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Abstract—Video semantic analysis is formulated based on the
low-level image features and the high-level knowledge which is en-
coded in abstract, nongeometric representations. This paper intro-
duces a semantic analysis system based on Bayesian network (BN)
and dynamic Bayesian network (DBN). It is validated in the par-
ticular domain of soccer game videos. Based on BN/DBN, it can
identify the special events in soccer games such as goal event, corner
kick event, penalty kick event, and card event. The video analyzer ex-
tracts the low-level evidences, whereas the semantic analyzer uses
BN/DBN to interpret the high-level semantics. Different from pre-
vious shot-based semantic analysis approaches, the proposed se-
mantic analysis is frame-based for each input frame, it provides the
current semantics of the event nodes as well as the hidden nodes.
Another contribution is that the BN and DBN are automatically
generated by the training process instead of determined by ad hoc.
The last contribution is that we introduce a so-called temporal in-
tervening network to improve the accuracy of the semantics output.

Index Terms—Dynamic Bayesian network (DBN), temporal in-
tervening network (TIN), video semantic analysis.

I. INTRODUCTION

I N THE past decade, a large amount of digital media data
including image, audio, video, streaming video clips,

panorama images, and three-dimensional (3-D) graphics have
been delivered to audience. We need a flexible and scalable way
to manage these rich media of which the digital video has been
widely accepted as the most accessible one. The MPEG-7 has
tried to standardize the content-based media access methods.
For example, the video indexing and retrieval are useful query
tools for us to access the media, which consists of automatic
classification, summarization and understanding of video shot.

Several research efforts have been undertaken by using
domain knowledge to facilitate extraction of high-level con-
cepts directly from features. Some approaches use stochastic
methods that often exploit automatic learning capabilities to
derive knowledge, such as hidden Markov models (HMMs)
[1]–[3]. Ekin [4] proposes a fully automatic and computa-
tionally efficient framework for sports video analysis and
summarization by using low-level video processing algorithms.
Recently, automatic detection of the principal highlights of
sports video has become popular. Snoek et al. [5] utilize the
time interval maximum entropy (TIME) to classify the event
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in multimodal video. In [6], [7], Gong et al. use three aspects
of feature design in soccer video indexing. They propose a
maximum-entropy method to choose the features with more
distinguished power which is applied to detect and classify
baseball highlights for soccer indexing.

Recently, the Bayesian network (BN) [8] has been applied for
semantic analysis. In [9], Sun et al. uses BN for scoring event
detection in soccer video based on using six different low-level
features including gate, face, audio, texture, caption, and text.
Shih et al. [10] develop the so-called multilevel semantic net-
work (MSN) to interpret the highlights in baseball game video.
Another highlight detection method [11] exploits visual cues es-
timated from the video stream, the currently framed playfield
zone, player’s position, and the colors of players’ uniforms.

The low-level features are used for semantic analysis to iden-
tify the highlight [14], i.e., object, color and texture features are
employed to represent the highlight. Xu et al. [12] propose an
effective algorithm for soccer video, which detects the plays and
breaks in soccer games by motion and color features. Wan et al.
[13] detect and track important activities such as ball posses-
sion in soccer video that is highly correlated to the camera’s
field-view.

Rule-based video analysis and indexing systems using the
mixture of cinematic and object descriptors are proposed in
[15] and [16]. A content-based video categorizing method
focusing on broadcasted sports videos using camera motion
parameters has been developed in [17]. A combination of the
speech-band energy tracking in audio domain and the color
dominance pattern recognition in video domain provides a
useful contribution to event detection for football video [18].
A knowledge-based semantic inference scheme for events
recognition in sports video has been presented by three-layer
semantic inference scheme [19].

The dynamic Bayesian network (DBN) [20] is based on the
BNs and their extensions, it tries to unify temporal dimension
with uncertainty. DBN is a useful tool for representing com-
plex stochastic processes. Recent developments in inference and
learning in DBN [20]–[24] have been applied to many real-
world applications. In [20], they propose a robust audiovisual
feature extraction scheme and text detection and recognition
method. Their system provides automatic indexing of sports
videos based on speech and video analysis. They focus on the
use of DBN and demonstrate how they can be effectively applied
for fusing the evidence obtained from different media informa-
tion sources.

