing in Sensor Networks (IPSN),
2007.

[5] J. Degesys, I. Rose, A. Patel, R. Nagpal, “Desynchronization: the theory
of self-organizing algorithms for round-robin scheduling,” First Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems, 2007.
SASO ’07.

[6] J. Degesys and R. Nagpal, “Towards Desynchronization of Multi-hop
Topologies,” Second International Conference on Self-Adaptive and Self-
Organizing Systems, 2008. SASO ’08.

[7] D. A. Levin, Y.Peres, and E. L. Wilmer, Markov Chains and Mixing
Times. American Mathematical Socieity, 2009.

[8] C.-M. Lien, C.-S. Chang, J. Cheng, and D.-S. Lee, ”Maximizing through-
put in wireless networks with finite internal buffers,” Proc. of IEEE
INFOCOM 2011.

[9] C.-M. Lien, S.-H. Chang, C.-S. Chang, and D.-S. Lee, ”An-
chored desynchronization,” Techincal Report, 2011. Available from
http://www.ee.nthu.edu.tw/cschang/AnchoredTechnicalReport.pdf.

[10] A.W. Marshall and I. Olkin, Inequalities: Theory of Majorization and
Its Applications. New York: Academic Press, 1979.

[11] R. Mirollo and S. Strogatz. Synchronization of pulse-coupled biological
oscillators. SIAM Journal of Applied Math, Vol. 50, No. 6, pp. 1645V62,
Dec. 1990.

[12] A. Motskin, T. Roughgarden, P. Skraba and L. Guibas, “Lightweight
coloring and desynchronization for networks,” Proc. of IEEE INFOCOM
2009.

[13] R. Nelson, Probability, Stochastic Processes, and Queueing Theory: the
Mathematics of Computer Performance Modeling. Springer-Verlag: New
York, 1995.

[14] R. Pagliari, Y.-W. Hong, and A. Scaglione, “Bio-inspired algorithms for
decentralized round-robin and proportional fair scheduling, IEEE Journal
on Selected Areas in Communications: Special Issue on Bio-Inspired
Networking, Vol. 28, No. 4, pp. 564-575, May 2010.

[15] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated service networks: the single-node
case,” IEEE/ACM Trans. Networking, Vol. 1, pp. 344-357, 1993.

[16] C. S. Peskin. Mathematical Aspects of Heart Physiology. Courant
Institute of Mathematical Sciences, New York University, New York,
1975.

[17] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control, vol.
31, no. 12, pp. 1936–1948, 1992.

[18] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., Vol. 53, No. 1, pp. 65-78, Sep. 2004.

