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Abstract—This paper is about load-balancing packets across Linecard Linecard Linecard
multiple paths inside a switch, or across a network. It is motivated . |
by the recent interest in load-balanced switches. Load-balanced 1
switches provide an appealing alternative to crossbars with
centralized schedulers. A load-balanced switch has no scheduler, —* 2 2
is particularly amenable to optics, and — most relevant here —
guarantees 100% throughput. A uniform mesh is used to load-  ——»
balance packets uniformly across all 2-hop paths in the switch.
In this paper we explore whether this particular method of load-
balancing is optimal in the sense that it achieves the highest
throughput for a given capacity of interconnect. The method
we use allows the load-balanced switch to be compared with Fig. 1. Load-balanced switch architecture
ring, torus and hypercube interconnects, too. We prove that for
a given interconnect capacity, the load-balancing mesh has the
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maximum throughput. Perhaps surprisingly, we find that the best 'i
mesh is slightly non-uniform, or biased, and has a throughput 1 v v vV
of N/(2N — 1), where N is the number of nodes. 1 Linecard Linecard
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I. INTRODUCTION I
|

A. From Scheduling to Load-Balanced Routing

Current Internet core routers commonly implement com- 1> Lme;ard < > Lme40ard ‘_:_’
bined input and output queueing (CIOQ) with a centralized 1 4 7 I
scheduler. Numerous centralized scheduling algorithms have ! |
been proposed in the literature [1], [2], [3], [4]. Nevertheless, L

although these scheduling algorithms can theoretically prOViﬂ@_ 2. Generic architecture of a load-balanced switch and of a load-balanced
a guaranteed throughput 60% to 100% ([5], [6], [7]), they routing network

are becoming impractical as the line rates and number of ports
grow, because of their complexity and/or the speedup of the
buffer memory. a channel at rate?/N, where R is the line rate andV is
There has been recent interest in a new approach, whiple number of linecards. Likewise, each linecard in the center
eliminates scheduling, usinglaad-balanced switcfarchitec- stage is connected to each linecard in the final stage by a
ture [8], [9], [10], [11], [12], [13], [14]. As shown in [12], channel at rate?/N. The buffer at each center stage is par-
this architecture appears to be a practical way to scale titioned into NV virtual output queues (VOQs). To understand
ternet routers to very high capacities, and achieve throughjtdtoperation, consider a stream of packets from a given input
guarantees for all traffic patterns. to a given output. The first mesh sends packets in round-robin
Figure 1 shows the load-balanced switch architecture bagedall intermediate inputs, load-balancing traffic across them.
on two fully-interconnected meshes, withi = 4 linecards Each packet is put into the VOQ in the intermediate input
interconnected byV? links. It consists of a single stage ofaccording to its eventual output. The second mesh services
buffers sandwiched by two identical stages of switching, whegach VOQ at fixed rate?/N, regardless of its occupancy.
each switch is built from a uniform mesh. Each linecard in thach packet is transferred across the second mesh to its output,
first stage is connected to each linecard in the center stagefieyn where it departs the system. Thus, the two meshes work

identically, but perform two different functions: the first one
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each stage), a real implementation would h&’dinecards, I c C
and each linecard would contain three logical parts (input, I .m .m
intermediate input and output). This means that the two meshete—— Linecard ¢ Linecard |
can be replaced by a single mesh running twice as fast, I 1 2 |
as shown in Figure 2. Every packet traverses the switch I < 1
I |
I |

C C

fabric twice: once from the input linecard to a VOQ in the . ¢ I

intermediate linecard, then a second time from the VOQ to Linecard Linecard

the output linecard. ] . 4 <—:—>
|
I k) £

B. The Throughput of Load-Balanced Switching e ¢ o ____f____ _|

Perhaps the most interesting characteristic of the log L Example of load-balanced routing network
balanced switch is that it provably achiev&®’% throughput 9.3 P 9
(and therefore 100% throughput with a speedup of two)

for a broad class of weakly mixing, stochastic arrivals [8]pad-balanced routing networks are an example of multipath
Intuitively, the first stage makes traffic (just) uniform enougkputing [15] in a network, or Internet, of routers. They are also
for the second stage to provide the throughput guarantee. commonly used in torus and hypercube networks [16], [17] for
It is not immediately obvious why a load-balancing stagge implementation of multi-stage, distributed switches inside
built from a uniform mesh withV inputs and outputs can makeroyters [18], multiprocessor interconnection networks [19] and
the traffic uniform enough, regardless of the traffic matriyo interconnects [20]. For each flow, the path taken by
or the burstiness of the arrivals. And it's even less obvioyse packets might then be pre-determined without regard to
Whether the meSh needS to be Uniform (|e a” IinkS haVe th% state of the System (a'so called oblivious routing [21],
same capacity?/N); how does the throughput change if thgyhich includes Valiant's randomized routing [22]); or adaptive
mesh is non-uniform? What arrangement of link capacitiegﬁ,here routing is dependent on the queue state [23]). Load-
maximizes the throughput? balanced routing networks can also be used in fixed ad-
More generally, we're interested in comparing the architegoc networks, such as sensor networks [24], [25]. Finally,
ture with other well known ways to interconnect |inecard$oad_ba|anced routing networks are a specific type of multi-
For example, a ring, a torus or a hypercube. We'll compag®mmodity network that often appears in the networking liter-
them by considering an interconnection network with a givefture. Understanding their theoretical bounds would be useful

total CapaCity. Packets are routed through the network to Creﬁ;qhe genera| class of mu|ti-comm0dity network prob|ems_
a load-balanced switch, a ring, torus, or hypercube. We then

determine which arrangement has the highest throughput. c

To make the comparison, we’ll use an arbitrary network We wil | the th hout of load-bal d i
with fixed capacities that we’ll call #oad-balanced routing ¢ will-analyze the throughput ot load-balanced routing
p_etworks. The main findings of this paper are as follows.

