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This paper introduces a real time model-based human motion tracking and analysis method for human computer interface (HCI).
This method tracks and analyzes the human motion from two orthogonal views without using any markers. The motion parame-
ters are estimated by pattern matching between the extracted human silhouette and the human model. First, the human silhouette
is extracted and then the body definition parameters (BDPs) can be obtained. Second, the body animation parameters (BAPs) are
estimated by a hierarchical tritree overlapping searching algorithm. To verify the performance of our method, we demonstrate
different human posture sequences and use hidden Markov model (HMM) for posture recognition testing.
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1. INTRODUCTION
1

Human motion tracking and analysis has a lot of applica-
2 tions, such as surveillance systems and human computer in-

terface (HCI) systems. A vision-based HCI system need to
locate and understand the user’s intention or action in real
time by using the CCD camera input. Human motion is a
highly complex articulated motion. The inherent nonrigid-
ity of human motion coupled with the shape variation and
self-occlusions make the detection and tracking of human
motion a challenging research topic. This paper presents a
framework for tracking and analyzing human motion with
the following aspects: (a) real-time operation, (b) no mark-
ers on the human object, (c) near-unconstrained human mo-
tion, and (d) data coordination from two views.

There are two typical approaches to human motion
analysis: model based and nonmodel based, depending on
whether predefined shape models are used. In both ap-
proaches, the representation of the human body has been de-
veloped from stick figures [1, 2], 2D contour [3, 4], and 3D
volumes [5, 6] with increasing complexity of the model. The
stick figure representation is based on the observation that
human motions of body parts result from the movement of
the relative bones. The 2D contour is allied with the projec-

tion of 3D human body on 2D images. The 3D volumes, such
as generalized cones, elliptical cylinders [7], spheres [5], and
blobs [6] describe human model more precisely.

With no predefined shape models, heuristic assumptions,
which impose constraints on feature correspondence and de-
creasing search space, are usually used to establish the cor-
respondence of joints between successive frames. Moeslund
and Granum [8] give an extensive survey of computer vision-
based human motion capture. Most of the approaches are
known as analysis by synthesis, and are used in a predict-
match-update fashion. They begin with a predefined model,
and predict a pose of the model corresponding to the next
image. The predicted model is then synthesized to a certain
abstraction level for the comparison with the image data. The
abstract levels for comparing image data and synthesis data
can be edges, silhouettes, contours, sticks, joints, blobs, tex-
ture, motion, and so forth. Another HCI system called “video
avatar” [9] has been developed, which allows a real human
actor to be transferred to another site and integrated with a
virtual world.

One human motion tracking method [10] applied the
Kalman filter, edge segment, and a motion model tuned to
the walking image object by identifying the straight edges.
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It can only track the restricted movement of walking human
parallel to the image plane. Another real time system, Pfinder
[11], starts with an initial model, and then refines the model
as more information becomes available. The multiple human
tracking algorithm W4 [12, 13] has also been demonstrated
to detect and analyze individuals as well as people moving in
groups.

Tracking human motion from a single view suffers from
occlusions and ambiguities. Tracking from more viewpoints
can help solving these problems [14]. A 3D model-based
multiview method [15] uses four orthogonal views to track
unconstrained human movement. The approach measures
the similarity between model view and actual scene based on
arbitrary edge contour. Since the search space is 22 dimen-
sions and the synthesis part uses the standard graph render-
ing to generate 3D model, their system can only operate in
batch mode.

For an HCI system, we need a real-time operation not
only to track the moving human object, but also to analyze
the articulated movement as well. Spatiotemporal informa-
tion has been exploited in some methods [16, 17] for detect-
ing periodic motion in video sequences. They compute an
autocorrelation measure of image sequences for tracking hu-
man motion. However, the periodic assumption does not fit
the so-called unconstrained human motion. To speed up the
human tracking process, a distributed computer vision sys-
tems [18] uses a model-based template matching to track the
moving people at 15 frames/second.

Real-time body animation parameters (BAP) and body
definition parameters (BDP) estimation is more difficult
than the tracking-only process due to the large degrees of
freedom of the articulated motion. Feature point corre-
sponding has been used to estimate the motion parameters
of the posture. In [19], an interesting approach for detecting
and tracking human motion has been proposed, which cal-
culates a best global labeling of point features using a learned
triangular decomposition of the human body. Another real-
time human posture estimation system [20] uses trinocu-
lar images and a simple 2D operation to find the significant
points of human silhouette and reconstruct the 3D positions
of human object from the corresponding significant points.

Hidden Markov model (HMM) has also been widely
used to model the spatiotemporal property of human mo-
tion. For instance, it can be applied for recognizing model
human dynamics [21], analyzing the human running and
walking motions [22], discovering and segmenting the ac-
tivities in video sequences [23], or encoding the temporal
dynamics of the time-varying visual pattern [24]. The HMM
approaches can be used to analyze some constrained human
movements, such as human posture recognition or classifi-
cation.

This paper presents a model-based real time system ana-
lyzing the near-unconstrained human motion video in real-
time without using any markers. For a real-time system, we
have to consider the tradeoff between computation complex-
ity and system robustness. For a model-based system, there
is also a tradeoff between the accuracy of representation and

the number of parameters for the model that needs to be
estimated. To compromise the complexity of model with 3

the robustness of system, we use a simple 3D human model
to analyze human motion rather than the conventional ones
[2, 3, 4, 5, 6, 7].