Here, we introduce an innovative, high-level, semantics-
based content description analysis for reliable media access
and navigation service based on the DBN. Given a video
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in a specific domain, our system may extract the low-level
evidences and then generate the high-level semantic meaning.
Specific domains contain rich spatial and temporal transitional
structures for the semantic interpretation process. In sports, the
events that unfolded are governed by the rules of the game,
so that they contain a recurring temporal structure. The rules
of production of sports video have also been standardized. In
soccer videos, there are only a few recurrent views, such as
close-up and global-view, whereas in baseball videos, there are
pitching, close-up, home plate, battering, and crowd etc.

Sports programs are usually lengthy. The content provider
needs to extract and present the highlights for the viewers. The
video information of various sports programs can be signifi-
cantly different, such as the rules of the game, the player action,
the camera motion, and strategy of the game. This paper presents
the automatic interpretation of the highlights in the soccer game
video. The BN/DBN is constructed by linking subnets to a root
node of which the status indicates the certainty of the specific
event.

Different from previous semantic analysis approaches, the
proposed semantic analysis is frame-based instead of shot-
based. For each input frame, it provides the current semantics
of the event nodes as well as the hidden nodes. The second
major contribution is that the BN and DBN are automatically
generated in the training process rather than determined by
ad hoc. The last contribution is that we introduce a so-called
temporal intervening network to improve the accuracy of the
semantic analysis. Our method may identify the highlight
events in soccer video including goal event, corner kick event,
penalty kick event, and card event.

II. DYNAMIC BAYESIAN NETWORK

The BN [8] encodes the conditional dependence relationships
among a set of random variables in the form of a graph. A
linkage between two nodes denotes a conditional dependence
relation, which is parameterized by a conditional probability
model. The structure of the graph encodes the domain knowl-
edge, such as the relationship between the observation nodes
and the hidden states, while the parameters of the conditional
probability models can be learned from training data.

However, BN does not provide the direct mechanism for rep-
resenting temporal dependencies. We need to add temporal di-
mension into the BN model as “temporal” or “dynamic.” DBN
is used to model a temporally changing system. This model will
enable users to monitor and update the system as time proceeds,
and even predict further behavior of the system.

DBN is usually defined as the special case of singly con-
nected BN specifically aimed at time series modeling. All the
variables, arcs, and probabilities that form static interpretation
of a system is similar to BN. Variables can be denoted as the
states of a DBN, because they include a temporal dimension.
The states satisfy the Markov condition, it is defined as follows:
the state of a DBN at time depends only on its immediate past,
i.e., its state at time . In DBN, we allow not only intra-slice
connections (i.e., within time slices) but also the interslice con-
nections (i.e., between time slices). The inter-slice connections
incorporate condition probabilities between variables from dif-
ferent time slices. Each state in a dynamic model at one time

instance may depend on one or more states at the previous time
instance or/and on some states in the same time instance. So,
the state at time may depend on the system states at time
and possibly on current states of some other variables of DBN
structure at time .

To completely specify a DBN, we need to define three sets
of parameters: 1) State transition probability , that
specifies time dependency between the states. 2) Observation
probability , that specifies dependency of observation
nodes regarding to the other nodes at time slice . 3) Initial prob-
ability , that brings the priori probability distribution in
the beginning of the process.

From the input video, the video analyzers may find the pos-
sible existence of certain low-level evidences. To generate a
DBN for sports video, we develop the following steps. 1) For-
mulate problem in terms of creating a set of variables repre-
senting the distinct elements of the situation being modeled.
2) Assign the set of mutually exclusive states or outcomes of
each variable. 3) Generate the priori probabilities for each vari-
able and their conditional probabilities based on the training
data. 4) Determine the causal dependency relationships between
these two variables. This involves creating direct edges linking
from the parent (influencing) nodes to the child (influenced)
nodes, and from the previous time slice nodes to the current time
slice nodes.

