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Abstract— Recently, there is tremendous interest in
the research of two-stage switches. Unlike input-buffered
switches, two-stage switches do not need to find matchings
between inputs and outputs. As such, they are much easier
to scale and much simpler to implement. However, two-
stage switches usually suffer from the out-of-sequence
problem. Though there are several methods proposed in
the literature to solve such a problem, these proposed
methods require either complex scheduling or additional
hardware, which defeats the purpose of design simplicity.
To design a simple and high performance switch using
the two-stage architecture, we address three buffer design
problems in this paper: re-sequencing buffers, central
buffers and input buffers. We show that the size of the
re-sequencing buffer needs to be proportional to the size
of the central buffer to ensure that no packets are lost due
to re-sequencing. Via simulations, we find that a moderate
size of central buffer yields good throughput when traffic
is not bursty. However, when the traffic is bursty, one
needs to address the head-of-line blocking (HOL) problem
at the input. We also find that using the round-robin
service policy for multiple virtual output queues (VOQ)
at inputs may exhibit a catastrophic phenomenon, called
a non-ergodic mode. When a switch is trapped in a non-
ergodic mode, its throughput is sharply reduced. To solve
such a problem in input buffers, we show that one may
introduce “randomness” into a switch to jump out of a
non-ergodic mode.
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buffered switches, non-ergodic mode, iSLIP
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Fig. 1. The two-stage switch in [3]

I. INTRODUCTION

Recently, there is tremendous interest in the research
of the two-stage switches (see e.g., [3], [4], [10], [11],
[9], [7]). Unlike most input-buffered switches in the
literature (e.g., PIM in [1], wave front arbitration in [16],
SLIP in [13] and DRRM in [12]), two-stage switches
do not need to find matchings between inputs and
outputs. As such, the communication overhead and the
computation overhead incurred by finding matchings in
input-buffered switches could be minimized in two-stage
switches.

The original design of the two-stage switch archi-
tecture in [3] consists of two crossbar switch fabrics
with parallel central buffers between them (see Figure
1). The objective of the first stage is to perform load
balancing. The first stage is a unbuffered crossbar switch
with periodic connection patterns generated from a one
cycle permutation matrix. The period of the connection
patterns is equal to the number of input/output ports
and every input-output pair is connected exactly once
in a period. By so doing, packets that arrives at the first
stage are distributed evenly to the central parallel buffers
between the two switch fabrics. This makes the traffic
coming to the second stage uniform.

The objective of the second stage is to perform
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switching. As the traffic coming to the second stage is
uniform, switching can be easily done by time division
multiplexing. As such, one can use the same connection
patterns in the first stage for the second stage.

It is shown in [3] that such a two-stage switch has the
following advantages:

(i) Scalability: the connection patterns in both
switch fabrics are deterministic and periodic.
There is no need to find matchings.

(ii) Low hardware complexity: only two crossbar
switch fabrics and buffers between them are
required. Neither internal speedup nor rate es-
timation is needed in the switch. Moreover, as
one only needs to implement a set of connec-
tion patterns generated by a one cycle permu-
tation matrix, there is no need to implement
a full size crossbar. In fact, a Banyan type of
multi-stage connecting network is enough (see
e.g., [5]).

(iii) 100% throughput: under a mild technical con-
dition on the input traffic, the two-stage switch
in [3] achieves 100% throughput as an output-
buffered switch for both unicast and multicast
traffic with fan-out splitting.

(iv) Low average delay in heavy load and bursty
traffic: when input traffic is bursty, load balanc-
ing is very effective in reducing delay, and the
average delay of the two-stage switch is proven
to converge to that of an output-buffered switch
under heavy load.

(v) Efficient buffer usage: when both the two-
stage switch and the corresponding output-
buffered switch are allocated with the same
finite amount of buffer at each port, the packet
loss probability in the two-stage switch is much
smaller than that in an output-buffered switch
when the buffer is large.