network As in the load-balanced switch, linecards are intef-;

connected using a network with a fixed configuration a drst the thrqughput as a.function of thg capacity O.f load-
fixed capacities (Figure 2). Each incoming flow can be loa alanced routing networks is concave, strictly increasing, and

balanced across the different possible paths to its output,sggleS linearly. Second, a switch based on a uniform mesh has
guaranteed throughput 60%, and so needs a speedup of

long as the rate needed on each link is within its capacity. . )

For each flow, a decision has to be made: how should it %&0 (or two meshes) to achieve 100% throughput. The uniform

load-balanced across the different possible paths? mesh is close, but not equal to, the interconnection with the
' nghest throughput. A slightly biased, non-uniform mesh has a

Consider the example in Figure 3. It shows a simple loa hilv hiaher th hout. | ticular. the following is true:
balanced routing network where all the capacities betweg y higher throughput. in particuiar, the Toflowing s true-
heorem 1:The capacity matrix with the best throughput

linecards are either zero (no link) er If linecard 1 wants wists and is uni It
to send traffic to linecard 4, it could send it directly using th&XIS!S and Is unique. L1s

. Main Results

link 1 — 4 (with capacityc). It could also choose to load- 1 2 ... .02
balance traffic using the patis— 2 — 4, 1 — 3 — 4, or 9 1
1 —3— 2— 4. We'll allow it to choose any path, even if . 1
it's obviously not useful, such a6 — 3 — 2 — 1 — 4 or C=sn—1 | = = = |
1-1—-1—4—4. . ]

Essentially, what is normally achedulingdecision inside 2 ’ ; ?

the router is transformed into eouting decision. While a

centralized scheduler needs to decide how to configureaad its throughput isV/(2N — 1) > 1/2.

crossbar depending on the queue state, the linecards in a load-he reason is quite simple: In a uniform mesh, each node

balanced routing network need to decide how to route flowpreads traffic - and so routes packets - equally to all other

across the different possible internal paths. nodes. But spreading to itself is redundant and inefficient. For
The general class dbad-balanced routing networkap- instance, if node 1 has traffic to send to node 2 and the direct

pears in many areas of networking. Perhaps most commoriigk 1 — 2 is congested, it can use load-balancing by sending



part of this traffic to node 3, which will forward it to nodeSimilarly, we will define the effective load matrik using for
2. However, it is useless to send part of this traffic to nodedll ¢, j:

for load-balancing, since this action just makes some packets L. — v 5
come back to their starting point. Therefore, a link from a node ij = Z ij @)
to itself needs less capacity than a link from a node to another {p:i=g)er}

one, resulting in a non-uniform mesh. But asymptotically, foFhe effective load of a link is the sum of the loads of the paths
large N, the throughputs of the uniform and optimal meshesharing the link. A solution is feasible if and only if we can
are the same. find a decomposition of’ such thatl < C, i.e., no link is

In what follows we start by formulating more precisely th@ver-booked.
optimization problem in Section I, illustrate the definition of
the guaranteed throughput in Section I, and provide its mMa@ proplem Intuition
properties in Section IV. Then, we describe the biased full S thatv — 2 and that i h
mesh and compute its guaranteed throughput in Section V uppose thatv: = = an at we use a uniform mes
show that its guaranteed throughput is optimal in Section \ﬁ,r Ghitecture, with capacity matrix
and prove that it is the only architecture with such a guaranteed C— ( 0.5 0.5 >
throughput in Section VII. Finally, we analyze the load- -\ 05 05 /°

balancing gain of an arbitrary architecture in Section Villve will use this example to gain some intuition about the
All the proofs are in the Appendix.

throughput of interconnection networks.
If the arrival rate matrix is

Il. PROBLEM FORMULATION 09 0
Li={ o o

then we cannot send traffic at raed on the pathl — 1,
because the capacity is limited loy;; = 0.5. Therefore,we
need to load-balance the traffic by using the spare capacity of

A. Notations and Assumptions

Consider a network withV identical nodes, wher&/ > 2.
We define adoubly stochastiomatrix to be a non-negative

qulrﬁ;?| matén((jevf\{::['Z ::LJ%V.VSS"?‘Q'(; (;:rO:juomEI S:mbs_ ste(?cuhillsla other links We will send0.5 on the direct pati — 1, and
imrarty, w ! issible( ubly su : )the remaining0.4 on the alternative path — 2 — 1. The

matrix to be a non-negative square matrix with all row anl%sulting load matrix is
column sums upper-bounded byFinally, we define the time
unit such that each node can send and receive at most one bit I — ( 0.5 04 )
per second (if the maximum node speedrisscale the time ! 04 0 ’

: 1
unit by a factorg). _ . ~and L, < C. Clearly, the direct path is not always sufficient
A link of 'f|>$ed capacity C';; connects nodeé to nodej, 1o carry the required rate matrix, but in this case it is possible
wherel < 4,j < N. The matrixC' = [Ci;li<ij<n is the 5 yse a load-balanced path in order to carry it.

capacity matrix, and any nodecan send up tOZjil Ciy Not all rate matrices are feasible, i.e., the throughput is not
(and likewise receive at moif\il Cy;) bits per time unit to always100%. Consider the arrival rate matrix

and from the N nodes (including itself). Since every nodan 09 0

send and receive at most one bit per time UEL]-L Cy <1 Ty = < 0 0.9 ) .