III. LOW-LEVEL EVIDENCE EXTRACTION

Most of the semantic analysis methods rely on the low-level
evidence in the scene. Here, we briefly describe the methods
to identify the probability of the existence of the low-level evi-
dence including dominant color region, short-term motion, tex-
ture intensity, logo, parallel lines, score board, black object,
audio energy, and long-term static scene. They are essential for
the inference process in DBNs to generate high level semantic
interpretation.

A. Dominant Color Region

In soccer video, there are two different scenes in bird’s-eye
view or close-up view. A bird’s-eye view captures the entire
soccer field, whereas a close-up view shows the detail interac-
tions among the players and/or the referee. We use the similar
method in [4] to find one dominant color (i.e., green) in the
soccer video, however, it may vary from stadium to stadium,
different weather, and lighting conditions. Normally, the domi-
nant color region indicates the soccer field. The dominant color
is described by the peak value of each color component.

The color image is in RGB space with the color histogram of
each component defined as (i.e., indicates the color his-
togram of R, G, or B component). For each component, we de-
termine the peak index, , for , and then find an interval

with , where and
satisfy the conditions: ,

, , ,
with . The conditions define the minimum (max-
imum) index as the smallest (largest) index to the left (right),
including the peak that has a predefined number of pixels, i.e.,

. Then, we convert the peak of each color component in
to .
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Fig. 1. Dominant color region detection in bird’s-eye view, and close-up view. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 2. Audience region detection. (Color version available online at http://ieeexplore.ieee.org.)

For color pixels in each frame, we calculate the distance from
each pixel to the peak color (i.e., ) by the cylin-
drical metric. We assign pixel to the dominant color region if
it satisfies the constraint where is a
predefined threshold which is video dependent. The existence
of the dominant color region is based on the ratio of the area
of the pixels in dominant color and the area of the entire frame.
The higher area ratio indicates the higher probability of the exis-
tence of the dominant color region. Fig. 1 illustrates the results
of dominant color region detection for two views. We use the
area ratio to define the probability of the existence of a domi-
nant color region.

B. Short Term Motion

We can calculate the camera motion between two consec-
utive frames (or short-term motion) by using two one-dimen-
sional (1-D) projections of two consecutive frames with
picture elements (pixels). The pixel motion can be obtained by
analyzing the characteristics of the vertical and horizontal pro-
jections respectively. First, we calculate the vertical projection

for each frame. Second, we calculate the sum of absolute
difference (SAD). We divide the 1-D projection into small slices
with pixels width . From two consecutive frames
and , we take a slice of frame , slide it overlap frame , and
calculate the SAD value of the two slices as

where is the index of the center position of the slice from
frame and is the displacement value. Third, for each slice,
we find the horizontal displacement vector that generates the
minimum SAD values.

For each frame, we may have a set of displacement vectors
. Similarly, we may have the horizontal projection, ,

and use the similar method to find a set of vertical displacements
. The magnitude of the average of the displacement vec-

tors and indicate the priori probability of short-term
motion.

C. Texture Intensity

The two major background regions in the soccer scene are the
audience region and grass field region. With difference texture
features, they can be differentiated by the texture density infor-
mation. To analyze texture (edge) intensity, we segment each
frame into blocks, and let represent the edge den-
sity in each block (located at ) which is defined as

where is the block size, and if pixel
is an edge pixel, otherwise . If the edge density or
texture density of a block is large enough, we say that this block
belongs to the audience region. When there are many blocks of
audience region, we merge these blocks as the audience region.
As shown in Fig. 2(a) and 2(b), the bounded region is detected
as the audience region.

D. Logo

In broadcast sports video, replays provide the viewers another
chance to watch the interesting events. The replays can be uti-
lized for efficient navigation, indexing, and summarization of
the sports video programs. The replay segment finding method
identifies the replay via detecting the logos that sandwich the
replay [25] (see Fig. 3).

To check the color and luminance differences between two
consecutive frames, we apply the histogram-based scene cut de-
tection algorithm [26]. We apply the distance measure for the
difference between two consecutive frames and as

if
otherwise
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Fig. 3. The corresponding frames in different logo transitions contain the same logo. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 4. Gate region detection. (Color version available online at http://ieeexplore.ieee.org.)

where and are the bin value of the color or lu-
minance histogram of frames and , and is the overall
number of bins. A logo transition will be detected if

where frames and are in different sessions. The
logo usually appears in less than 1 s, and the logo image se-
quence is a set of a freeze logo pattern which can be verified as

where frames and are in the same logo
session and .