One of the problems of the two-stage switch in [3]
is that packets may be out of sequence. If the size of
the parallel buffers is infinite, then the re-sequencing
delay cannot be bounded in [3]. To solve the out-of-
sequence problem, several methods have been proposed.
The most common method is to schedule packets in
a careful manner so that re-sequencing delay can be
bounded [4], [10]. However, such an approach is at the
cost of adding complicated hardware and computation
overhead, which defeats the purpose of simplicity. The
second method is to use the rate information to control
incoming traffic entering the switch [6]. This is based
on the assumption that the rate information is known. It
is also difficult to adapt to traffic fluctuation. The third

method, known as the mailbox switch in [5], uses a set
of symmetric connection patterns to set up a feedback
path from the central buffer to an input/output port.
By feeding back the information of packet departure
time, an input port can compute the waiting time needed
for the next packet to depart in order. The mailbox
approach does not have non-scalable communication and
computation overheads, but its cost is the reduction of
the throughput. By allowing limited re-sequencing delay,
packets can be re-packed into mailboxes and it is shown
in [5] that the throughput of a mailbox switch with
limited re-sequencing delay can achieve 95% throughput.

Though the mailbox switch performs reasonably well
without non-scalable communication and computation
overheads, it is natural to ask the question whether
one can build a simpler switch that has comparable
performance to the mailbox switch. In this paper, we
will propose a switch architecture that only requires to
feedback one bit of information, i.e., whether a packet is
successfully transmitted to a central buffer or not. There
is no need for further communication and computation.
We will do this by addressing three design problems:
re-sequencing buffers in Section III, central buffers in
Section IV, and input buffers in Section V. We show
that the size of the re-sequencing buffer needs to be
proportional to the size of the central buffer to ensure that
no packets are lost due to re-sequencing. Via simulations,
we find that a moderate size of central buffer yields good
throughput when traffic is not bursty. However, when the
traffic is bursty, one needs to address the head-of-line
blocking (HOL) problem at the input. We also find that
using the round-robin service policy for multiple virtual
output queues (VOQ) at inputs may exhibit a catastrophic
phenomenon, called a non-ergodic mode. When a switch
is trapped in a non-ergodic mode, its throughput is
sharply reduced. To solve such a problem in input
buffers, we show that one may introduce “randomness”
into a switch to jump out of a non-ergodic mode.

II. THE SWITCH ARCHITECTURE

In this paper, we assume that packets are of the
same size. Also, time is slotted so that a packet can be
transmitted within a time slot. In Figure 2, we propose a
simple N ×N two-stage switch. As in the original two-
stage switch in [3], the switch consists of two crossbar
switch fabrics. There are N finite central buffers between
the two switch fabrics and N re-sequencing buffers in
the N output ports. As to input buffers, the virtual Output
Queue technique (VOQ) is adopted for each input port.

Both switch fabrics are running a series of periodic
connection patterns and they produce the same connec-
tion pattern in every time slot. The period is equal to N .
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Fig. 2. The switch architecture

During the tth time slot, the ith input port is connected
to the jth output port if

j = h(i, t) = ((t − i) mod N) + 1. (1)

As in the mailbox switch [5], this kind of connection
patterns are symmetric and imply the following features.

• In every time slot, if the ith input port is connected
to the jth output port, then the jth input port is also
connected to the ith output port.

• The ith input port is connected to the 1st output at
time i, the 2nd output at time i + 1,. . ., the N th

output at time i + N − 1, the 1st output at time
i + N ,. . .. That is to say, a specific input port is
connected to one of the N output ports in the round-
robin fashion.

Furthermore, due to the identical connection patterns of
the two switch fabrics, the ith input port is connected to
the jth central buffer which is connected to the ith output
port at the tth time slot. As the connection patterns is
periodic, each input/output port is connected to the each
of the N central buffers exactly once in every N time
slots.

One can take advantage of the symmetric connection
patterns by folding the two switch fabrics into one. By so
doing, we can save the cost of hardware implementation.
However, the folded switch fabric needs to be accelerated
twice the speed of the non-folded one.

Most importantly, we assume that both the input port
and the output port are built in a line card. As such, the
symmetric connection patterns set up a feedback path
from the central buffer to the line card. This feedback
path is used for notifying an input port whether a HOL
packet is accepted by the connected central buffer or not.

The original two-stage switch in [3] needs infinite cen-
tral buffers to achieve 100% throughput. The question is
then how one determines the size of central buffers to
achieve high throughput.Here we assume that there are
N finite central buffers (indexed from 1 to N ) between
the two switch fabrics. Each central buffer have N bins

(indexed from 1 to N ), each bin is a First In First Out
(FIFO) queue with F cells (indexed from 1 to F ), and
each cell has the capacity for storing exactly one packet.
Hence the size of a central buffer is equal to NF . The
packets destined for the ith output port are stored in the
cells of the ith bin of a central buffer. We will show how
the parameter F affects the throughput in Section IV.