Our system analyzes the object motion by extracting its
silhouette and then estimating the BAPs. The BAPs estima-
tion is formulated as a search problem that finds the mo-
tion parameters of the 2D human model of which its syn-
thetic appearance is the most similar to the actual appear-
ance, or silhouette, of the human object. The HCI system re-
quires that a single human object interacts with the computer
in a constrained environment (e.g., stationary background),
which allows us to apply the background subtraction algo-
rithm [12, 13] to extract the foreground object easily. The
object extraction consists of (1) background model genera-
tion, (2) background subtraction and thresholding, and (3)
morphology filtering.

Figure 1 illustrates the system flow diagram, which con-
sists of four components including two viewers, one inte-
grator, and one animator. Each viewer estimates the partial
BDPs from the extracted foreground image and sends the re-
sults to the BDP integrator. The BDP integrator creates a uni-
versal 3D model by combining the information from these
two viewers. In the beginning, the system needs to gener-
ate 3D BDP for different human objects. With the complete
BDPs, each viewer may locate the exact position of the hu-
man object from its own view and then forward the data to
the BAP integrator. The BAP integrator combines the two
positions and calculates the complete 2D locations, which
can be used to determine the BDP perspective scaling fac-
tors for two viewers. Finally, each viewer estimates the BAPs
individually, which are combined as the final universal BAPs.

2. HUMAN MODEL GENERATION

The human model consists of 10 cylindrical primitives, rep-
resenting torso, head, arms, and legs, which are connected by
joints. There are ten connecting joints with different degrees
of freedom. The dimensions of the cylinders (i.e., the BDPs
of the human model) have to be determined for the BAP es-
timation process to find the motion parameters.

2.1. 3D Human model

The 3D human model consists of six 3D cylinders with el-
liptic cross-section (representing human torso, head, right
upper leg, right lower leg, left upper leg, and left lower leg)
and four 3D cylinders with circular cross-section (represent-
ing right upper arm, right lower arm, left upper arm, and
left lower arm). Each cylinder with elliptic cross-section has
three shape parameters including long radius, short radius,
and height. A cylinder with circular cross-section has two
shape parameters including radius and height. The post of
the human body can be described in terms of the angles of
the joints. For each joint of cylinder, there are up to three
rotating angle parameters: θX , θY , and θZ .

These 10 connecting joints are located at navel, neck,
right shoulder, left shoulder, right elbow, left elbow, right hip,
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Figure 1: The flow diagram of our real-time system.

left hip, right knee, and left knee. The human joints are clas-
sified as either flexion or spherical. A flexion joint has only
one degree of freedom (DOF) while a spherical one has three
DOFs. The shoulder, hip, and navel joints are classified as
spherical type, and the elbow and knee joints are classified as
the flexion type. Totally, there are 22 DOFs for human model:
six spherical joints and four flexion ones.4

2.2. Homogeneous coordinate transformation

From the definition of the human model, we use a homoge-
neous coordinate system as shown in Figure 2. We define the
basic rotation and translation operators such as Rx(θ), Ry(θ),
and Rz(θ) which denote the rotation around x-axis, y-axis,
and z-axis with θ degrees, respectively, and T(lx, ly , lz) which
denotes the transition along x, y, and z-axis with lx, ly , and
lz. Using these operators, we can derive the transformation
between two different coordinate systems as follows.
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Figure 2: The homogeneous coordinate systems for the 3D human model.

Table 1: The BDPs to be estimated.

Limb

Torso Head Upper arm Lower arm Upper leg Lower leg

Parameter

Height V V V V V V

Radius — — V V — —

Long radius V V — — V V

Short radius V V — — V V

(1) MN
W = Ry(θy) · Rx(θx) depicts the transformation

between the world coordinate (XW ,YW ,ZW ) and the
navel coordinate (XN ,YN ,ZN ), where θx and θy repre-
sent the joint angles of the torso cylinder.

(2) MS
N = T(�x, �y , �z) · Rz(θz) · Rx(θx) · Ry(θy) de-

scribes the transformation between the navel coordi-
nate (XN ,YN ,ZN ) and the spherical joints (such as
neck, shoulder, and hip) coordinate (XS,YS,ZS), where
θx, θy , and θz represent the joint angles of the limbs
connected to torso and (lx, ly , lz) represents the posi-
tion of joints.

(3) MF
S = T(�x, �y , �z) ·Rx(θx) denotes the transformation

between the spherical joint coordinate (XS,YS,ZS) and
the flexion joints (such as elbow and knee) coordinate
(XF ,YF ,ZF), where θx represents the joint angle of the
limbs connected to the spherical joint, and (lx, ly , lz)
represents the position of joints.

2.3. Similarity measurement
5

The matching between the silhouette of human object and
the synthesis image of the 3D model is to calculate the shape
similarity measure. Similar to [3], we present an operator
S(I1, I2), which measures the shape similarity between two bi-
nary images I1 and I2 of the same dimension in interval [0, 1].