The logo detection algorithm is based on the scene cut de-
tection which may find the scene change between the logo ses-
sion and the replay with slow motion or in regular speed. Its
performance is also insensitive to slow-motion video segments
that are captured with high-speed camera. The experimental
results show that the accuracy of our algorithm is more than
98% (i.e.,

)

E. Parallel Lines

The appearance of two or three parallel field lines in a
bird’s-eye view can be used to indicate the occurrence of the
gate. The appearance of gate and parallel field lines are highly
co-related. The gate is visible when the players appear close to
or within one of the penalty boxes. This information of parallel
lines which indicates the penalty box is very useful for gate
detection. The information of the parallel is more reliable than
the information of the gate post from the video scene, since the
gate post detection may fail due to the cluttered background
pixels.

Here, we use edge detector and Hough Transform to detect
the parallel lines. As shown in Fig. 4(a), the parallel lines are de-
tected, and their slope angles range from 140 to 170 , Fig. 4(b)
illustrates another example of parallel lines, and their angles

range from 10 to 40 . When parallel lines tilt to left, it implies
a right goal, otherwise a left goal.

F. Score Board

The score board is a caption region distinguished from the
surrounding region, which provides the information about the
score of the game or the status of the players. Here, we combine
the dynamic and static properties to detect the caption region.
We make use of the fact that the caption often appears at the
bottom part of image frame for a short while and then disap-
pears. So the abrupt intensity change at the bottom part of the
adjacent frames is used to detect the appearance and disappear-
ance of the caption. Our method detects the four edge segments
(which enclose a rectangle box) to locate the caption precisely.
In Fig. 5, the rectangular box with red border is detected as the
caption region. The position and size of the rectangle indicates
different possibility of the existence of the board.

G. Black Object

In soccer video, the persons of interest for semantics inter-
pretation are the referee and the players. The information of
referee is useful for the event detection, e.g., yellow/red card
events. The events may also involve close-up frames of the par-
ticipating players. The referee identification is robust because
the variation of their shirt colors is limited. We assume that the
referee is dressed in black, we may use the color segmentation to
find the referee. After color segmentation, we may use a com-
pact rectangle to enclose the black region which is called the
minimum bounding rectangle (MBR).

The existence of black object depends on two size-invariant
properties of MBR: 1) the ratio of the area of the MBR to the
frame area, and 2) MBR aspect ratio (width/height). Different
area ratio and aspect ration indicates different prior probability
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Fig. 5. Different kinds of board region detection. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 6. Referee detection. (Color version available online at http://ieeexplore.
ieee.org.)

of MBR. The MBR with ratio of the area inside (0.05, 0.75)
interval and the aspect ratio values inside (0.2, 1.8) interval has
a higher prior probability of black object (as shown in Fig. 6).

H. Audio Energy

The soccer video program is always accompanied with voice,
which conveys crucial information of the game. When a goal
event occurs, the excited announcer and the audience will make
a very loud cheering voice. For other incidents, the announcer
will also raise his voice indicating certain ongoing highlights.
The higher energy of the voice indicates the higher occurrence
of an event. Mostly the high voice intensity occurs during the
goal event.

I. Long-Term Static Scene

In the soccer game video, the camera keeps tracing the ball,
so that the continuous camera panning motion stops only when
a particular event occurs, such as a penalty kick. To detect long-
term static scene, we find 1) very small global motion displace-
ment and 2) no logo session (a very small duration of
static scene). Normally, the static video sequence lasts for more
than 10 s time interval. The existence of long-term static scene
depends on the duration of the static scene. The longer duration
indicates the higher probability of the existence of the long-term
static scene.