Since the central buffer is finite, the bins of a central
buffer may not have a empty cell to hold a new packet.
When this happens, the packet is rejected and it needs to
be queued at the input port. Therefore, input buffers are
needed for the input ports. As such, there is the notorious
head-of-line (HOL) blocking problem. The question is
then how one builds the input buffers to achieve
high throughput. In Section V, we will show a very
interesting phenomenon. If one uses the simple round-
robin scheduling in multiple VOQs at each input port, the
switch might eventually get into a “non-ergodic” mode
and the throughput is sharply reduced in such a mode.
To avoid getting trapped in a non-ergodic model, we
will propose several tentative solutions by introducing
“randomness” into the switch.

As in the two-stage switch in [3], there is the out-of-
sequence problem. To solve the problem, one needs to
add a re-sequencing buffer. The question is then how to
build a finite re-sequencing buffer so that no packets
are lost due to re-sequencing.We will show in Section
III that a re-sequencing buffer with size N × 2NF at
each output port is enough to solve the problem.

III. FIRST DESIGN PROBLEM: RE-SEQUENCING

BUFFERS

In this section, we propose a re-sequencing scheme so
that no packets are lost due to re-sequencing. We show
that a re-sequencing buffer with size N × 2NF at each
output port is enough to solve the re-sequencing problem.

A. Maximum re-sequencing delay

First, we show the worst case that leads to the max-
imum re-sequencing delay. We define flow (i, j) as a
sequence of packets that arrive at the ith input port
and are destined for the j th output port. The out-of-
sequence problem may occur while packets pass through
the central buffer. We show the worst case in the Figure
3. Suppose that at time t, there are two consecutive
packets (called packet k and packet k + 1) destined for
output j at the ith input port. ¿From the connection
patterns specified in Section II, the ith input is connected
to the h(i, t)th central buffer. Suppose that packet k is
placed in the last cell (i.e., the F th cell) of the jth bin
of the h(i, t)th central buffer at time t. At time t+1, the
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Fig. 4. The architecture of the re-sequencing buffer

ith input is connected to the h(i, t + 1)th central buffer.
Now suppose that packet k + 1 is placed in the first cell
of the jth bin of the h(i, t + 1)th central buffer at time
t + 1. As the connection patters are deterministic and
periodic, it takes N time slots to advance one position
in a central buffer. It is easy to see that packet k+1 will
be sent to output j before packet k and the worst case
re-sequencing delay is bounded by NF time slots.

B. The architecture of re-sequencing buffers

Suppose that the bin size of each central buffer is F . In
this section we propose a scheme that solves the out-of-
sequence problem. In Figure 4, we show the architecture
of the re-sequencing buffer. The re-sequencing buffer
includes two parts. One is the waiting buffer and the
other is the output scheduling buffer. The waiting buffer
consists of N waiting queues (indexed from 1 to N ) for
N different flows. Each waiting queue has 2NF cells
(indexed from 1 to 2NF ) for storing the packets from
the same flow. The output scheduling buffer maintains an
event list that schedules re-sequenced packets to depart
from the output port.

Now we describe how the re-sequencing scheme
works. Suppose a flow (i, j) packet with sequence num-
ber SN arrives at the re-sequencing buffer at the j th

output. Then the packet will be placed in the [((SN −
1) mod (2NF )) + 1]th cell of the ith waiting queue of

the waiting buffer. Each waiting queue keeps a pointer
that points to the position of the next expected packet.
Clearly, the position pointed by a pointer is empty. In
the beginning, all pointers point to the first cells of their
corresponding waiting queues. If the arriving packet is
placed to the empty cell pointed by the pointer, then
it will trigger an event for output scheduling buffer.
Otherwise, nothing needs to be done after the packet
is placed in the waiting buffer.

A triggered event consists of the following steps: the
pointer is advanced to the next empty cell (wrapped
around at the end of the waiting queue). Now the packets
placed between the position pointed by the previous
pointer and the position immediately before the current
pointer are in sequence and they are eligible for trans-
mission. As such, an event that contains the information
of these packets (including the cell indices and the index
of the waiting buffer) is added to the end of the event
list for output scheduling buffer.

