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TED P
RAbstract

We propose a frame timing acquisition algorithm for fractal modulation in additive white Gaussian noise (AWGN)

channels. Our algorithm exclusively uses the data redundancy inherent in fractal modulation to locate the start time of

all the sub-bands (start-of-frame). The acquisition functions are derived using the maximum-likelihood method and the

start-of-frame that maximizes the function attained by a serial search algorithm. Monte-Carlo simulations are

conducted to evaluate the mean acquisition time of our algorithm.

r 2005 Elsevier B.V. All rights reserved.
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UNCORRE1. Introduction

In studies of fractal modulation, it is assumed
that the start-of-frame of a fractal modulation is
known, but a technique to detect it has heretofore
not been developed. A fractal modulation mod-
ulates the same data into different time-frequency
cells. The diversity property results in the reliable
transmission of data in a channel whose duration
and bandwidth are both unknown to the trans-
mitter [1,2]. This property has been used to study
channel estimation, equalization design, and data
61
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transmission in a fading environment [3–5]. These
applications assume that the start-of-frame of a
fractal modulation is known. When the start-of-
frame is correctly detected, the time-frequency
cells containing the same data can be identified,
and the diversity property can be applied.
This frame synchronization, however, cannot be

obtained by a wavelet modulation synchronization
algorithm. Although such an algorithm can be
used to obtain the symbol timing of sub-bands, it
cannot be used to find time-frequency cells that
contain the same data [6,7]. We, therefore, need to
develop a new frame timing recovery method for
detection of the start-of-frame instant of fractal
modulation.
65d.
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We assume that baseband transmission is used
and that the time domain clock error is the major
factor that degrades the performance of a receiver.
We propose a data-aided maximum likelihood
approach to derive a data-aided frame timing
acquisition function for a fractal modulated signal
that exclusively uses the data redundancy inherent
in fractal modulation. A series search approach is
proposed to avoid calculating the derivative of the
irregular likelihood function and finding the zero
of the derivative.

In Section 2, we review fractal modulation and
demodulation. In Section 3, we derive a frame
timing acquisition function using a maximum
likelihood approach; a serial search algorithm is
introduced in Section 3.1. Simulation results of the
acquisition performance are shown in Section 4.
Finally, in Section 5, we present our conclusion
and indicate the direction of future work to
improve frame timing acquisition.
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Fig. 1. A frame of a transmitted signal with a finite-length data

vector. The bottom row corresponds to the sub-band m ¼ 0.

The data vector is transmitted repeatedly in a sub-band with

m40.
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2. Fractal modulation and demodulation

An orthogonal wavelet is the basic signal
waveform of fractal modulation. In an orthogonal
wavelet transform, basis functions are all dilations
and translations of a single function called a
mother wavelet cðtÞ. An orthogonal wavelet
transformation of a signal xðtÞ, with the wavelet
cðxÞ, is described in terms of synthesis and analysis
equations in which the inverse wavelet transform is

xðtÞ ¼
X
m

X
n

xm;ncm;nðtÞ, (1)

and the wavelet transform is

xm;n ¼

Z
xðtÞcm;nðtÞdt, (2)

where

cm;nðtÞ ¼ 2m=2cð2mt� nÞ, (3)

and m and n are the dilation and translation
indices. The inner product between cm;nðtÞ and
cp;qðtÞ satisfies the orthogonal property
TED P
ROOF

hcm;nðtÞ;cp;qðtÞi ¼

Z
cm;nðtÞcp;qðtÞdt ¼ dm;pdn;q.

(4)

A deterministic self-similarity signal sðtÞ satisfies
the deterministic scale-invariance property

sðtÞ ¼ a�HsðatÞ (5)

for all a40. We only consider the waveforms that
satisfy the dyadic self-similar property

sðtÞ ¼ 2�kHsð2ktÞ (6)

for all integer k, and hereafter refer to them simply
as self-similar signals. The wavelet transform of
sðtÞ yields a set of re-normalization coefficients
fsm;ng in which sm;n ¼ b�m=2s0;n and b ¼ 22Hþ1 are
found.
From a discrete sequence fdng, fractal modula-

tion produces a self-similar signal by performing
the inverse wavelet transform

sðtÞ ¼
X
m

X
n

b�m=2 dncm;nðtÞ. (7)