IV. SEMANTIC ANALYSIS USING BN AND DBN

BN and DBN are powerful semantic analysis tools which
have been applied to model the high-level semantic information
embedded in the video data. In sports, the high-level seman-
tics are the highlight events containing recurring temporal struc-
ture. Here, we use BN/DBN to model the semantic highlights of
soccer game such as goal event, corner kick event, penalty kick
event, and card event. The BN/DBN is automatically generated

after the following training process rather than determined by
ad hoc.

A. Training Phase

Based on the extractable features and their causality in the
soccer video, we define three types of nodes: 1) the event nodes,
such as goal, corner, penalty, and card; 2) the hidden nodes,
such as replay, board, close-up, audio, audience, gate, panning,
static camera, and referee; 3) the evidence nodes: such as energy,
logo, texture, motion, parallel lines, and dominant color. Ini-
tially, every node in the network is not connected. In the training
phase, the human observers count the number of the appearance
of each node or the joint appearance of two nodes in the training
video sequences. Training can be categorized into two kinds:
qualitative (structural training) and quantitative training (param-
eter training). The former generates the DBN network structure
of the model, whereas the latter determines the specific condi-
tional probabilities.

1) Quantitative Training: In quantitative training, the depen-
dence between the nodes and the occurrence possibility of each
node in the network will be determined. Nodes are the graphical
representation of the evidence of the events in the video which
are usually termed as variables or states. The training procedure
can be divided into three phases. In the first training phase, we
compute all the conditional probabilities between event-hidden
nodes or the hidden-hidden nodes by counting the number of
times that the joint appearance of the event-hidden node pair
(e.g., goal and close-up) is true and the number of times that
the appearance of the event node is true. We can also count
the number of times that hidden-hidden node pair (e.g., replay
and close-up) is true and the hidden node (e.g., replay) is True.
Given these counts (with sufficient statistics), we can calculate
the conditional probability as

.
The second training phase is applied for all the temporal

dependency for each event-event pair, event-hidden pair, or
hidden-hidden node pair at two consecutive time slices. Every
two nodes have certain temporal relationship which can be
described in terms of the conditional probability. Given two
nodes (e.g., and ), we can count the number
of joint appearance of and , or the single ap-
pearance of , and compute the conditional probability
as

.
The third training phase is applied to generate the conditional

probability of the existing link between the evidence nodes and
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the hidden nodes. The appearance of the hidden node is obtained
by human observers, and the appearance of evidence node is
obtained by feature extraction process. We count the number of
times that the gate and the parallel lines appear simultaneously,
and the number of times that the gate appear, and compute the
conditional probability as

.
2) Qualitative Training: After the quantitative training,

every two nodes in the network are somehow related. If the
directional relationship (i.e., conditional probability) of any
two nodes is large enough, the linkage between those two
nodes is established. Causal relation between any two nodes
is represented by the directional linkage between them, which
leads from the cause (parent) node (i.e., ) to the effect
(child) node (i.e., ). Each effect node may be connected to

cause nodes. We let represent the conditional
probability relating the cause node to the effect nodes
where and , where is the number of
effect nodes. After the quantitative training, we normalize the
conditional probability relating the cause node to the effect
node as .

To determine the effective linkages for the network, we let
be the universe of the configuration over a

universe of the linkages of every two nodes (event-hidden node
pair or hidden-hidden node pair) and
be the original distribution after training. is the can-
didate network with as the
distribution after thresholding. We define (1) the Size of

, , which is the number of entries in
that , (2) the Cross Entropy Distance,

.
There is a trade-off between and . If

we have a larger threshold then the will be smaller,
and the cross entropy distance will become larger,
and vice versa. Therefore, we define the Acceptance Measure
as . Then, we use
the Langrage method to choose Langrage multiplier and the
threshold that minimize the . Finally, we use the
Bayes’ rule to obtain the posteriori probability . In
the training phase, 500,000 frames are used to generate a reli-
able DBN.

B. DB and DBN Model

After the training processes, we generate the BN/DBN an
inference of unobservable concepts based on their relevance
with the observable evidences. Given the evidences as the input,
the BN/DBN may infer certain high-level semantics. In Fig. 7,
four BNs are illustrated: (a) Goal event; (b) corner kick event;
(c) penalty kick event; and (d) card event.