As long as the event list for output scheduling buffer
is not empty, a packet is transmitted in every time slot (in
the order of the sequence number) from the first event
in the event list. When all the packets in the first event
are transmitted, the event is removed from the event list.

By using the fact that the worst case re-sequencing
delay (in the waiting buffer) is bounded by NF , we
derive the following result for our re-sequencing scheme.

Theorem III.1 For the re-sequencing scheme described
in this section, there is no lost packet due to re-
sequencing. Moreover, the number of packets stored in
the re-sequencing buffer is bounded above by NF and
the delay in the re-sequencing buffer is bounded above by
2NF .

The proof of Theorem III.1 will be given in the
appendix of this paper.

IV. SECOND DESIGN PROBLEM: CENTRAL BUFFERS

It is known (see e.g., in [3]) that 100% throughput can
be achieved if the size of the central buffer is infinite.
However, as described in Theorem III.1, the size of
the re-sequencing buffer is proportional to the size of
the central buffer. If the center buffer is infinite, then
there is no bound for re-sequencing delay. To limit the
implementation complexity of the re-sequencing buffer,
one has to consider a finite central buffer. On the other
hand, if we choose a very small center buffer, then it is
quite likely that packets will be blocked at the central
buffer. This leads to very low throughput for the switch.
In short, if we increase the size of central buffer,
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we not only increase the throughput but also the re-
sequencing delay. The key design problem is then
to determine the right size of the central buffer so
that one can have reasonably high throughput and
tolerable re-sequencing delay.

The exact analysis for the finite buffer case is much
more difficult than the infinite buffer case in [3]. Instead,
we resort to computer simulations.

In all our simulations, we consider 100 × 100 two-
stage switches, i.e., N = 100. The objective of the first
experiment is to determine the size of the central buffer
for the switch. The settings of the first experiment are
as follows:

(1A) Uniform i.i.d. traffic model:

• Each arrival process at the input port is
an independent and identical Bernoulli pro-
cess.

• Each arrival process at the input port has
the same arrival rate ρa.

• The destination of an arrival packet is uni-
formly distributed to the N output ports.

(1B) Each input buffer maintains a simple FIFO
queue. As such, HOL blocking may occur.

(1C) The number of time slots in the simulation is
200000.

In our first experiment, we set the arrival rate of each
input to 1, i.e., there is a packet arrival at each input port
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in every time slot. In Figure 5, we plot the (measured)
maximum throughput as a function of F (the bin size
of the central buffer). As shown in Figure 5, one can
have throughput over 95% when F = 15. We also plot
the average delay as a function of the arrival rate for
F = 1, 5, 10, 15, 20 in Figure 6. As shown in Figure
6, the average delay is smaller for smaller F when the
arrival rate is small. For instance, the case with F = 1
has the smallest average delay when the arrival rate is not
greater than 0.4. However, as the arrival rate approaches
to 0.58, the average delay for F = 1 is increased sharply.
From Figure 6, it also shows that the case F = 15 has
a reasonably good delay-throughput performance.

The first experiment suggests that F = 15 might be a
good choice. To verify this, we set F=15 and measure
the throughput for two additional traffic models.
(2A) Non-uniform i.i.d. traffic model:

• This model is similar to the uniform i.i.d. model, but
the arrival packets are not uniformly distributed to
the N output ports. Instead, the packets are routed to
one specific destination (hot spot) with probability
0.5 and uniformly distributed to others. Every input
has a different hot spot.

(2B) Uniform Pareto traffic model:

• This is the bursty traffic model described in [3], i.e.,
packets come as a burst with a random length.

• The burst lengths are chosen independently accord-
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uniform i.i.d traffic model

ing to the following (truncated) Pareto distribution:

P (A burst has length i) =
c

i2.5
,

for i = 1, 2, . . . , 10000,

where c =
∑10000

i=1 ( 1
i2.5 )

−1
is the normalization

constant.
• The destination of the packets in the same burst is

uniformly distributed over N output ports.
• At a particular input port, after a burst, the proba-

bility that there is another arriving burst is ρa, the
probability that there is no packets arriving in the
next burst is 1 − ρa.