Our operator only considers the area difference between two
shapes, that is, the ratio of positive error p (represents the
ratio of the pixels in the image but not in the model to the
total pixels of the image and model) and the negative error n
(represents the ratio of the pixels in the model but not in the
image to the total pixels of the image and model), which are
calculated as

p =
(
I1 ∩ IC2

)
(
I1 ∪ I2

) ,

n =
(
I2 ∩ IC1

)
(
I1 ∪ I2

) ,

(1)

where IC denotes the complement of I . The similarity be- 6
tween two shapes I1 and I2 is the matching score defined as
S(I1, I2) = e−p−n(1− p).

2.4. BDPs determination

We assume that initially the human object stands straight up
with his arms stretched as shown in Figure 3. The BDPs of the
human model are illustrated in Table 1. The side viewer esti-
mates the short radius of torso, whereas the front viewer de-
termines the remaining parameters. The boundary of body,



Please provide a short running title 5

(a) (b)

Figure 3: Initial posture of person: (a) the front viewer; (b) the side viewer.
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including xleftmost, xrightmost, y upest , and ylowest, is easily7

found, as shown in Figure 4.
The front viewer estimates all BDPs except the short ra-8

dius of torso. There are three processes in the front viewer
BDP determination: (a) torso-head-leg BDP determination,
(b) arm BDP determination, and (c) fine tuning. Before
the BDP estimation of the torso, head, and leg, we con-
struct the vertical projection of the foreground image, that is,
P(x) = ∫ f (x, y)dy, as shown in Figure 5. Then, we may find
avg = ∫ xrightmost

xleftmost
P(x)dx/(xrightmost − xleftmost), where P(x) �= 0

for xleftmost < x < xrightmost.. To find the width of the torso,
we scan P(x) from left to right to find x1, the smallest x value
that makes P(x1) > avg, and then scan P(x) from right to
left to find x2, the largest x value that makes P(x2) > avg
(see Figure 5). Therefore, we may define the center of body
as xc = (x1 + x2)/2, and the width of torso, Wtorso = x2 − x1.

To find the other BDP parameters, we remove the head
by applying morphological filtering operations, which con-
sists of the morphological closing operation using a structure
element (size 0.8Wtorso × 1), and the morphological open-
ing operation by the same element (as shown in Figure 6).
Then we may extract the location of shoulder in y-axis (yh)
by scanning the image (i.e., Figure 6b) horizontally from top
to bottom in the image without head, and define the length
of head: lenhead = yupest − yh. Here, we assume the ratio of
length of the torso and the leg is 4 : 6, and define the length

of torso as lentorso = 0.4(yh−ylowest); the length of upper leg9

as lenup-leg = 0.5×0.6(yh−ylowest), and the length of lower leg
as lenlow-leg = lenup-leg. Finally, we may estimate the center of

avg

x1 x2

wtorso

Figure 5: Foreground image silhouette and its vertical projection.

body in y-axis as yc = yh− lentorso; the long radius of torso as
LRtorso = Wtorso/2; the long radius of head as 0.2Wtorso; the
short radius of head as 0.16Wtorso; the long radius of leg as
0.2Wtorso; and the short radius of leg as 0.36Wtorso.
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Figure 6: The head removed image. (a) Result of closing. (b) Result of opening.
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Figure 7: (a) The extreme position of arms. (b) The radius and length of arm.

Before identifying the radius and length of arm, the
system extracts the extreme position of arms, (xleftmost, yl)
and (xrightmost, yr) (as shown in Figure 7), and then defines
the position of shoulder joints, (xright-shoulder, yright-shoulder) =
(xa, ya) = (xc − LRtorso, yc − lentorso +0.45 LRtorso). From the
extreme position of arms and position of shoulder joints,

we calculate the length of upper arm (lenupper-arm) and10

lower arm (lenlower-arm), and the rotating angles around z-
axis of the shoulder joints (θarm

z ). These three parameters

are defined as follows: (a) lenarm =
√

(xb − xa)2 + (yb − ya)2;
(b) θarm

z = arctan(|xb − xa|/|yb − ya|); (c) lenupper-arm =
lenlower-arm = lenarm /2. Finally, we fine-tune the long ra-

dius of torso, the radius of arms, the rotating angles around
the z-axis of the shoulder joints, and the length of arms.

To find the short radius of torso, the side viewer con-
structs the vertical projection of the foreground image, that
is, P(x) = ∫ f (x, y)dy, and avg = ∫ xrightmost

xleftmost
P(x)dx/(xrightmost−

xleftmost), where P(x) �= 0 for xleftmost < x < xrightmost. Scan-
ning P(x) from left to right, we may find x1, the smallest x
value, with P(x1) > avg, and then scanning P(x) from right to
left, we may also find x2, the largest x value, with P(x2) > avg.
Finally, the short radius of torso is defined as (x2 − x1)/2.

3. MOTION PARAMETERS ESTIMATION

There are 25 motion parameters (22 angular parameters and
3 position parameters) for describing human body motion.
Here, we assume that three rotation angles of head and two
rotation angles of torso (rotation angle around x-axis and z-
axis) are fixed. The real-time tracking and motion estima-
tion consists of four stages: (1) facade/flank determination,
(2) Human position estimation, (3) arm joint angle estima-
tion, and (4) leg joint angle estimation. In each stage, only
the specific parameters are determined based on the match-
ing between the model and the extracted object silhouette.