For soccer videos, the evidences with shaded nodes applied
to infer the goal event are parallel line, energy, and dominant
color, etc. These evidence nodes are the input to the network, as
shown in Fig. 7(a). These domain specific features are specified
by the evidence nodes, i.e., the logo, dominant color, parallel
line, and texture density. They are somehow related and the
relationships among them are through the hidden nodes. In
Fig. 7(b), the evidences applied to infer the corner kick event

Fig. 7. Different structure of BN network for detecting the (a) goal event;
(b) corner kick event; (c) penalty kick event; (d) card event.

are parallel line, texture density, and motion. In the corner
event, the ball moves with high velocity, so the motion is very
important information.

In Fig. 7(c), the evidences (the shaded nodes) required to infer
the penalty kick event are dominant color, parallel line, audio
energy, etc. We find that the posteriori probability of the static
camera and penalty kick event is larger in the penalty kick BN
than the other BNs. In Fig. 7(d), the evidences applied to infer
the card event are black objects, dominant color, and logo. Since
the referee is always involved in the card event, the black object
is very important information. The inference propagation in the
DBN generates the occurrence possibility of the root node. After
a simple decision making, we may decide whether the event
exists or not.

After the training, for different event, we have developed a
corresponding DBN for each BN as shown in Fig. 8. Some
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Fig. 8. Different DBN networks for (a) goal event; (b) corner kick event; (c) penalty kick event; (d) card event.

hidden nodes appear in the BN, but not in the corresponding
DBN, on the other hand, some hidden nodes may be found
in DBN, but not in the corresponding BN. For instance,
we found no “board” in the BN [Fig. 7(a)], but it appears
in the corresponding DBN [Fig. 8(a)]. It is because after
the second phase of the quantitative training, the temporal
causality between score board and the goal is stronger than
its spatial causality. We also find the cheering node appears
in BN [Fig. 7(c)] but not in DBN [Fig. 8(c)]. It is because the
spatial causality of the cheering-event node is stronger than
their temporal causality.

C. Propagation in Bayesian Network

Here, we apply the algorithm of probability updating in
Bayesian networks. The algorithm does not work directly on
the Bayesian network, but on a so-called junction tree which is a
tree of clusters of variables. The clusters are also called cliques
because they are cliques in a triangulated graph, which is a

special graph constructed over the network. Each clique holds
a table over the configurations of its variables, and probability
propagation consists of a series of operations on these tables.
The operations of propagations are rather complicated of which
the details are mentioned in [8].

After the inference propagation of DBN, there are two types
of decision-making: test-decisions and action-decisions [8]. The
former is a decision that requires more evidence to be entered
into the model if the test of the results leads to uncertainty.
Whenever the decision leads to uncertainty, the system requires
more information or evidence (since it is not free), it is called the
test-decision. The latter is a decision that requires certain actions
to change the states of the model. In our system, we consider the
action-decision.

With a complete set of evidences, the final inference propa-
gation of DBN will lead to the action-decision which can fur-
ther be divided into two types: intervening actions and non-
intervening actions. During inference propagation, the inter-
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Fig. 9. The occurrence of replay, close-up, and gate in a goal event. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 10. TIN for goal event detection. (Color version available online at http://ieeexplore.ieee.org.)

vening action changes the posteriori probability distribution of
the model, whereas, the nonintervening action has no impact on
the model. In our system, we introduce the so-called temporal
intervening network for taking the intervening action. With ev-
idence propagation procedure of DBN, and the posteriori prob-
ability increment via the temporal intervening network, we can
improve the identification detection rate of the high level se-
mantic meaning in the soccer video.

D. Temporal Intervening Network

After the inference propagation, the confidence of the event
is equi-probable, e.g., , and
the posteriori probability of the event node and the hidden node
may also be similar, e.g.,

. However, the events in soccer
video have certain regularity which can be used to differentiate
the posteriori probabilities. In the goal event, the occurrences
of gate, close-up, and replay follow certain rules of causality.
In the beginning of a goal event video (e.g., Fig. 9), we always
find the appearance of gate. When the gate disappears, the first
close-up will appear in less than 20 frames time interval. After
the first close-up, the replay segment appears, and there are other
close-ups and gate within the replay video segment. Finally, the
last close-up and the score board appear, and then the goal event
terminates.