If fdng has finite length L, then the finite length
message is extended as a periodic sequence
fdðnmod LÞg and, as a result, generates the transmis-
sion waveform

sðtÞ ¼
X
n

d ðnmod LÞ

X
m

b�m=2cm;nðtÞ. (8)

Fig. 1shows a finite length data vector in a time
and frequency plane in which many time frequency
cells carry the same data.
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We use fractal group to refer to a collection of
time-frequency cells containing the same informa-
tion d ðnmod LÞ in a time frequency plane. For data
length L, we have a total of L fractal groups. The
time-frequency indices of fractal group Gi are
fðm; nÞjm ¼ 0; 1; . . . ;M � 1 and ðnmodLÞ ¼ ig,
where m and n are scale and time indices,
respectively. Eq. (8) can be rewritten as a modula-
tion of the finite length data fdðnmod LÞg using a
modulation waveform jiðtÞ (called a modulation
fractal basis hereafter) jiðtÞ

sðtÞ ¼
XL�1

i¼0

di

X
ðm;nÞ2Gi

b�m=2cm;nðtÞ ¼
XL�1

i¼0

dijiðtÞ,

(9)

where

jiðtÞ ¼
X

ðm;nÞ2Gi

b�m=2cm;nðtÞ (10)

is a weighted summation of wavelets with time-
frequency indices containing di. For demodula-
tion, we use the demodulation waveform j̄iðtÞ

(also called demodulation fractal basis), which is
defined as

j̄iðtÞ ¼
X

ðm;nÞ2Gi

bm=2cm;nðtÞ. (11)

The modulation and demodulation fractal bases
are linear combinations of the wavelet basis but
have different weighting functions. They are self-
similar and satisfy the orthogonal propertiesZ

jiðtÞj̄kðtÞdt ¼ Zidi;k, ð12ÞZ
jiðtÞjkðtÞdt ¼ Zmi di;k, ð13ÞZ
j̄iðtÞj̄kðtÞdt ¼ Zdi di;k, ð14Þ

where Zi, Z
m
i , and Zdi are, respectively,

P
ðm;nÞ2Gi

1,P
ðm;nÞ2Gi

b�m, and
P

ðm;nÞ2Gi
bm. We hereafter focus

on fractal groups that have the same number of
elements. In such cases, if there are M sub-bands,
we have Z ¼ Zi ¼ 2M � 1,
Zm ¼ Zmi ¼ ð1� ð2b�1

Þ
M
Þ=ð1� 2b�1

Þ, and
Zd ¼ Zdi ¼ ð1� ð2bÞMÞ=ð1� 2bÞ, where Z is the
redundancy factor. Furthermore, if b ¼ 1, then
Z ¼ Zd ¼ Zm.
TED P
ROOF

3. Frame timing acquisition in an AWGN channel

We use d ¼ ½d0; d1; . . . ; dL�1�
T as the informa-

tion vector with independent di 2 f
ffiffiffiffiffiffi
Eb

p
;�

ffiffiffiffiffiffi
Eb

p
g. A

received waveform with transmission delay t can
be written as

rðt; tÞ ¼ sðt� tÞ þ wðtÞ. (15)

Suppose that wðtÞ in Eq. (15) is a white Gaussian
noise with a zero mean and variance s2. If a
demodulation fractal basis j̄iðtÞ is used to extract
the information bit di by projecting the received
signal rðtÞ onto the basis, we have

riðt̂; tÞ ¼
Z

rðt; tÞj̄iðt� t̂Þdt ð16Þ

¼ siðt̂� tÞ þ wiðt̂Þ, ð17Þ

where

siðt̂� tÞ ¼
Z

sðt� tÞj̄iðt� t̂Þdt, ð18Þ

wiðt̂Þ ¼
Z

wðtÞj̄iðt� t̂Þdt. ð19Þ

wiðt̂Þ is again a zero mean uncorrelated Gaussian
noise and

E½wiðt̂Þ� ¼
Z

E½wðtÞ�j̄iðt� t̂Þdt ¼ 0 ð20Þ

E½wiðt̂Þwkðt̂Þ�

¼

Z Z
E½wðtÞwðt0Þ�j̄iðt� t̂Þj̄kðt

0 � t̂Þdtdt0 ð21Þ

¼

Z
s2j̄iðt� t̂Þj̄kðt� t̂Þdt ð22Þ

¼ Zds
2di;k. ð23Þ

Therefore, riðt̂; tÞ is an independent random
variable for each i, and the joint pdf of the vector
r ¼ ½r0ðt̂; tÞr1ðt̂; tÞ � � � rL�1ðt̂; tÞ�T becomes