3.1. Facade/flank determination

First, we find the rotation angle of torso around the y-axis
of the world coordinate (θTYW

). A y-projection of the fore-
ground object image is constructed without the lower por-
tion of the body, that is, P(x) = ∫ ymax

yhip
f (x, y)dy, as shown in

Figure 8. Each viewer finds the corresponding parameters in-
dependently. Here, we define the hips’ position along y-axis
as yhip = (yc + 0.2 · heighttorso) · rt,n, where yc is the center
of body in y-axis, heighttorso is the height of torso, and rt,n
is the perspective scaling factor of viewer n (n = 1 or 2), 11

which will be introduced in Section 4.2. Then, each viewer
scans P(x) from left to right to find x1, the least x, where
P(x1) > heighttorso, and then scans P(x) from right to left to



Please provide a short running title 7

x2x1

Heighttorso

yhip

(a)

x2x1

Heighttorso

yhip

(b)

Figure 8: Facade/flank determination. (a) Facade. (b) Flank.

find x2, the largest x, where P(x2) > heighttorso. The width of
the upper body is Wu-body,n = |x2 − x1|, where n = 1 or 2 is
the number of the viewer. Here, we define two thresholds for
each viewer to determine whether the foreground object is a
facade view or a flank view: thlow,n and thhigh,n, where n = 1
or 2 is the number of the viewer. In viewer n (n = 1 or 2), if
Wu-body,n is smaller than thlow,n, it is a flank view; if Wu-body,n

is greater than thhigh,n, it is a facade view; otherwise, it re-
mains unchanged.

3.2. Object tracking

The object tracking determines the position,

(XT
W ,YT

W ,ZT
W ), of human object. We may simplify the

perspective projection as a combination of the perspective12
scaling factor and the orthographic projection. The per-
spective scaling factor values are calculated (in Section 4.2)
by new position XT

W and ZT
W . Given a scaling factor and

BDPs, we generate a 2D model image. With the extracted
object silhouette, we shift the 2D model image along x-axis
in image coordinate and search for the real XT

W (or ZT
W in

viewer 2) that generates the best matching score, as shown in
Figure 9a.

The estimated XT
W and ZT

W are then used to update the
perspective scaling factor for the other viewer. Similarly, we
shift the silhouette along y-axis in image coordinate to find
YW

T that generates the best matching score (see Figure 9b).
In each matching process, the possible position difference be-
tween the silhouette and the model are −5, −2, −1, +1, +2,
and +5. Finally, the positions XT

W and ZT
W are combined as

the 2D position values and a new perspective scaling factor
can be calculated for the tracking process in the next time
instance.

3.3. Arm joint angle estimation

The arm joint has 2 DOFs, and it can bend on certain 2D
planes. In a facade view, we assume that the rotation an-
gles of shoulder joint around x-axis of the navel coordinate
(θRUA

XN
and θLUA

XN
) are fixed and then we may estimate the oth-

ers including θRUA
ZN

, θRUA
YN

, θRLA
XRS

, θLUA
ZN

, θLUA
YN

, and θLLA
XLS

, where
RUA depicts the right upper arm, LUA depicts the left upper
arm, RLA depicts the right lower arm, LLA depicts the left
lower arm, N depicts the navel coordinate system, RS depicts
the right shoulder coordinate system, and LS depicts the left
shoulder coordinate system.

In a facade view, the range of θRUA
ZN

is limited in [0, 180◦],
while θLUA

ZN
is limited in [180◦, 360◦], and the values of θRUA

YN

and θLUA
YN

are either 90◦ or −90◦. Different from [15], the
range of θRLA

XRS
(or θLLA

XLS
) relies on the value of θRUA

ZN
(or θLUA

ZN
)

to prevent the occlusion between the lower arms and the
torso. In a flank view, the range of θRUA

XN
and θLUA

XN
is limited in

[−180◦, 180◦]. Here, we develop an overlapped tritree search
method, see Section 3.5, to reduce the search time and ex-
pand the search range. In a facade view, there are 3 DOFs for
each arm joint, whereas in a flank view, there are 1 DOF for
each arm joint. In a facade view, the right arm joint angle
estimation is illustrated in the following steps.

(1) Determine the rotation angle of the right shoulder
around the z-axis of the navel coordinate (θRUA

ZN
) by

applying our overlapped tritree search method and
choose the value where the corresponding matching
score is the highest (see Figure 10a).

(2) Define the range of the rotation angle of the right el-
bow joint around x-axis in the right shoulder coordi-
nate system (θRLA

XRS
). It relies on the value of θRUA

ZN
to

prevent the occlusion between the lower arm and the
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2D model projection
image

Foreground image

Figure 11: Rotate the arm along xN -axis.

torso. First, we define a threshold tha: if θRUA
ZN

> 110◦,
then tha = 2 · (180◦ − θRUA

ZN
), or else tha = 140◦.