We define the following abbreviations: ,
, , , and ,

and compute the distance and the
distance as follows:

and
.

TABLE I
THE CONDITIONAL PROBABILITY OF THE EXISTENCE OF THE

CLOSE-UP AFTER THE GATE (close�up = Y)

Once the regularity (i.e., ) is
found, the so-called temporal intervening network (TIN)
is activated. When the close-up disappears, the replay
will appear in less than 20 frames time interval. Once
the , we may
also use the temporal intervening networks to increase

. For different events, we may
also apply the TIN to change the posteriori probabilities for
some linkages in the DBN to improve the accuracy of the final
inference results as shown in Fig. 10.

1) Goal Event Example: We focus on the first close-up be-
cause the appearance of the close-ups is sequential, so we only
need to know whether the gate appears and then disappears
for 20 frames time interval before the first close-up. Given

and , we find the probability
of the existence of the gate in front of the close-up. Based on
the training data, we can generate the conditional probabilities,
i.e.,
and ,
as shown in Table I.

Now, at an arbitrary instance of the testing video, suppose
the close-up appears, and the probability of the appearance of
goal is . If we as-
sume , we may have a new poste-
rior probability , as shown in the equa-
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Fig. 11. TIN for card event. (Color version available online at http://ieeexplore.
ieee.org.)

TABLE II
THE CONDITIONAL PROBABILITY BETWEEN THE CLOSE-UP

AND THE REFEREE (close�up = Y)

tion at the bottom of page, and
. Otherwise, if the ,

the new posterior probability becomes
.

If , the goal event occur-
rence probability is increased from 0.6 to 0.839. Otherwise, if

, the goal event probability is re-
duced from 0.6 to 0.159. However, this network is not activated
when close-up does not appear, the original posterior probability
does not change.

2) Card Event Example: Similarly, another TIN (as shown
in Fig. 11) can also be used to increase the posteriori
probability . In the card event, the
referee appears in the global event and then appears in a
close-up event. Here, we define the

. Suppose we have the conditional probability and
(see Table II). During the card event, the

probability of is 0.784, i.e.,
, and

the probability of
is , i.e.,

.
If , during the card event, we always find
the referee appear before the close-up.

Now, suppose and
, if the , then we can

have a new posterior probability
and . Oth-
erwise, if the , the new posterior
probability . The advantage of using
TIN is to improve the card event probability from 0.6 to 0.857,
When and the referee appears before these

, the card event probability is reduced from 0.6 to
0.287.

3) Penalty Kick Event Example: We can also develop the
temporal intervening network (as shown in Fig. 12) for the DBN
of penalty kick event. In the penalty event, the gate always ap-
pears before the close-up. When the gate disappears, the close-up
will appear in less than 20 frames time interval. In Fig. 12(b), the
temporal intervening network can be also applied to DBN when

. In the penalty event, we often find the replay
after the close-up. When the close-up disappears, the replay will
appear in less than 20 frames time interval.

V. EXPERIMENTAL RESULTS

Here, we show some experimental results to illustrate the
system performance. Our system is frame-based event detec-
tion which is different from shot-based event detection in that
ours can identify the semantics of the video sequence at every
frame instance. We have tested the proposed algorithms based
on a data set of seven soccer video games for more than 11
hours from two TV broadcast stations as shown in Table III. Five
soccer video programs of England Premier League from TV sta-
tion one, whereas the other two soccer video programs of UEFA
Cup from TV station 2. The shooting styles of the soccer videos
from two TV stations are similar. The video source is MPEG-1
clips in 320 240 resolution at 30 frames/s. Audio is sampled
at 44 kHz with 16 bits per sample.

In the experiments, we do the frame-base and shot-based
event detection. The former does the inference propagation for
each input frame, and makes the event detection for each time
slice, whereas, the latter accumulates more evidence in the
hidden nodes before the inference propagate to the event nodes
for event detection of each video shot.