pðrjt̂� t; dÞ

¼
1ffiffiffiffiffiffiffiffiffiffi

2pZd
p

s

 !L

exp �
1

2Zds2

(

�
XL�1

i¼0

½riðt̂; tÞ � siðt̂� tÞ�2
)
. ð24Þ

Omitting all constant terms, we obtain the log-
likelihood function
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Fig. 2. An example of a bursty log-likelihood function. The

parameters are M ¼ 3, L ¼ 20, Eb=N0 ¼ 0 dB, and H ¼ �1=2.
The unit in the vertical axis is Eb.
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LLðt̂Þ ¼
XL�1

i¼0

½riðt̂; tÞ � siðt̂� tÞ�2. (25)

When the frame timing is acquired, as in the case
where t̂ ¼ t, we have sið0Þ ¼ Zdi. Thus, we use Zdi

to approximate siðt̂� tÞ in the above equation,
and the log-likelihood function becomes

LLðt̂Þ �
XL�1

i¼0

½riðt̂; tÞ � Zdi�
2 ð26Þ

¼
XL�1

i¼0

riðt̂; tÞ
2
� 2Z

XL�1

i¼0

riðt̂; tÞdi

þ
XL�1

i¼0

Z2d2
i . ð27Þ

The first term in Eq. (27) can be approximated as
the power of the received signal. The last term of
Eq. (27) is a constant, since

PL�1
i¼0 Z2d2

i ¼ LZ2Eb.
After ignoring these two terms in Eq. (27), and
dividing the result by the total number of cells in a
block, LZ, the frame timing can be obtained by
finding the maximum value of the following
acquisition function:

Lacqðt̂; tÞ ¼
1

LZ

XL�1

i¼0

riðt̂; tÞdi. (28)

When t̂ � t, the value of Lacqðt̂; tÞ is

Lacqðt̂; tÞ ¼
1

LZ

XL�1

i¼0

riðt̂; tÞdi ð29Þ

¼
1

LZ

XL�1

i¼0

siðt̂� tÞdi þ
1

LZ

XL�1

i¼0

wiðt̂Þdið30Þ

¼
1

LZ

XL�1

i¼0

di

Z
sðt� tÞj̄iðt� t̂Þdt

þ
1

LZ

XL�1

i¼0

wiðt̂Þdi ð31Þ

¼
1

LZ

XL�1

i¼0

di

Z XL�1

j¼0

djjjðt� tÞ

�j̄iðt� t̂Þdtþ
1

LZ

XL�1

i¼0

wiðt̂Þdi ð32Þ
OOF

�
1

LZ

XL�1

i¼0

Zd2
i þ

1

LZ

XL�1

i¼0

wiðt̂Þdi

¼ Eb þ
1

LZ

XL�1

i¼0

wiðt̂Þdi.

Thus, when t̂ � t, Lacqðt̂; tÞ is a Gaussian dis-
tribution with mean Eb and variance Zds

2Eb=LZ.
Because Lacqðt̂; tÞ is an irregular function that has
many sharp peaks near the optimal solution (see
Fig. 2), we cannot simply take the derivative and
use the gradient descent approach to locate the
maximum value position. We now introduce a
serial state search algorithm that finds the max-
imum value position of Lacqðt̂; tÞ. The algorithm
can be similarly applied to frame-timing acquisi-
tion in a 1=f noise environment. This is demon-
strated in Appendix A.
TED P3.1. Serial search algorithm