In Figure 7, Figure 8, and Figure 9, we plot the
throughput as a function of the arrival rate ρa for
different traffic models. These figures show that the
throughput increases with the arrival rate ρa linearly
until it reaches its maximum throughput. Once the arrival
rate is increased to its maximum throughput, it will
almost maintain its maximum value even though the
arrival rate ρa is increased further. The variation of
the maximum throughput in Figure 9 is due to the
measurement inaccuracy of the simulation for the bursty
Pareto traffic. In Figure 7 and Figure 8, it shows that
the maximum throughput is 96% for the uniform i.i.d.
model and 97% for the non-uniform i.i.d. traffic model.
But for the uniform Pareto traffic model, the maximum
throughput is down to 70% as shown in Figure 9.
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To gain intuition on these simulation results, we note
from the queueing theory that a queue subject to a
Bernoulli input has an exponential tail while a queue
subject to a Pareto input has a Pareto tail (power law).
Since a HOL packet is blocked when the bin in a central
buffer is full, HOL blocking occurs much often for bins
with large probabilities to be full. For the uniform Pareto
traffic, the probability that a bin is full is governed by
the power law, i.e., 1/F α for some α > 0 (see e.g.,
[15], [8] and references therein). On the other hand,
for the Bernoulli input, the probability that a bin is full
is governed by the exponential law, i.e., exp(−θF ) for
some θ > 0 (see e.g., [2] and references therein). In
short, HOL blocking is more severe for the bursty
Pareto traffic than the Bernoulli traffic.

For the HOL blocking problem caused by the bursty
Pareto traffic, there are two general approaches to solve
it. One is to increase the size of the central buffer.
However, increasing the size of the central buffer causes
another problem in the re-sequencing buffer as discussed
in Section III. Moreover, if the bins are governed by
the power law, then it is very inefficient to increase the
throughput by increasing the size of the central buffer.
The second approach is to use multiple virtual output
queues (VOQs) at the input. This is the approach we
will use in the next section.
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V. THIRD DESIGN PROBLEM: INPUT BUFFERS

Instead of using a single FIFO queue, in this section
we will use multiple FIFO VOQs to solve the HOL
problem.

A. Round-robin policy for multiple VOQs

Here we introduce the VOQ technique used in our
architecture. Each input port has m VOQs and each VOQ
is a FIFO queue. When m = N , we have a full size
VOQ scheme and each VOQ corresponds to a flow. To
reduce the implementation complexity, we may consider
the case m < N . For this, we need to implement flow
aggregation, i.e., a set of flows is assigned to a particular
VOQ. To be specific, in our VOQ dispatching policy we
examine the destination field of each arrival packet at
the input port. If the destination of a packet is d, then
the packet is dispatched to the [((d− 1) mod m) + 1]th

VOQ.
As there are multiple VOQs at each input, we need to

choose one of the m VOQs at each input port to send a
packet in every time slot. Since our main objective is to
have a simple and high performance switch architecture,
we do not intent to use complicated matching polices
that requires heavy communication or computation over-
heads. Here we adopt a very simple service policy, called
the round-robin (RR) service policy. The RR service
policy is described as follows:
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Fig. 10. The throughput of the switch with m = 10 and the RR
service policy for the uniform Pareto traffic model

1. Keep a pointer at each input port.
2. If not all the VOQs are empty, advance the

pointer clockwise (in the round-robin fashion)
to the first non-empty VOQ. Send the HOL
packet from that VOQ.

In our third experiment, we replace the single FIFO
queue (used in the second experiment) with the VOQ
technique mentioned above. We set the number of VOQs
to be 10 (m = 10), and then measure the throughput for
the RR service policy by increasing the arrival rate ρa

for two different traffic models: the uniform Pareto traffic
model and the uniform i.i.d. traffic model.

In Figure 10, we plot the throughput as a function
of the arrival rate ρa for the uniform Pareto traffic
model. It shows that the maximum throughput is now
increased to 90% from 70% of the case with single FIFO
queue. However, while the arrival rate exceeds 90%,
an unexpected catastrophic phenomenon occurs. The
throughput not only cannot keep up with the arrival rate
but also sharply reduces down to 10%. The throughput
is even worse than the case of single FIFO queue! In
Figure 11, it shows a similar result for the uniform i.i.d.
traffic model. Both curves show that the switch under the
RR service policy encounters an unexpected catastrophic
phenomenon like that in ALOHA and CSMA (see e.g.,
[14]). By carefully examining our simulation results,
we find that the patterns of pointer rotation fall into a
deterministic and periodic circle. As such, a particular
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central buffer always tries to fetch the same group of
VOQs. Such a phenomenon is called a non-ergodic
mode of the switch and it will be explained further in
the next section.