and Z;.V:l Cy; < 1, therefore, the matrixC is admissible.
The capacity matrixC' defines the architecture; for exampleSendingd.5on1 —1,040n1—2—1,0.50n2 — 2 and
the uniform mesh architecturén which nodes are connected0-4 on 2 — 1 — 2, the load matrix is
to _each othe_r with equal-capacity Iin_ks_), corresponds to the 05 0.8

gnlfé)r?] n;ag;éc whereC;; = 1/N. Similarly, a ring could Ly = ( 0.8 05 ) )

e define i = 1iicitim . ) )

Denote byT' t]he ar{rjiveir%raf()f?cj\;;te matrix, wittf}; being and solL, £ C. In this particular case, we need to scale down
the arrival rate at node of packets destined for nodg Lyt 075 0
We will assume thatl" is admissible, since it cannot be ( '0 0.75 )
supported otherwise. Suppose we want to load-balance these '
packets across multiple paths, each path having an arbitréey the solution to be feasible.
number of hops. IfP(i, j) is the set of paths between nodes Finally, load-balancing does not always help, particularly in
i and j, then any pathp € P(i,j) can be represented assmall matrices when there are not many paths to divert traffic
(i — nodey; — nodey — ... — j). Let Tfj be the rate of the away from congested links. And it is always useless to divert
flow carried byp. If the arrival traffic rate matrixt’ is feasible traffic to oneself. For example, consider the rate matrix
(i.e., the network has 100% throughput B, it is possible 0 054¢
to decomposé’ into several pathg, and therefore for all, j, T3 = ( 0.5 ' 0 ) )

Ty;= Y TP (1) wheree > 0. Sending traffic on the path — 1 — 2 does
pEP(i,5) not divert traffic from the congested link — 2; therefore,



T5 is not feasible. This teaches us that when sending traffic  1ll. EXAMPLES OF GUARANTEED THROUGHPUT

from -nodei to nodej_;é_z', it is clearly useless to use the Imk_A_ Guaranteed Throughput of the Uniform Mesh

i — i, because traffic is transferred across the network with . . . . . .

no benefit. By comparing’, T, and Ts, this example also The uniform mesh is an architecture in which all links have
shows that finding the maximum throughput of a given rafge same capamty, l.eCiy; = 1/N for all 4, 5. We W'”. show
matrix is not straightforward, even whel — 2. Moreover that the maximum guaranteed throughput of the uniform mesh

since the number of cases to consider increases Mjtsuch is 50%. ) ) .
a problem is increasingly difficult to solve @6 grows. We saw already in the Introduction why the uniform mesh

guarantees at leas0% throughput, although the proof was
based on slightly different assumptions. In short, each packet
C. Problem Definition goes through both the load-balancing stage and the forward_ing
S . ) stage, and therefore through two hops. Consequently, the link
Our objective is to find the load-balanced network with thgetween node and nodej can receive load in two possible
largest throughput guarantee. In other words, we want to figjghys. Either node is sending traffic to some node and
a network with a guaranteed throughptit where6” satisfies spreads it using the intermediate nogieor some nodel
two properties. First, given any admissible arrival traffic, thgends traffic to nodg and spreads it using the intermediate
network guarantees a throughpéit, i.e., it will switch a pgode;. Mathematically,L;; = 3", Tir. + >, Ti; < 2 with an
fractiong* of the traffic for any input-output flow. And second,admissibleT". Therefore 6(C) > 50%.
no other network can have a better guaranteed throughpuihe following example shows that it is not possible to do

than 6. We will define the problem by decomposing it intgetter using a different load-balanced routing algorithm.
three successive optimization problems. First, we will find Assyme that

the throughput for a given network and a given rate matrix.

Then, we will obtain the worst-case throughput of a network, 0z 0 0
which can be achieved for any rate matrix. Finally, we will 00 =
provided*, which is the best guaranteed throughput among all T = ) ,
networks. -0

In the first optimization, we want to find the maximum 2 0 8 g

throughput for a given network and a given rate matrix. In
other words, given capacity matriX and rate matrixl’, we wherex > 1/2. A nodei can send at Mot ;1 mod n) =
want to find the best possible throughgl{C,T'), such that 1/N amount of traffic directly. It also needs to send the

the scaled-down rate demand mati¢C, ') x 7' is feasible. remainingz — 1/N amount of traffic to load-balanced paths,

Put mathematically, with each of these paths using at least two links. Hence, the
) total traffic load contributed by each node to the system is
0(C,T) = max(f), subject to: at least(1/N) + 2(z — 1/N), which implies that the total
traffic load contributed by théV nodes isN(1/N + 2(x —
(i) Z}I::(il,j) T =0 x T Vi, j 1/N)) = 2Nz — 1. As we saw earlier, diagonal elements do

not help load-balancing, and with this rate matrix they are
also useless for direct paths. Hence, the total useful traffic
capacity is the sum of all non-diagonal elements(ifi.e.,
N-(1-1/N)= N — 1. For the solution to be feasible, we
need2Nz — 1 < N — 1, which translates inta: < 1/2. And

so there exists a traffic rate matrix that is only feasible with a

(i) L(1,§) = Y piiyem T < Cij Visj
(i) T} >0 Vi, j,p

In words, the throughpwt(C, T') is the maximum of the set
of throughputd that satisfy three feasibility conditions. First,

the arriving traffic is a scaled-down version Bfby a factor throughput of at mos§0%. This impliesd(C) < 50%. Since

0, such that .'t. can be decomposed into several patfihe we found that the two-hop algorithm provides a throughput of
second condition is that the sum of the loads of the paths m 8 it follows that
0,

be less tharC, i.e., that the load matrix is feasible. The las
condition is that the rate on each path must be nonnegative. 0(C) = 50%. (5)