We measure the mean acquisition time to search
for a time sufficiently close to the beginning of a
frame (data block). This is essentially an estima-
tion problem, for which many solutions have been
proposed [8]. When a log-likelihood function has
many sharp peaks, such as a code acquisition
function for code-division multiple access
(CDMA), the location of its maximum value
cannot be identified easily from its derivative by
a gradient descent approach. A popular and
simple acquisition method for this is the serial
search algorithm [9,10].
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Fig. 3 shows a diagram of the serial search
algorithm. There is a sequence of n points in the
outer circle to be searched. The label in a branch
denotes the probability that a transition occurs
between points, multiplied by a power of z, where
PD and PF, respectively, indicate the detection
probability and the false alarm probability in
testing whether the point is the correct timing. If
the power of z is n, it indicates that n tD seconds
were required to make the transition. For a true
hit, as with the branch labelled PDz, then the
system has acquired the correct time and the
search is complete. For a false alarm, the system
takes tD seconds to move to an inner state.
Afterwards, it takes KtD seconds to verify the
correctness of the detection and move from the
inner state to the next outer state. A total of, a
ðK þ 1ÞtD s are used to verify and move the system
to the next point in the outer circle. This procedure
is repeated until the correct time is acquired. The
search time is the sum of the transition times of all
the branches on the path in the diagram, under the
assumption that any point is equally likely to be
the initial point of the path.

The mean acquisition time for evaluating our
acquisition algorithm is given below. Let us call
UNCORREC 75
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Fig. 3. A serial search state diagram. The points in the inner

circle are false alarm states.
TED P
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the correct acquisition time point the destination
point. Any branch in the inner circle moves to the
next outer circle point with a delay of K. The
transition from an outer circle point to the next
outer circle point has the branch transfer function

HbðzÞ ¼ ð1� PFÞz� PFz
Kþ1. (35)

Then, the transfer function from an initial point
that is i branches away from the destination point
is

UiðzÞ ¼
Hi

bðzÞPDz

1� ð1� PDÞzH
n�1
b ðzÞ

. (36)

Assume all points are, a priori, equally likely to be
initial points, then the total transfer function
average from all n starting points is

UðzÞ ¼
1

n

Xn�1

i¼0

UiðzÞ ¼
1

n
PDz

Pn�1
i¼0H

i
bðzÞ

1� ð1� PDÞzH
n�1
b ðzÞ

ð37Þ

¼
PDz½1�Hn

bðzÞ�

n½1�HbðzÞ�½1� ð1� PDÞzH
n�1
b ðzÞ�

. ð38Þ

The mean acquisition time of a serial search
algorithm, denoted as Tacq, is

Tacq ¼
X1
i¼1

iUi ¼
dUðzÞ

dz

����
z¼1

. (39)

When nb1, the mean acquisition time, in terms of
PF and PD, is approximately

Tacq ffi
ð2� PDÞð1þ KPFÞ

2PD
ðntDÞ. (40)

The variance of the acquisition time is derived
from the second derivative of UðzÞ and is given as

d2UðzÞ

dz2
þ

dU

dz
1�

dUðzÞ

dz

� �� �����
z¼1

. (41)

When nb1, in terms of PD and PF, the variance is
written

t2D ð1þ KPFÞ
2n2

1

12
�

1

PD
þ

1

P2
D

� ��

þ 6n½KðK þ 1ÞPFð2PD � P2
DÞ

þ ð1þ PFKÞð4� 2PD � P2
DÞ� þ

1� PD

P2
D

�
. ð42Þ
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4. Simulation results

All the simulation programs are written in
Matlab, and our wavelets cm;nðtÞ are approximated
by discrete points. We use T0 to denote the
signaling interval (the time interval between two
adjacent symbols) at the sub-band m ¼ 0, which is
the bottom row in Fig. 1, and 128 points to
represent the interval T0. In all the experiments,
we use the Meyer wavelet, which has a length of
16T0. The Meyer wavelet cðtÞ has 2; 048 discrete
points in the slowest sub-band. Also, we choose
b ¼ 1 for modulation. Because each symbol is
either

ffiffiffiffiffiffi
Eb

p
or �

ffiffiffiffiffiffi
Eb

p
, we use Eb=N0 to denote the

signal to noise ratio at each time-frequency cell.
Note that, in an AWGN channel, all frequency
cells have the same Eb=N0.