B. Non-ergodic mode

To understand the non-ergodic mode in our switch, we
note that when the offered load exceeds the maximum
(stable) throughout, all the VOQs start to grow. As
the number of output ports is an integer multiple
of the number of VOQs and the service policy is
round-robin, the pointers at the input ports become
deterministic and periodic when all VOQs become
non-empty. Since the connection patterns of the
switch fabrics are also deterministic and periodic, the
“state” of the switch is non-ergodic, i.e., a particular
central buffer will not be connected to all the VOQs
in the long run. Instead, it is only connected to a
certain subset of VOQs.

In Figure 12, we illustrate concept of non-ergodic
modes via a state transition diagram of a Markov chain.
A non-ergodic mode is a group of states that have no
transition link to other states outside of the group. If the
system enters a non-ergodic mode, then it can only stay
in one of the states in that non-ergodic mode.

¿From our simulation results, we observe that the
flows are partitioned into several groups in a non-ergodic

:Transition Link

:State

Non-ergodic modes

Fig. 12. The non-ergodic modes in a state transition diagram

mode. Once the switch enters a non-ergodic mode, a
particular central buffer only has incoming traffic
from a certain set of flows. Thus, for a particular
central buffer, time slots are wasted for certain
output ports as there are no incoming traffic for
these output ports. As a result, the throughput is
sharply reduced.This phenomenon occurs for both the
uniform i.i.d traffic and the bursty Pareto traffic. We
also run another simulation which extends the number
of VOQs to N , i.e., the full size VOQ scheme. For both
the uniform i.i.d traffic and the uniform Pareto traffic,
the throughput is also reduced to 0.6 in heavy load.
This phenomenon also exists even when the number of
VOQs is the same as the number of input ports, i,e.,
m = N = 100.

C. The effect of randomness for the non-ergodic mode

In this section, we provide several tentative solutions
for avoiding the non-ergodic modes. The idea is to
introduce randomness into the system so that the switch
can jump out of a non-ergodic mode. As shown in
Figure 13, if a system is trapped in a non-ergodic
mode, then providing a transition probability to
permit the system to jump out of the non-ergodic
mode is needed. The transition probability can be
created by introducing randomness into the system
so that the system will not be trapped in a fixed
group of states.We do so by modifying the scheme of



9

:Original transition link

:State

:New transition link built by
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Fig. 13. Jumping out of a non-ergodic mode by introducing
randomness

advancing pointers in the RR service policy.
[Solution 1.] Advance when not blocked: Advance the
pointer when the transmission to the connected central
buffer is not blocked. Otherwise keep the pointer at the
same position.
[Solution 2.] Advance when blocked: Advance the
pointer when the transmission to the connected central
buffer is blocked. Otherwise keep the pointer at the same
position.
[Solution 3.] Advance with probability 0.5: Advance the
pointer with probability 0.5 in every time slot. (This is
independent of the outcome of the transmission to the
connected central buffer as in the RR service policy.)
[Solution 4.] Randomly setup the position of the pointers
at the beginning of each time slot.

Note that the randomness in Solution 1 and Solution 2
relies on the event whether a transmission to a connected
center buffer is successful or not. This may not be as
“random” as that used in Solution 3 and Solution 4.

Under the same settings as the simulations used for the
RR service policy, we also perform several experiments
to compare the performance of the switches that use
these solutions. In Figure 14 and 15, it shows that the
throughput in heavy load has a great deal of improvement
after modifying the RR service policy. In Figure 16 and
17, we enlarge the heavy load segments (for ρa from
0.80 to 1.00) in Figure 14 and 15. Now the improvement
can be observed more clearly. ¿From these two figures,

we show that Solution 3 and Solution 4 achieve 96%
throughput for the uniform i.i.d. traffic model and 93%
for the uniform Pareto traffic model. These two solutions
are based on introducing randomness into the switch.
However, the performance of Solution 1 and Solution
2, though greatly improved from the RR service policy,
is not as good as that in Solution 3 and Solution 4.
This is due to the fact that “randomness” introduced in
Solution 1 and Solution 2 may not be independent of
the switch. As such, it may not be random enough to
provide sufficient transition links to enable the switch
to jump out of non-ergodic modes. For Solution 3 and
Solution 4, the random information is independent of the
state of the switch.