1) Frame-Based Event Detection: For frame-base event de-
tection, given an input frame, the system generates the low-level
evidence, initiates the inference network propagation, and then
makes a semantic analysis for each frame. Each game lasts about
95 min, including the first half and the second half. To measure
the performance of our system, we compute the detection rate
and false alarm rate by comparing the semantics output with
human observers. The detection rate and false alarm rate are de-
fined as
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Fig. 12. TIN for the penalty kick event. (Color version available online at http://ieeexplore.ieee.org.)

TABLE III
THE TEST SEQUENCES

TABLE IV
EXPERIMENTAL RESULTS OF USING BN/DBN

TABLE V
EXPERIMENTAL RESULTS OF USING BN/DBN/TIN

Then, we add the DBN into the system for semantic analysis.
Table IV shows the experimental results of seven complete
soccer games using the BN/DBN. Finally, we add temporal
intervening network (TIN) to BN/DBN. Table V shows the
experimental results of the same seven complete soccer games
by using the additional TIN. We can see that TIN improves the
detection rate slightly but reduce the false alarm rate greatly.

Here, we do not apply the TIN for every event-hidden node
pair. For instance, the “score board” is not included in the TIN
for goal event. Since the causality between score board and the
goal is very weak (in most of the cases, the appearance of score
board does not necessarily indicate the goal event), so it is no
use to use the TIN to increase the posteriori probability between
the score board and goal.

The false alarm of goal event is due to the appearance of
close-up and gate, which do not necessary indicate the occur-
rence of the goal events. In the corner event video, we always

find the panning motion followed by the appearance of gate.
These two cues are significant for DBN to distinguish corner
event from other events. To improve the penalty and card event
detection rate, we introduce the TIN model to overcome the non-
expectant situation such as the referee appears in noncard event
and the gate disappears. The audience and static camera are very
strong cues for BN/DBN to differentiate the penalty event from
the goal event.

2) Shot-Based Event Detection: We may extend the frame-
based event detection to shot-based event detection. Table VI
shows another statistics of the experimental results of goal event
detection. The reason why the false alarm rate in Table VI is
larger than the missed rate is that the offside is misidentified as
the goal event. When the goal event is detected, we may dif-
ferentiate it as a left or right goal. If the frames of goal event
last more than continuous 500 frames, we say that there is one
complete goal event. This left/right goal event detection pro-
vides useful information: which team has dominated the game.
Similarly in England 5, the number of detected left goals of
the first team is more than the number of right goals of the
second team. On the other hand, in England 3, the two teams
are well-matched.

For each network structure, we compute the precision and
recall which are defined as

where is the correct detection, is the number of miss,
is the number of false alarm, is the number of existing
events, and is the number of overall declaration.

Table VII shows another statistics of the experimental results
of corner event detection. When the corner event occurs, we
differentiate the left/right corner using the gate information. If
the frames of corner event last more than 20 continuous frames,
we say that there is one complete corner event. Left/right goal
is useful information to analyze the soccer game. It provides
the different performance statistics of two teams in the game.
Comparing the precision rate in Tables VI and VII, we find that
the precision rate in Table VII is worse. It is because the duration
of the corner event is shorter than the goal event (i.e., finishes
within 20 frames) so that it induces a higher chance of false
alarm.

The reason of the false alarm rate in Tables VI and VII is
larger than the miss rate is because 1) an offside is often misin-
dentified as the goal event, or 2) a long passing from the corner
of the field is also easily misindentified as corner event. Here,
we do not provide the event-detection statistics for the penalty
and the card events. It is because the penalty and the card events
rarely occur in our test video sequence and the experimental re-
sults do not provide sufficient data statistics.
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TABLE VI
USING BN/DBN AND TIN FOR GOAL EVENT

TABLE VII
USING BN/DBN AND TIN FOR CORNER EVENT

VI. CONCLUSIONS

We have proposed a video program understanding system.
Given an input sequence, the system will collect the low-level
evidence, and applies the inference engine in BN/DBN to infer
high-level semantic concepts that interpret the semantic content
of video sport program. The main contribution of this paper is
to add the temporal intervening network to DBN to improve
the semantic interpretation accuracy. We have demonstrated that
our system can understand the semantic concepts effectively.
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