The serial search algorithm parameters used
here are selected as follows. Points in the outer
circle are sampled at every half interval for each
symbol in the sub-band with the shortest time
interval per symbol. Thus, if we have M sub-bands
and a data block with L symbols, then we will have
L2M�1 symbols in the sub-band M � 1 in which
the width of a symbol interval has the narrowest
rectangular slot in the time domain, as in the top
row of slots in Fig. 1. Hence, there are n ¼ L2M

points in the outer circle. The accuracy of our
acquisition algorithm is within one-half a symbol
interval at the sub-band M � 1. The correct timing
hypothesis is tested at any point in the outer circle
by comparing LacqðtÞ at the point to a given
threshold. The hypothesis is accepted if the LacqðtÞ
is greater than the threshold. We determine our
threshold value from the result of Eq. (34). Since
Lacqðt̂; tÞ yields a mean value Eb when the timing is
correctly acquired, our threshold Th is set to be
0:7Eb. Its value may not be the optimal threshold
for minimizing the mean acquisition time. Deter-
mining the optimal threshold is an advanced topic
that requires an analysis based on detection theory
[11]. The detection probability PD and the false
alarm probability PF (both of which are dependent
on the threshold) used in estimating the mean
acquisition time were obtained through simula-
tions. K is the time required to realize that the
current state is incorrect. Its value depends on the
TED P
ROOF

procedure to check the correctness of the current
state.
We use the following procedure to verify the

correctness of the current state. We assume that
the detected start-of-frame point at t̂ is the true
start-of-frame. To verify the correctness of the
assumption, we verify the K consecutive symbols
by applying K fractal demodulations to the
received signal at delay times t̂þ iT0=2

M�1 with
i ¼ 1; 2; . . . ;K ; N is the number of points to
represent the wavelet cðtÞ here, we have 2048
points). At the ith demodulation, we estimate the
symbols in the time-frequency cells (there are Z
cells) that should contain the di symbol and
compare each estimated symbol to di. If the
estimated symbols in the cells are indeed di, we
say that the symbol di is correctly received. If there
are more than bK=2c þ 1 correctly received
symbols, we say that the detected start-of-frame
point is correct. In our experiment, we use K ¼ 7.
This value is not necessarily the optimal value for
our verification. Analysis of various verification
processes and their performance are not within the
scope of our study. Some verification methods for
the CDMA serial search algorithm can be found in
[12–14].
The top plot of Fig. 4 shows the received

AWGN signal whose Eb=N0 is 0 dB. The
transmitted signal is a concatenation of three
frames beginning at t ¼ 40; 60; 80. The bottom
part shows the acquisition function. For the three
data blocks in the signal, there are three peaks in
the figure that occur at the correct timing points.
Fig. 5 shows the average detection probability

PD, the average false alarm probability PF, and the
mean acquisition time Tacq=tD versus Eb=N0. For
an Eb=N0, the PD and PF are measured from 150
Monte-Carlo simulations of AWGN noisy signals.
In the simulation, the parameters are M ¼ 3 and
L ¼ 20. There are L2M ¼ 160 outer states in our
serial search algorithm. One of these is the
destination state; the rest of the states are non-
destination states. The detection probability PD

measures the average of the detected event (when
Lacqðt̂; tÞ4Th) from all the simulated received
signals and the destination state, while the false
alarm probability PF measures the average of the
detected event from all realizations and all non-
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Fig. 5. Top: the detection probability. Middle: the false alarm

probability. Bottom: the normalized mean acquisition time

versus different Eb=N0 in an AWGN channel. The experiment

parameters are L ¼ 20, M ¼ 3, and H ¼ � 1
2
. As shown in the

figures, when Eb=N0 increases, the false alarm probability PF

decreases and the detection probability PD increases. According

to Eq. (40), decreasing PF and increasing PD reduces the value

of the denominator of the equation, thus, the mean acquisition

decreases.
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destination states. Our mean acquisition time is
normalized against tD, which is the time consumed
testing for the correct timing hypothesis at each
outer circle point. When the false alarm prob-
ability is zero, the mean acquisition time is half the
state number of our series search algorithm. In
Fig. 5, as Eb=N0 grows, the acquisition delay
asymptotically is 80 tD, which is equal to half the
state number in this experiment.