The second optimization finds the guaranteed maximum . . i )
throughputd(C) for the network. This is the throughput that~urther, itis not possible to improve on the two-hop algorithm.
is achievable by any rate matrix in the network, and, therefore,

B. Guaranteed Throughput of a Ring

6(C) = T ad“rﬂfgsibé@(a T))- 3) As a second example, consider a network in which the nodes

are connected in a uni-directional ring, i.e., nad&connected
Finally, we find the maximum possible guaranteed througfs node (i + 1) mod N. Recall that we assumed that each
put for any network, yielding a guaranteed throughptit packet needs to go at least once through the network. In the
where worst case,l' is the identity matrix so that nodes only send

0 = max _ (0(C)). (4) 1The modulo function takes values {n, ..., N} when nodes are numbered
¢ admissible {1,..,N}.



traffic to themselves through the ring. Therefore, all packel®s Linear Scaling
crossN links, and the throughp#(C.,,,4, T') is equal tol /N .

This T'is th " X kete d h dt Given any positive\, we can find a feasible rate allocation
IS4 15 In€ worst case, Since packets do not need 1o use Myfe, « from the rate allocation fo€” (and vice versa) by scal-
than N links to reach their destination. Therefore,

ing the rate assigned to each path by a fadtqrespectively
by 1). Therefore, we get the following proposition:
0 Crin =1 N; 6 A ... . .
( 2 / © Proposition 3: The guaranteed throughput functigh is
which — as expected — is much lower than for the uniforrinear with respect to scaling, i.e.,

mesh. OX-C)=X-60(C).

C. Guaranteed Throughput of a Permutation Matrix C. Strictly Increasing

The ring is a special case of a permutation mairigf the  clearly 9 is a non-decreasing function in the space of
set{l,..., N}, whereo is the capacity matrix of a network. ggmissible capacity matrices. In other words, having more
The matrixo can be represented a®a 1 matrix wnh_exacthly capacity cannot decrease the throughput' land D are two
one 1 in each row and column; i.eq;; = 1 if o(i) = j, admissible capacity matrices, whete< D (i.e., for all ¢, j,

ando;; = 0 otherwise. Sincer is a permutation, it can beé ¢, < p,;, defining a partial order relation), then from the
decomposed as a product of disjoint cycles (the decomposn@éﬁimtion of §: 6(C) < 6(D).

is unique up to the order of the cycles).

) X Now, if D > C, there exists such that
If o can be written as a single cycle of length we can

assume without loss of generality thafl) = 2, 0(2) = 3,..., D > C + eClniforms
o(N) = 1, and soos is the capacity matrix of a ring, with
6(c) = 1/N. where Cyniform IS the capacity matrix of the uniform mesh.

Alternatively, if & can be written as the product of two orl€nce

more cycles, then there are two nodemd; such that node (a) 1 €

is in the first cycle and nodgis in the second one. Itis then ~ 0(D) = 0((1+¢€)(5 ok ﬁcuniform))

impossible to reach nodgfrom nodei (the capacity graph is ) 1 €

not connected), hence the throughput for any maftisuch = (1+¢)x 9(17“0 + mcuniform))

thatT;; = 1 is zero, andd(o) = 0. © 1

This example illustrates that the throughput of a capacity > (14 ¢€)(——0(C) + ——0(Cunitorm))

L o . - . 1+e€ 1+e€

matrix is sensitive to its coefficients; and that the throughput @ 1 e 1

of a disconnected graph is zero. = 1+ e)(l—ﬂe((]) + T 65))

> 6(0),

IV. PROPERTIES OF THEGUARANTEED THR HPUT . .
© S0 EGU OUGHPU where (a) uses the fact thétis non-decreasing, (b) uses the

In the above examples, we computed the throughputs &fualityf(A-C) = A(C), (c) uses the concavity ¢f and (d)
several capacity matrices, but found that it is not straightses the value of(Cunitorm). Therefore, we obtain:
forward in general to compute throughput directly. Since we Proposition 4: The guaranteed throughput functigh is
want to find the capacity matrix with the largest guaranteedrictly increasing, i.e., itC < D thend(C) < 6(D).
throughput, we will use general properties of the throughput
function_. We will stgrt by sho_wing that it is concave @, V. THE BIASED MESH
scales linearly, and is strictly increasing.

A. Definition

We have already seen that the uniform mesh has a through-
put of 50%, even though a node potentially spreads traffic over

First, we show that throughput is concave Gh Assume the useless links to itself. We can therefore expect a modified
that two capacity matrice§’; and C;, achieve throughputs of mesh — i.e., a mesh that does not spread traffic to itself —
6(Cy,T) and 6(C>,T) for a rate matrixT. Then, applying to have higher throughput. This is indeed the case; in fact, it
the definition of throughput, for any € [0, 1], the matrix is the network with the highest guaranteed throughput.
C = AC1+ (1 —)\)Cy will achieve a throughput of(C,T") > In this modified mesh, a link from a node to itself is only
M(C1,T) + (1 — X)0(C2,T). This can be seen by using theused to send traffic directly, and not for spreading. However,
paths fromC; for a fraction A of the traffic, and the paths a link from a node to another one is used for sending traffic
from C, for a fractionl — X. As a consequence, we also haveirectly as well as for spreading. Therefore, intuitively, a link
6(C) > A(C1) + (1 — X)8(C5). This leads to the following from a node to another one should have twice as much capacity
proposition. as a link from a node to itself, because it will be used for two

Proposition 2: The guaranteed throughput functi®(C') is  functions instead of one. We will call such a modified mesh
concave inC. the biased meshits capacity matrix' is given by