Note that the throughput of Solution 3 is almost as
good as that of Solution 4, even though only one bit
of randomness is needed in Solution 3. In the regard of
hardware complexity, Solution 3 is a better choice than
Solution 4. For Solution 4, in general a pseudo random
number generator is needed and this causes additional
hardware complexity. For Solution 3, one only needs
one bit information and this may be taken from a bit in
the header or payload of an incoming packet. One then
advances the pointer at an input port if the bit taken is
1. Otherwise keep the pointer at the same position.

We also extend our simulations to the full size VOQs
for Solution 3 and Solution 4, i.e., m = N = 100. Our
simulation results show that the throughput can achieve
96% for the uniform Pareto traffic model, which is higher
than 93% of the case of m = 10. There is only 3%
improvement of the throughput at the cost of expanding
to the full size VOQs.

We note that non-ergodic modes can also be used for
explaining the pointer synchronization problem observed
in input-buffered switches with the Round-Robin Match-
ing (RRM). The RRM used in input-buffered switch
consists of the following three steps:
[Step 1.] Request. Each unmatched input sends a request
to every output for which it has a non-empty VOQ.
[Step 2.] Grant. If an unmatched output receives any re-
quests from the inputs, it grants to the one that is closest
to its pointer. The pointer at that output is incremented
clockwise to one location beyond the granted input.
[Step 3.] Accept. If an input receives a grant, it accepts
the one that is closest to its pointer. The pointer at that
input is incremented clockwise to one location beyond
the accepted output.

It is observed by McKeown [13] that the pointers in
RRM are trapped in a deterministic and periodic cycle
for a certain traffic model. As such, only half of the
inputs/outputs can be matched and that leads to only 50%
throughput. To cope with the pointer synchronization
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Fig. 14. The throughput of the switch with m = 10 under various
service policies for the uniform i.i.d. traffic model
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Fig. 15. The throughput of the switch with m = 10 under various
service policies for the uniform Pareto traffic model
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Fig. 16. Enlargement of Figure 14 under heavy load
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Fig. 17. Enlargement of Figure 15 under heavy load
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problem, he proposed using iSLIP (see [13] for more
details) by modifying Step 2 in RRM. The pointer at an
output is incremented clockwise to one location beyond
the granted input if and only if the grant is accepted
in Step 3. Whether a grant is accepted is somehow
like flipping a coin and the iSLIP algorithm can de-
synchronize the pointers in RRM by using this one bit of
”hidden random” information. However, this one bit of
information may not be random at all for a certain traffic
model. In fact, as shown in [3], there is a deterministic
traffic model that also leads iSLIP to a non-ergodic
mode.

VI. CONCLUSIONS

In this paper, we proposed a simple and high perfor-
mance switch using the two-stage architecture. In the
following, we summarize our design principles for the
proposed switch architecture.

(i) Re-sequencing buffer: the size of the re-
sequencing buffer needs to be proportional to
the size of the central buffer to ensure that no
packets are lost due to re-sequencing. Thus,
there is a trade-off between the throughput and
the re-sequencing delay.

(ii) Central buffer: using moderate size of central
buffers works fine when traffic is not bursty.
However, when the traffic is Pareto, the behav-
ior of central buffers is governed by the power
law. In that case, one needs to address the head-
of-line blocking (HOL) problem at the input.

(iii) Input buffer: increasing the number of VOQs
may not increase the throughput in the two-
stage switches if a simple robin-robin service
policy is used. Be careful of the catastrophic
phenomenon when the switch is trapped in a
non-ergodic mode.

(iv) Non-ergodic mode: Falling in a non-ergodic
mode is due to that fact the pointers at the
input ports become deterministic and periodic.
To jump out of a non-ergodic mode, one needs
to provide new transition links by introducing
“randomness” into the switch.