The effects of the block length L on PD and PF

are shown in Fig. 6. According to Eq. (34), the
noise variance decrease as the information vector
L increases. Thus, PD increases and PF decreases
as block length L increases. A longer buffer and
time are needed at a receiver to collect and process
a longer data vector. Since n is proportional to L,
according to Eq. (40), the mean acquisition time is
a linear function of L. This is shown in the bottom
figure of Fig. 6.
U 91
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95
5. Conclusion and future work

Because a technique to detect the start-of-frame
of fractal modulation had yet to be developed, the
diversity property of a fractal modulation could
not be applied. Our frame timing acquisition
algorithm uses a serial search algorithm to locate
the beginning timing of all sub-bands in a delayed
signal. The acquisition algorithm obtains the
maximum-likelihood solution in AWGN channels.
As our acquisition precision is proportional to the
number of sampling points, by increasing the
sampling rate, frame timing acquisition accuracy
increases, but the acquisition time also increases.
In the future, we plan to combine other synchro-
nization techniques to obtain an efficient and
accurate acquisition algorithm.
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UNAppendix A. Spectrum matching—timing

acquisition in a 1=f noise

The spectrum matching rule that maintains the
same SNR across all frequencies leads to a
uniform performance for a receiver operating with
varying bandwidth [15,16]. This rule is potentially
well-suited for transmitting fractal modulated
TED P
ROOF

signals where a receiver is operating in a channel
with an unknown bandwidth. Here, we discuss
fractal modulation and demodulation of a noisy
signal that is embedded in a 1=f noise.
We assume that noise wðtÞ in Eq. (15) is a

Gaussian 1=f process whose degree Hw ¼ H has
been estimated [17,18], and that the degree Hs of
the signal sðtÞ has been chosen to make it match
the transmitted noise. Then, we have

Hs ¼ Hw ¼ H. (43)

It was shown in [19] that an orthogonal wavelet is
an almost whitening filter of any 1=f process.
Furthermore, the wavelet coefficients of a Gaus-
sian 1=f process can be well approximated as
independent zero-mean Gaussian random vari-
ables with a variance depending on the scale and
the fractal parameter H. That is,

wm;nðt̂Þ ¼
Z

wðtÞcm;nðt� t̂Þdt (44)

and

E½wm;nðt̂Þwk;lðt̂Þ� � s2b�mdm;kdn;l . (45)

The derivation of the above equation can be found
in [19]. According to Eq. (11), we have

wiðt̂Þ ¼
Z

wðtÞj̄iðt� t̂Þdt ð46Þ

¼

Z
wðtÞ

X
ðm;nÞ2Gi

bm=2cm;nðt� t̂Þdt ð47Þ

¼
X

ðm;nÞ2Gi

Z
wðtÞbm=2cm;nðt� t̂Þdt ð48Þ

¼
X

ðm;nÞ2Gi

bm=2wm;nðt̂Þ, ð49Þ

where from Eq. (48)–(49) due to Eq. (44). Using
the spectrum matching rule to decompose the 1=f
process wðtÞ by fractal basis j̄iðt� t̂Þ, we obtain

E½wiðt̂Þ� ¼
Z

E½wðtÞ�j̄iðt� t̂Þdt ¼ 0, (50)
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E½wiðt̂Þwkðt̂Þ�

¼
X

ðm;nÞ2Gi

X
ðj;lÞ2Gk

bm=2bm=2E½wm;nðt̂Þwj;lðt̂Þ� ð51Þ

¼
X

ðm;nÞ2Gi

X
ðj;lÞ2Gk

s2dm;jdn;l ð52Þ

¼ s2Zdi;k. ð53Þ

The pdf of r for the spectrum matching method is
derived by a similar method to that of Eq. (24), so
we obtain

pðrjt̂� t; dÞ ¼
1ffiffiffiffiffiffiffiffi
2pZ

p
s

� �L

exp �
1

2Zs2

(

�
XL�1

i¼0

½riðt̂; tÞ � siðt̂� tÞ�2
)
. ð54Þ

We can use the same log-likelihood equation for
AWGN (see Eq. (28)) for frame timing acquisition
in an 1=f noise.
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