A. Concavity



In conjunction with Propositions 6, 7 and 8, we have,

¢ 2 ... ... 2 therefore, established the following theorem.
2% ¢ - : Theorem 9:The biased mesh satisfies the following three
o properties:
N . ’ (i) The guaranteed throughput of the biased mesh is equal
: . ¢ 2 tOé:N/(QNfl)-
% .. .. 9% ¢ (i) The biased mesh achieves the maximum possible guaran-

teed throughput for any network, i.@(C) = N/(2N —
wherec = 1/(2N —1). gnp Y () = N/(

; . : 1).
In the remainder (Propositions 6, 7 and 8), we will shoyjjy The biased mesh is the only network to achieve this guar-
that C' uniquely achieves the highest guaranteed throughput, 5nteed throughput, i.9(C") < 9(0) for any admissible
using three consecutive steps. First, we will show that capacity matrixC’ # ol

achieves a throughput @¥/(2N — 1). Then, we will prove
that th|S iS the |argeSt aChieVabIe throughput for a.ny netWOfk. V||| T HE BENEF|T OFLOAD'BALANC|NG
Finally, we will demonstrate that the biased mesh is the only

. . W n now ntitatively analyze th nefits of load-
network to achieve this throughput. © can how qua ely analyze the benefits of load

balancing in ararbitrary network. Put mathematically, we can

estimate the ratio of the guaranteed throughputs that can be

B. Guaranteed Throughput of the Biased Mesh achieved when load-balancing is allowed and when it is not.
Our first objective is to show that the guaranteed throughpéte will call this ratio theload-balancing gain

of the biased mesh with the capacity matrix is at least

N/(2N—1). Using the definition of the guaranteed throughpuf\. Guaranteed Throughput without Load-Balancing

we need to consider all admissible rate matri@®sThe | eps compute the guaranteed throughput without load-
following proposition significantly restricts the number of rat%alancing, when only direct links can be used. To go from node
matricesr we need to consider. It is proved in Appepdix l. i to nodej, a packet must be sent over the link betwéamd

_ Proposition 5: The guaranteed throughp#t(C') defined ; an4 cannot be load-balanced via a third node. In general,
in (3) can be found by considering the set of permutatifle gyaranteed throughput of a non-load-balanced network

matrices, i.e., will be determined by its weakest link, as can be seen when
9(C) = min (0(C,T)). (7) using a rate matrix that fully uses the weakest link. Thus, the

N T permutation ) _ guaranteed throughput of a capacity matthxwill be
Proposition 5 restricts to the set of permutation matrices

the set of rate matrices we need to consider. To show that min Cj;.

~ 1,3
the throughput ofC' is at leastN/(2N — 1), we just need to . . .
A . For instance, without load-balancing, the guaranteed through-
show that a throughput oW/ (2V — 1) can be achieved for all ut of the uniform full mesh isl/N, and the guaranteed

the permutation matrices. It leads to the following propositio .
proved in Appendix I. rﬁﬁroughput of the biased full mesh ig (2N — 1).

Proposition 6: The guaranteed throughput of the biased , .
mesh with capacity matriX’ is at leastV/(2N — 1). B. Guaranteed Throughput with Load-Balancing

Let's now bound the guaranteed throughput with load-
VI. OPTIMALITY OF THE BIASED MESH balancing so as to bound the benefit of load-balancing. From
STi()jleorem 9, we know that the guaranteed throughput of a
network is upper-bounded by, but we need to find a
IJQH\/_er-bound on the guaranteed throughput. We can do it by
comparing the network to the biased full mesh, which has the
highest guaranteed throughput. Using the linear scaling and
its guaranteed throughput satisfies monotonicity properties of the throughput function, we find

N that for any\ € [0, 1],

0(C) < 53— C>XC=0(C)> M.
The proof for Proposition 7 is in Appendix Il.

We have just found that the biased mesh guarantee
throughput of at Ieas;%. The following proposition shows
that the biased mesh achieves the maximum possible gua
teed throughput for any admissible capacity matrix.

Proposition 7: If the capacity matrixC' is admissible, then

In other words, if a given network has at least as much
VII. UNIQUENESS OF THEOPTIMAL CAPACITY MATRIX capalety_ as the sca_lled-down version of the biased full mesh,
) ) ) _then it will also provide at least as much guaranteed throughput
Since we proved that the biased mesh achieves the optirgglthe scaled-down guaranteed throughput of the biased full
throughputV/(2N —1), we will now demonstrate that it is the esh. We can obtain the following proposition:

only capacity matrix to do so. This is done in Proposition 8, Proposition 10: The guaranteed throughpétC) for any

proved in Appendix Ill. _ _ ~ capacity matrixC' satisfies:

Proposition 8: The only capacity matrix’ that can achieve C..
the optimal throughpufV/(2N — 1) is the capacity matrixC 6 - min ( fj) <0(C) <.
of the biased mesh. wi NCij



C. Load-Balancing Gain

throughput of adaptive algorithms [23]), we can say that when

Define the load-balancing gain as the ratio of the guarantd®§ traffic matrix is not known, the guaranteed throughput
throughputs with and without load-balancing. Mathematicallpf & biased full mesh wilalways be strictly bettethan the

l.b.gain 2 ﬂ
mmi,j Cl'j

guaranteed throughput of any other network using any routing
algorithm.
This is quite a strong result, and should provide guidance to

The load-balancing gain is a measure of the gain in throughg@se designing router interconnects, network topologies, and
guarantee achieved by load-balancing. The following Propostultipath routing algorithms.