So, θRLA
XRS

∈ [−tha, 140◦] for θRUA
YN

= 90◦, and θRLA
XRS

∈
[−140◦, tha] for θRUA

YN
= −90◦. From �ABC shown

in Figure 10b, we find AB = BC, ∠BAC = ∠BCA =
180◦ − θRUA

ZN
, and tha = ∠BAC + ∠BCA = 2 · (180◦ −

θRUA
ZN

).
(3) Determine the rotation angle of the right elbow joint

around x-axis in the right shoulder coordinate sys-
tem (θRLA

XRS
) by applying the overlapped tritree search

method and choose the value where the correspond-
ing matching score is the highest (see Figure 10c).

Similarly, in the flank view, the arm joint angle estima-
tion determines the rotation angle of shoulder around the
x-axis of the navel coordinate (θRUA

XN
) (see Figure 11).

3.4. Leg joint angle estimation

The estimation processes for the joint angle of the legs in a
facade view and a flank view are different. In a facade view,

there are two cases depending on whether knees are bent or
not. To decide which case, we check the location of navel in
y-axis to see whether it is less than that of the initial posture
or not. If yes, then the human is squatting down, else he is
standing. For the standing case, we only estimate the rota-
tion angles of hip joints around zN -axis in navel coordinate
system (i.e., θRUL

ZN
and θLUL

ZN
). As shown in Figure 12a, we esti-

mate θRUL
ZN

by applying the overlapped tritree search method.
In squatting down case, we also estimate the rotation an-

gles of hip joints around zN -axis in navel coordinate system
(θRUL

ZN
and θLUL

ZN
). After that, the rotation angles of the hip

joints around xN -axis in the navel coordinate system (θRUL
XN

and θLUL
XN

) and the rotation angles of the knee joints around
xH-axis in the hip coordinate system (θRLL

XRH
and θLLLXLH

) are es-
timated. Because the foot is right beneath the torso, θRLL

XRH
(or

θLLL
XLH

) can be defined as θRLL
XRH

= −2θRUL
XN

(or θLLL
XLH

= −2θLUL
XN

).

From �ABC in Figure 12c, we find AB = BC, ∠BAC = 13
∠BCA = θRUL

XN
, and θRLL

XRH
= −(∠BAC + ∠BCA). The range

of θRUL
XN

and θLUL
XN

is [0, 50◦]. Take the right leg as an exam-
ple, θRUL

XN
and θRLL

XRH
are estimated by applying a search method

only for θRUL
XN

with θRLL
XRH

= −2θRUL
XN

(e.g., Figure 12b). In flank
view, we estimate the rotation angles of the hip joints around
xN -axis of the navel coordinate (θRUL

XN
and θLUL

XN
) and the ro-

tation angles of the knee joints around xH-axis of the hip co-
ordinates (θRLL

XRH
and θLLL

XLH
).

3.5. Overlapped tritree hierarchical search algorithm

The basic concept of BAPs estimation is to find the high-
est matching score between the 2D model and the silhou-
ette. However, since the search space depends on the mo-
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2D model projection
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2D model projection
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−θRLL
XRH

C

B

A

−XN
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YN

(c) The definition of θRLL
XRH .

Figure 12: Leg joints angular values estimation in facade view.

Rr

Rm

Rl

Search region

Figure 13: The search region is divided into three overlapped sub-
regions.

tion activity and the frame rate of input image sequence, the
faster the articulated motion is, the larger the search space
will be. Instead of using the sequential search in the specific
search space, we apply the hierarchical search. As shown in
Figure 13, we divide the search space into three overlapped
regions (left region (Rl), middle region (Rm), and right re-
gion (Rr)) and select one search angle for each region. From
the three search angles, we do three different matches, and
find the best match of which the corresponding region is the
winner region. Then we update the next search region by the
current winner region recursively until the width of the cur-
rent search region is smaller than the step-to-stop criterion
value. During the hierarchical search, we will update the win-
ner angle if the current matching score is the highest. After
reaching to the leaf of the tree, we assign the winner angle as
the specific BAP.

We divide the initial search region R into three over-
lapped regions as R = Rl + Rm + Rr , select the step-to-stop
criterion value Θ, and do the overlapped tritree searching as
follows.

(1) Let n indicate the current iteration index and initialize
the absolute winning score as SWIN = 0.

(2) Set θl,n as the left extreme of the current search re-
gion Rl,n, θm,n as the center of the current search re-
gion Rm,n, and θr,n as the right extreme of the current
search region Rr,n, and calculate the matching score
corresponding to the right region as S(Rl,n, θl,n), the
middle region as S(Rm,n, θm,n), and the left region as
S(Rr,n, θr,n).

(3) If Max{S(Rl,n, θl,n), S(Rm,n, θm,n), S(Rr,n, θr,n)} < SWIN,
go to step (5), else Swin = Max{S(Rl,n, θl,n), S(Rm,n,
θm,n), S(Rr,n, θr,n)}, θwin = θx,n|Swin=S(Rx,n,θx,n), x∈{r,m,l},
Rwin = Rx,n|Swin=S(Rx,n,θx,n), x∈{r,m,l}.

(4) If n = 1, then θWIN = θwin and SWIN = Swin, else if
the current winner matching score is larger than the
absolute winner matching score, Swin > SWIN, then
θWIN = θwin and SWIN = Swin.

(5) Check the width of Rwin, if |Rwin| > Θ, then continue,
else stop.