We note that there is also a recent paper [7] that
proposed a simple design of the two-stage switch, called
the Byte-focal switch. The key difference between theirs
and ours is the method for the control of the re-
sequencing delay. We use finite center buffers to control
the re-sequencing delay, while they use flow spitters in
[4] to control the re-sequencing delay. This results in
different design for input buffers. For our input-buffers,
we only used the modified round-robin service policies

. . .Bounded delay 
NF

work conserving link

C=1A1(t) A2(t) B(t)

Waiting buffer Output scheduling buffer

Fig. 18. The mathematical model of the re-sequencing buffer

to solve the problem incurred by non-ergodic modes. In
[7], threshold type of control based on the queue length
of each VOQ is used.

There are several problems that require further study
in the following:

(i) For the case of variable length packets, deter-
mine the size of the re-sequencing buffer when
packet reassembling is also performed in the
re-sequencing buffer.

(ii) Perform mathematical analysis to find the rela-
tion between the size of the central buffer and
the throughput.

(iii) Understand more thoroughly why the two-stage
load balanced switch with multiple input VOQs
may be trapped in a non-ergodic mode.

APPENDIX

In this section, we prove Theorem III.1. The proof
is based on the “network calculus” (see e.g., [2] and
references therein). Let A1(t) be the cumulative number
of packets that arrive at the waiting buffer by time t,
A2(t) be the cumulative number of packets that logically
arrive at the output scheduling buffer by time t, and
B(t) be the cumulative number of packets that depart
from the output scheduling buffer by time t. Note that
packets that logically arrive at the output scheduling
buffer are in fact physically in the waiting buffer. It is
the information of its cell index that is passed on to
the output scheduling buffer. Since the worst case re-
sequencing delay is bounded above NF , the maximum
delay for a packet in the waiting buffer is bounded above
by NF . Thus, the waiting buffer can be viewed as a
network element with bounded delay NF . Also, the
output scheduling buffer sends out a packet per unit of
time as long as the event list is not empty. As such, the
output scheduling buffer is a work conserving link with
capacity 1 (Section 1.3 in [2]). Thus, the architecture
for re-sequencing buffer in Figure 4 is equivalent to the
concatenation of a network element with bounded delay
NF and a work conserving link as shown in Figure 18.

Now we show the total number packets stored in the
re-sequencing buffer is bounded above by NF . From the
input-output relation for a work conserving link (Lemma
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1.3.1(ii) in [2]), we have

B(t) = min
0≤s≤t

[A2(s) + (t − s)]. (2)

As the maximum delay in the waiting buffer is bounded
above NF , we also have

A2(t) ≥ A1((t − NF )+), (3)

where (x)+ = max(0, x). Using (3) in (2) yields

B(t) ≥ min
0≤s≤t

[A1((s − NF )+) + (t − s)]

= min
0≤τ≤t

[A1(τ) + (t − τ − NF )+] (4)

Since there is at most one packet arrival to the waiting
buffer per unit of time, we have for all τ ≤ t

A1(t) − A1(τ) ≤ t − τ. (5)

Note that the number of packets stored in the re-
sequencing buffer at time t is simply A1(t) − B(t). It
then follows from (4) and (5) that

A1(t) − B(t)

≤ max
0≤τ≤t

[A1(t) − A1(τ) − (t − τ − NF )+]

≤ max
0≤τ≤t

[t − τ − (t − τ − NF )+]

≤ NF.

Now we show that the maximum delay in the re-
sequencing buffer is bounded by 2NF . The delay of a
packet in the re-sequencing buffer consists of two parts:
the delay in the waiting buffer and the delay in the
output scheduling buffer. The delay in the waiting buffer
is bounded above by NF . Thus, it suffices to show that
the delay in the output scheduling buffer is also bounded
above by NF . Since the total number of packets stored
in the re-sequencing buffer at time t is bounded above
by NF , the number of packets (logically) in the output
scheduling buffer is also bounded by NF . As the service
policy of the output scheduling buffer is FIFO and there
is a packet sending out from the output scheduling buffer
per unit of time, the delay in the output scheduling buffer
is also bounded by NF .

As the maximum delay in the re-sequencing buffer is
bounded by 2NF , it follows that the waiting buffer with
size of 2NF is enough to ensure that on packets are lost
inside the re-sequencing buffer.

Finally, we note that packets in the waiting buffer are
not served in the FIFO order. This is the reason why we
still need the waiting buffer to have the size of 2NF even
though the total number of packets in the re-sequencing
buffer is bounded above by NF .
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