tion provides bounds on the load-balancing gain. It is proved
in Appendix V.
Proposition 11: The load-balancing gain for any capacity [1]
matrix C' satisfies the following bounds:
E < l.b.gain < L .
2 = - HliIliJ' O,]
Therefore, load-balancing always improves guarantee[él
throughput by a factor of at leas{/2. [4]
The upper-bound on the load-balancing gain reflects the fact
that a system is forced to rely heavily on load-balancing wheps
its weakest link cannot carry enough capacity.
For example, let’'s apply these bounds to the uniform fult6]
mesh and the biased full mesh. For the uniform full mesh, the
lower-bound is tight, and Proposition 11 becomes:

N . N N 1
— <lb.gain=— < -

(7]

8]
For the biased full mesh, the upper-bound is tight, and Propo-
sition 11 becomes: [9]

ﬁ <l.b.gain=N < N.
2 [10]

As an aside, it is interesting to note that since the uniform
mesh achieve$0% throughput (Equation 5), we know that!*!
the uniform mesh is

~ [12]
0C) w1
Q(Cuniform) % 1-— ﬁ

(13]

1+ o(1) — optimal

for its guaranteed throughput. Therefore, the load-balanced]
switch with a uniform mesh iasymptotically optimalAsymp-

totically with IV, it guarantees at least as much throughput as;
any other fixed interconnection with an admissible capacity
matrix. (16]

IX. CONCLUSION [17]

When building a router or network we can choose from
among many different interconnection topologies; and cé¥$l
choose whether or not to use load-balancing. In differe tg]
situations, we might want the network to have different prop-
erties; for example, minimize packet delay, maximize netwofk0l
scalability or ensure no single-point of failure. In this paper W8y
assumed that we want to maximize the throughput in a system
for which we don’t knowa priori what the traffic matrix will
be.

We can summarize our main result by saying that while
some networks are difficult to analyze (e.g. the throughpiél
of sensor networks with arbitrary topology [24], [25]), and
some packet routing algorithms are difficult to analyze (e.g. the

(22]
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Fig. 4. Load-balancing example illustrating Proposition 12. The dashed line
APPENDIX | between; andj is a direct path. The two other paths are load-balanced paths

in Pr,p(i,7). In the first load-balanced path = [1, in the second: la.
GUARANTEED THROUGHPUT OF THEBIASED MESH 5(J) path =L 27 b

A. Proof of Proposition 5 APPENDIX I

Proof: For any admissible matrig’, there is at least OPTIMALITY OF THE BIASED MESH (PROPOSITION7)
one doubly stochastic matriX' such that?” < T' [26], [27]. In this Appendix, we will prove that the biased mesh
Clearly 0(C,T) < 6(C,T), and so we only need to considerzchieves the maximum possible guaranteed throughput for any
the doubly stochastic rate matrices. possible admissible capacity matrix by establishing Proposi-
Birkhoff's theorem states that the set of doubly stochastion 7. To do so, we will first prove several useful Lemmas
matrices equals the convex hull of the permutation matricasd Propositions by considering rate matrices that are also
[28]. The claimed result follows from the definition of throughpermutation matrices.
put. [ ]
A. Throughput Bounds over the Set of Permutation Rate
Matrices

It helps to study how the load-balancing is done. Let the
Proof: We will prove thatC' achieves a throughput of set ofload-balanced paths

N/(2N — 1) whenT = o, with o a permutation. Let = LN LN .
1//((2N—1).)We consider a nodg and prove that can always Prp(i.j) ={p € P(i,j): (0 = j) & p}
send at rateNc to o(i). Our objective is to send as muchbe the set of pathg between nodes andj such that the
flow as we can directly, and to uniformly load-balance thénhk i — j is not in p. We will call paths not inPpp(i, j)
remainder among the non-diagonal elements. We distinguiifect paths For instancel — 3 — 2 is a load-balanced path
two cases: eithew (i) =i or (i) # i. between nodd and node2, whereasl — 2 andl — 1 —

If o(i) = i, nodei needs to sendVc to itself. Therefore, 2 — 2 are direct paths.
node i can sendc directly to itself, and load-balance the Proposition 12:Any pathp € P(i,j) satisfies one of the
remaining rate of V — 1)c among the othetN — 1) nodes, following two cases:

B. Proof of Proposition 6

then sending: to each node. (i) If pis a direct path therfi — j) € p, or

If o(i) # 4, nodei needs to sendVc to nodeo(i) # i. (i) If pis aload-balanced path then there exist two nddes
Therefore, nodei can send2c directly to o(i), and load- and/, possibly equal, such that# i, k # j, | # i and
balance the remaining rate 6N — 2)c among the(N — 2) I # j, such that containsi — k andl — ;.
nodes different from andc (i); and each such node then sends ~ Proof: (i) clearly follows from the definition of
¢ again to noder(i). Prg(i,7). In (i), by definition of P;5(i, j), at least one node

_ Letus examine the load on each link. Each diagonal eleméhtdifferent fromi, and if nodek is the first node in patip
C;; only receives traffic if it is destined from nodeto node that is different fromi, thenk # ; also. Similarly, if nodel
i, and in this case it receives exactlyits capacity. is the last node in path that is different fromy, then! # i

Moreover, each non-diagonal elemefg can only receive 21SO- his ch ation of | | h u
traffic in two distinct cases, which cannot happen at the same”Sing this characterization of load-balanced paths, we con-
A sider all the rate matrices that are also permutation matrices,

time. If j = o(4), C;; receives exactly2c, its capacity. . !
Otherwisej # o (i) andC.. receives: from the load-balanced such that each node sends all its traffic to some other node.
’ " pFor a permutation, let

pathi — j — o(i), and ¢ from the load-balanced pat
o~ 1(j) — i — 7, summing to2c, its capacity. Si(o) ={i:0(i) =i}
The load on each link is therefore always bounded by it . .
. . . . eawote the set of nodes invariant¢p and let
capacity; hence, this solution is feasible and the guarantee
throughput ofC' is at leastNe¢ = N/(2N — 1). | So(o)={i:0() #i} ={1,...,N}\ 51



denote the remaining nodes. The following lemma provesrates required from these non-diagonal links. Therefore, using

general upper bound on the throughpd€') by considering the two cases studied above, we get

the set of rate matrices that are permutation matrices.
Lemma 13:Given a capacity matrixC, the throughput