(6) Divide Rwin into another three overlapped subregions:
Rwin = Rl,n+1 + Rm,n+1 + Rr,n+1 for the next iteration
n + 1, and go to step (2).

On each stage, we may move the center of search region
according to the range of joint angular value and the previous

θwin, for example, when the range of arm joints is defined 14

as [0, 180] and the current search region’s width is defined
as|Rarm-j| = 64. If the θwin in the previous stage is 172, the
center of Rarm-j will be moved to 148 (180− 64/2 = 148) and
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Figure 14: The line marker for camera calibration.

Rarm-j = [116, 180], so that the right boundary of Rarm-j is
inside the range [0, 180]. If θwin of the previous angle is 100,
the center of Rarm-j is unchanged, Rarm-j = [68, 132], because
the search region is inside the range of angular variation of
the arm joint.

In each stage, the tritree search process compares the
three matches and finds the best one. However, in real imple-
mentation, it requires less matching because some matching
operations in current stage had been calculated in the previ-
ous stage. When the winner region in previous stage is the
right or left region, we only have to calculate the matches us-
ing the middle point of current search region, and when the
winner region in previous stage is the middle region, we have
to calculate the matches using the left extreme and the right
extreme of the current search region.

Here we assume that the winning probabilities of the left,
middle, or right region are equiprobable. The number of
matching of the first stage is 3 and the average number of
matching in other stages T2,avg = 2× (1/3) + 1× (2/3) = 4/3.
The average number of matching is

Tavg = 3 + T2,avg ·
(

log2

(
Winit

)− log2

(
Wsts

)− 1
)
, (2)

where Winit is the width of the initial search region and Wsts

is the final width for the step to stop. The average number
of matching for the arm joint is 3 + 4/3 ∗ (6 − 2 − 1) = 6
because Winit = 64 and Wsts = 4. The average number of15
matching operations for estimating the leg joint is 5.67(3 +
4/3∗ (5−2−1)) because Winit = 32 and Wsts = 4. The worst
case for the arm joint estimation is 3 + 2 ∗ (6 − 2 − 1) = 9
matching (or 3+2∗(5−2−1) = 7 matching for the leg joint),
which is better than the full search method which requires 17
matching for the arm joint estimation and 9 matching for the
leg joint estimation.

4. THE INTEGRATION AND ARBITRATION OF TWO
VIEWERS

The information integration consists of camera calibra-
tion, 2D position and perspective scaling determination, fa-
cade/flank arbitration, and BAP integration.

4.1. Camera calibration

The viewing directions of two cameras are orthogonal. We
define the center of action region as the origin in the world
coordinate and we assume that the position of these two
cameras are fixed at (Xc1,Yc1,Zc1) and (Xc2,Yc2,Zc2). The
viewing directions of these two cameras are parallel to z-axis
and x-axis. Here we let (Xc1,Yc1) ≈ (0, 0) and (Yc2,Zc2) ≈
(0, 0). The viewing direction of camera 1 points to the nega-
tive Z direction, while that of camera 2 points to the positive
X direction. The camera is initially calibrated by the follow-
ing steps.

(1) Fix the positions of camera 1 and camera 2 on the z-
axis and x-axis.

(2) Put two sets of line markers on the scene (MLzg
and MLzw as well as MLxg and MLxw, as shown in
Figure 14). The first two line markers are projection
of z-axis onto the ground and the left-hand side wall.
The second two line markers are the projection of x-
axis onto the ground and the background wall.

(3) Adjust the viewing direction of camera 1 until the line
marker MLzg overlaps the line x = 80 and the line x =
81; the line marker MLxw overlaps the line y = 60 and
the line y = 61.

(4) Adjust the viewing direction of camera 2 until the line
mark MLxg overlaps the line x = 80 and the line x =
81; the line marker MLzw overlaps the line y = 60 and
the line y = 61.

The camera parameters include the focal lengths and the
positions of the two cameras. First we assume that there are
three rigid objects located at the positions A = (0, 0, 0),
B = (0, 0,DZ), and C = (DX , 0, 0) in the world coordinate,
where DX and DZ are known. Therefore, the pinnacles of
three rigid objects are located at positions A′, B′, and C′,
where the A′ = (0,T , 0), B′ = (0,T ,DZ), and C′ = (DX ,T , 0)
in the world coordinate. The pinnacles of the three rigid ob-
jects are projected at (x1A, t1A), (x1B, t1B), and (x1C, t1C) in
the image frame of camera 1, and (z2A, t2A), (z2B, t2B), and
(z2C , t2C) in the image frame of camera 2, respectively.

We assume λ1 is the focal length of camera 1, and
(0, 0,Zc1) is its location. By applying the triangular geom-
etry calculation on perspective projection images, we have
λ1 = Zc1(x1c − x1A)/Dz. Similarly, let λ2 the focal length
and (Xc2, 0, 0) the location of camera 2, and we have λ2 =
−Xc2(z2B − z2A)/Dz.

4.2. Perspective scaling factor determination

The location of the object is (XT
W ,YT

W ,ZT
W ) in the world co-

ordinate, of which the XT
W and ZT

W can be obtained from two
viewers. Here, we need to find the depth information and
calculate the perspective scaling factors of these two viewers.
Here, we assume that the location of the object changes from
A = (0, 0, 0) to D = (DX

′, 0,DZ
′), Xc1 ≈ 0, and Zc2 ≈ 0.