6(C) has the following upper bound taken over the set dfe.,

permutations:
Z Ciyj > Z Z Tgr(i)

0(C) + 1 i i€52(0) pEPLE (1,0 (1))

2N N
/g
. . 15 DU DEET A
- pt, > Cit Y (Cioty = Cii) i=1 pePrLp(i,0(i))
We now study the two sides of this equation. On the left

i€S1(0) 1€S2(0)
Proof: B finiti f the th h f
roo y definition of the throughpu(C’), for any hand side, sinc€' is admissible, we have

permutationo,

non-diagonal capacity non-diagonal required rate

1
< =
-2

0(C) < 0(C,0). N - ZC” > Cij.

INE=S

Therefore, we only need to show that for any permutation . _
On the right hand side, the sum of all the rates required

1 from these non-diagonal links can be rewritten as

1
0(Co) < -+ — Z Cu+ Z Cioctiy — Cu) | -
2 2N P
1€851 (o) i€52(0) Z Z io(4)
i€S2(0) pgPrLE (i,0(i))

Consider a given permutatian. By definition of 6(C, o), N
any nodei manages to send traffic at rétéC, o) to nodej = + Z Z TP @
o(i). (We know that the optimum can be reached because the T \pgPratol)
throughput) is defined using continuous functions on compact N
sets.) + 2r? | — 277
Consider then a patlp betweeni and j = o(i), and pePLBZ(i,a(i)) 7 i—zlpszPLBZ(ia(i)) o
distinguish between the following cases.
g g = NN -2 Y Y T,

1) If p € Prp(i,7), then from Proposition 12; contributes
at leastT”. to Cj;.

2) Ifpe PLé(z‘,j),]then by Proposition 12 there exists two - Z Z Tf;( i)
nodesk and! such thatk # i, k # j, [ # ¢ andl # j, i€52(0) pEPLB(4,0(1))
and such thap containsi — k and! — j. Hence,p usingT = 6(C,0) -0 andSi(0) U Sa(0) = {1,..., N} in the
will use a rate of at least}; out of the capacityCi; in  |ast equality. Using Equation (8), the sum of the non-diagonal
order to carry the linki — k; and will also use a rate rates can therefore be lower bounded by
of at least7”. out of the capacityC;; in order to carry

i€S51(0) p&Prp(i,0(i))

the link [ — . 2NO(Co0) =2 Y Cioy— Y, Cioti)

Therefore,p requires a total rate of at lea®t Ti’} from i€S1(0) i€S2(0)

the non-diagonal elements of the capacity magrix Finally, we combine the equations and use the definition of
These two cases show that the link betweeand j = Si(0): i € Si(o) iff o(i) =i. We get

o(i) can use non-diagonal capacity both with direct and Ioad-
balanced paths. - ZC“ >2N6(C,0) =2 > Ci— Y. Cio(i)-

In particular, the first case studies tlieect paths. It shows
that the link between and j = o(i) uses a rate of at least Therefore,

L out o io( or the direct paths. IS
P2 PLs (0 (D) Tio(i) f Ci,(;) for the direct paths. Thi

i1€S1 (o) i1€S2(0)

is a contribution to the non-diagonal capacity if and only |f9(0 o) < 1 + 1 Z Cyi + Z Cio(iy — Cii)
o(i) #1,1.e.,i € So(o). Also, since the capacity for the direct 2 2N ie51() i€5200)
link should be greater than its rate in order to be feasible, we -
get
Cio(i) > Z T - (8) B. Throughput Upper-Bound for a Capacity Matrix
PEPLE(1,0() We will now provide an upper-bound for the throughput of

The second case studies tlmmd-balancedpaths. It shows & capacity matrix by considering specific permutations. For

that the link between andj = o(i) uses a rate of at least0 < k < N — 1, define the permutation;, as thek*" sub-

ZpePLB(z o) 2 17 ., out of the non-diagonal elements ofdiagonal, i.e., assume that nodedestines all its traffic to

C for the load- balanced paths. ok (i) = i+k mod N. We can then apply Lemma 13 to find the
As a feasibility condition, the sum of the capacities of aflPper bound corresponding to each permutation, as expressed

the non-diagonal links should be more than the sum of all tfe the following lemma.
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Lemma 14:Given a capacity matrixC, the throughput and fork =1,2,... ., N —1,
6(C) has the following upper bounds:
al 2N
9(0) S % 21211\7021’ (9) Z CZ(z+k mod N) = 2N _ 1 . (14)
=1
and Proof: As in the proof of Proposition 7, let
1
0(C)< 5 N
. N 2k =Y Ci(i+k mod N)-
ming <x<n (D221 (Ciitk mod Ny — Cii)) (10) =1

Proof: Fork =0, S1(o%) ]{1 , N}, hence the upper- |f an admissible capacity matrixC achieves the optimal
bound from Lemma 13 is; + ZW Similarly, for 1 < throughputN/(2N — 1), then we have from (9) and (10) that
k< N —1, S3(ox) = {1,..., N}, hence this upper-bound is

Cio Cii
) . v 2 g, (15
Proposition 15:If the capacity matrixC is admissible, 2N —1
i.e., C is a doubly sub-stochastic matrix, then its throughp%nd fork=1,2,.. N—1,
satisfies
N 2N
0(C) < SN 1 TE > SN 1 (16)
Proof We will prove this by contradiction. Suppose that B
0(C) > 5x. ForO < k < N — 1, let If one of the inequalities in (15) and (16) is strict, then
Sy, will be strictly larger thanV and this will contradict
T = Z Ci(istk mod N)- to the assur_nption t_h_af is_: admissible. Therefo_re, we concll_J_de
i—1 that all the inequalities in (15) and (16) are in fact equalities.
It follows from (9) and (10) that o . . m
N Lemma 17:1f an admissible capacity matrix achieves the
> IN T (11) optimal throughputV/(2N — 1), then for any permutatios,
and fork=1,2,...,N —1,
e > (Cioty — 2Cii) = 0.
Ty — To > N (12) i€S2(0) . _
k 079N -1 Proof: Equation (13) in Lemma 16 provides
Therefore, we haver, > ;2 for k = 1,2,...,N — L. Zieslﬁ(ﬂ)t,cii +Hzies2(a).c”l_ - N/l(gN N 11 for any
Summing up for allk yields permutationo. Hence, using Lemma 13, we ge
N < 1 n
N < Zxkfzzc*” 2N -1~ 2
=1 j5=1
. . . . 1
This contradicts the assumption that the capacity matris oy i min 2N 1 + Z Ciotiy —2C3) |
a doubly sub-stochastic matrix. [ B i€83(0)

As the biased mesh with capacity matxix achieves the
throughput N/(2N — 1), it then follows from Proposition where the minimum is taken over the set of permutation
15 that the biased mesh is optimal among all the admissiloiatrices. Therefore,
capacity matrices.

APPENDIX I 0 < min Z (Cio@iy —2C4u) | »
UNIQUENESS OF THEOPTIMAL CAPACITY MATRIX i€S2(0)

(PROPOSITIONS8) . .
In this Appendix, we will prove that the biased mesh &€ for any permutatio,

the only capacity matrix that achieve the optimal throughput
N/(2N — 1), and therefore we will be able to establish 0= Z (Cio i) = 2Ci)-
Proposition 8. i€52(0)
Lemma 16:1f an admissible capacity matrix achieves the
optimal throughputV/(2N — 1), then the capacity matri'’ ~ We now use the fact that there are exactly — 1)!

satisfies permutationss such thato (i) = j for any nodesi and j.
N As a consequence, given a nogehere are exactlyN — 1)!
ZC’”’ __N 7 (13) Permutationss such thati ¢ Sa(0), i.e., such that (i) =
p 2N -1 Therefore, there are exactly’! — (N — 1)! permutationso
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such that; € S5(0). We can deduce that Proof: Combining Lemmas 17 and 18, for any permu-
tation o, 3,5 (o) Ciosy = (2-152(0)[)/(2N — 1), where
Z Z (Cioiir — 2Cs) |S2(o)| denotes the number of elementsSp(o).
i (i) i Define matrixD such thatD;; = C;; for i # j, and D;; =

7 \ieslo) 2/(2N —1) = 2C;;. Then all row and column sums @& are

=(N=1D!'Y Cij —2(N!'=(N-1)1)Y_Cy; equal tol +1/(2N — 1) (because” is doubly stochastic). In
Vi i addition, for any permutatiosr,
= (N -1 ZC” (2N! — (N — 1)) ZC S D = Y Dot Y Do
N i €51 (o) 1€S2 (o)
=NI—(N=1)!- 2N = 1) 5o =0, = ¥ Du+ Y Dig
where we use (13) in the last equality. Therefore, given that i€51(o) i€S2(2)
the sum of all these numbers is 0, and that they were all shown _ 2z [51(0)] | 2-152(0)]
to be nonnegative, this means that they are all null. = 2N -1 2N -1
The next lemma enables us to determine the exact value of - 22l )
the diagonal elements @f. 2N -1
Lemma 18:1f an admissible capacity matriX achieves the Hence, any permutation o® has the same sum! For any
optimal throughputV/(2N — 1), then for alls, two nodesi, j, construct two permutations equal everywhere
1 except On{DH, D1, Dlj) Dij}- ThenDy, +DZJ =Dj +D1j-
Cii = ON -1 Therefore, all elements ab can be written ad;; = D;; +

N -1

Proof: Pick arbitrarily any node — for instance, nodgD1; — D11) = w; + vj, whereu and v are two sequences
1 without loss of generality. For any node# 1, consider defined on{l,..., N'}. Since all row and column sums @?
the permutations such thato(1) = j, o(j) = 1, and the are the same, aII elements bf are equal; therefore, all non-
restriction ofo to the other elements is the identity. By Lemmaliagonal elements of' are equal, and finally”’ = C. L
17, Oy, + Cj1 = 2(Cy1 + Cj;). Summing over all such’s Therefore, we have finally established Proposition 8.
yleldsZ] 2(01]+CJ1) Z 5 2(C11+Cj;). Adding 2C1;
on each side of the equatlon and using (13) and (14) yields APPENDIX IV

IN LOAD-BALANCING GAIN (PROPOSITION11)

ON —1° We will now prove the equation in Proposition 11.

Proof: The right-hand-side of the equation comes directly
Proposition 10. The left-hand-side results from using the
uniform mesh instead of the biased mesh to create the lower
bound in Proposition 10. I,,;orm IS the uniform mesh,
0(Cuniform) = 1/2 and Cumfo,«m = 1/N, therefore their
ratio is N/2. [ |

1+1=2(N-1)Cy; +

HenceC,; = m Since we picked the first node arb|trar|ly,from
this is similarly true for any node.

Proposition 19: The only matrix C' that can achieve the
optimal throughputV/(2N —1) is the capacity matrix’ from
the biased mesh.