The pinnacle of the object moves from A′ = (0,T , 0) to
D′ = (DX

′,T′,DZ
′). The ratio T′/T is not a usable parameter

because it is depth dependent and there is a great possibility
that human object may be squatting down. The pinnacles of
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(a) Squatting down (the facade view). (b) Virtual actor is squatting
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(c) Leg lifting (the facade view). (d) Virtual actor is lifting his
leg.

Figure 15: The facade viewer and the flank viewer estimate θRUL
XN , θRLL

XRH , θLUL
XN , and θLLL

XRH .

the previous and current objects are projected as (x1A
′, t1A′)

and (x1D
′, t1D′) in camera 1, and as (z2A

′, t2A′) and (z2D
′, t2D′)

in camera 2. The heights, t1D′ and t2D′, are unknown since
they are depth dependent, however, the locations, x1D

′ and
z2D

′ are approximated as x1D
′ ≈ XW

T and z2D
′ ≈ ZW

T . The
perspective scaling factors of human model in two viewers
(i.e., rt1′ and rt2′) are different, where rt1′ = |t1D′/t1A′| and
rt2′ = |t2D′/t2A′|. Given x1A

′, t1A′, z2A
′, t2A′, x1D

′, and z2D
′,

we may find DX
′ and DZ

′ as

D′X =
Zc1λ2 + z′2Dxc2
λ1λ2/x

′
1D + z′2D

,

D′Z =
x′1DZc1 − Xc2λ1

λ1λ2/z
′
2D + x′1D

,
(3)

and then find the perspective scaling factor rt1′ and rt2′ as16

r′t1 =
∣∣∣∣
t′1D
t′1A

∣∣∣∣ =
Zc1 ·

√
λ1

2 + x′1D
2

√
λ1

2 + x′1A
2 ·
√(

Zc1 −D′Z
)2

+ D′X
2

,

r′t2 =
∣∣∣∣
t′2D
t′2A

∣∣∣∣ =
−Xc2 ·

√
λ2

2 + z′2D
2

√
λ2

2 + z′2A
2 ·
√(

D′X − Xc2
)2

+ D′Z
2
.

(4)

The highest pixel of the silhouette is treated as the top of the
object and each position of the silhouette object is approxi-

mated to be that of the human object. Using perspective scal-
ing factor, we may scale our human model for the following
BAP estimation process.

The side viewer estimates the short radius of torso, while
the front viewer finds the remaining parameters. During ini-
tialization, the height of human object is t1 in viewer 1 and t2
in viewer 2, so the scaling factor between the viewers is rt =
t2/t1. Therefore, the BDPs of human models for viewer 1 and
viewer 2 can be easily scaled. Because the universal BDPs are
defined in the scaling factor of viewer 1, we define the short
radius of torso in universal BDPs as SRtorso,u = SRtorso,2/rt,
where SRtorso,2 is the short radius of torso in viewer 2 and the
remaining parameters in universal BDPs are defined directly
as those in viewer 1.

4.3. Facade/flank arbitrator

The facade/flank arbitrator combines the results of fa-
cade/flank transition processes of the two viewers. Initially,
viewer 1 is the front viewer and captures the facade view
of the object, whereas viewer 2 is the side viewer and cap-
tures the flank view of the object. Then, when either viewer 1
or viewer 2 changes its own facade/flank transitions, then 17
they will ask the facade/flank arbitrator for coordination, If
any one of the following transitions occurs, the facade/flank
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Figure 16: The 15 human postures in our experiment.
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Table 2: The number of correct recognitions for each posture.

Posture 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Correct Recognition 22 21 23 21 24 20 23 24 22 22 23 24 21 22 20

Model 1

P(O|Model 1)

Model 2

P(O|Model 2)

...

Model N

P(O|Model N)

Test
image

BAP
estimation

Maximum
selection

Figure 17: The evaluation system.

arbitrator will perform the corresponding coordination as
follows.

(1) When the object in viewer 1 changes from flank to fa-
cade (i.e., wu-body,1 > thhigh,1) and the same object in
viewer 2 stays as facade (i.e., wu-body,2 ≥ thlow,2), the
arbitrator checks

if |wu-body,1− thhigh,1| > |wu-body,2− thlow, 2|, then
sets the object in viewer 2 to flank, else changes
the object in viewer 1 back to flank.

(2) When the object in viewer 1 changes from facade to
flank (i.e., wu-body,1 < thlow,1) and the same object in
viewer 2 stays as flank (i.e., wu-body,2 ≤ thhigh,2), the
arbitrator checks

if |wu-body,1 − thlow,1| > |wu-body,2 − thhigh,2|, then
sets the object in viewer 2 to facade, else changes
the object in viewer 1 back to facade.

(3) When the object in viewer 1 remains as facade (i.e.,
wu-body,1 ≥ thlow,1) and the same object in viewer 2
changes from flank to facade (i.e., wu-body,2 > thhigh,2),
the arbitrator checks

if |wu-body,1 − thlow,1| ≥ |wu-body,2 − thhigh,2|, then
sets the object in viewer 2 back to flank, else
changes the object in viewer 1 to flank.

(4) When the object in viewer 1 stays as flank (i.e.,
wu-body,1 ≤ thhigh,1) and the same object in viewer 2
changes from facade to flank (i.e., wu-body,2 < thlow,2),
the arbitrator checks

if |wu-body,1 − thhigh,1| ≥ |wu-body,2 − thlow,2|, then
sets the object in viewer 2 back to facade, else
changes the object in viewer 1 to facade.

4.4. Body animation parameter integration

Two different sets of BAPs have been estimated by the two
viewers. There are three major estimation processes for BAPs:

human position estimation, arm joint angle estimation, and
leg joint angle estimation. The BAP integration combines the
BAPs from two different views into universal BAPs. First, in
human position estimation, viewer 1 estimates XT

W and YT
W ,

while viewer 2 estimates ZT
W and YT

W . However, YT
W estimated

by two viewers may be different. With more shape informa-
tion of the object, YT

W estimated by the facade viewer is more
robust. Second, the BAPs of the joints of arms are analyzed in
two views. The flank viewer only estimates the rotation an-
gles of shoulder joints around xN -axis of the navel coordinate
(i.e., θRUA

XN
and θLUA

XN
); whereas the facade viewer estimates the

other BAPs of arms including the rotation angles of shoul-
der joints around yN -axis and zN -axis of the navel coordi-
nate (i.e., θRUA

YN
, θRUA

ZN
, θLUA

YN
, and θLUA

ZN
) and the rotation angles

of elbow joints around xN -axis of shoulder coordinates (i.e.,
θRLA
XN

and θLLA
XN

). BAPs estimation processes of the two viewers
are integrated as the universal BAPs.

Different from the integration of the arm BAPs, the esti-
mated joint angles of leg of different viewers are related. Both
viewers jointly estimate θRUL

XN
, θRLL

XRH
, θLUL

XN
, and θLLL

XRH
. For ex-

ample, in Figure 15, the facade viewer analyzes these angles
by assuming that the human is squatting down (see Figures
15a and 15b); whereas the flank viewer estimates these angles
by assuming that the human is lifting his legs (see Figures
15c and 15d). Therefore, we determine whether the human
is squatting down or lifting his leg from θRUL

ZN
and θRLL

XRH
.

If θRUL
ZN

(from the facade viewer) is greater than 175◦ but
less than 180◦, the human is lifting his right leg, else he is not.
Then, we may integrate θRUL

ZN
(from the facade viewer), θRUL

XN

(from the flank viewer), and θRLL
XRH

(from the flank viewer)
into the universal BAPs. Similarly, we can find the similar
case of the left leg movement. The universal BAPs can be ex-
tracted by integrating BAPs of two viewers as the universal
BAPs.

5. EXPERIMENTAL RESULTS

The color image frame is 160×120×24 bits and the frame rate
is 15 frames per second. Each test video sequence lasts more
than 2 seconds, so that it may consist of about 40 frames.
We use two computers equipped with video capturing equip-
ment. Our system analyzes and estimates the BAPs of human
motion in real time, based on the matching between the ar-
ticulated human model and the 2D binary human object. In
the experiments, we illustrate 15 human postures composed
of the following five basic movements: (1) walking; (2) arm
raising; (3) arm swing; (4) squatting; (5) kicking. To evalu-
ate the performance of our tracking process, we test the sys-
tem by using 15 different human motion postures. Each one
is performed by 12 different individuals. People with casual
wear and no markers are instructed to perform 15 different
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actions as shown in Figure 16.
We cannot measure the real BAPs from the human ac-

tor for comparing the real BAPs with the estimated BAPs. To
evaluate the system performance, we use the HMM model to
verify whether the estimate BAPs are correct or not. HMM
is a probabilistic state machine widely used in human ges-
ture and action recognition [21, 22, 23]. The HMM-based
human posture recognition consists of two phases: training
phase and recognition phase.

5.1. Training phase

A set of the joint angles (i.e., BAPs) have been extracted from
each video frame which are combined as a so-called feature
vector. A feature vector will be assigned to an observation
or to a symbol. To train the HMMs, we need to determine
some parameters: the observation number, the state number,
and the dimension of the feature vector. There is a tradeoff
between selecting a large observation number and a faster
HMM computation. A larger one means more accurate ob-
servations and more computation. From the experiments, we
choose 64 symbols. The issue of the number of states also
needs to be determined. The states are not necessarily corre-
sponding to the physical observations of the corresponding
process. The number of states and the number of the differ-
ent postures in human motion sequences are related. Here,
we develop the 5-state HMM, which is most suitable for our
experiments.

The tracking process has estimated the joint angles of the
human actor, and there are 17 joint angles for the human
model. Actually, not all of the joint angles are required for
describing different postures. Hence, we only choose some
influential joint angles representing the postures, such as the
joint angles θx and θz of the shoulders, θx of the elbows, and
θx and θz of the hips. Totally, 10 joint angles are selected as
one feature vector. Here, we need to train 15 HMMs corre-
sponding to 15 different postures. The training process will
generate the model parameter λi for the ith HMM.

5.2. Recognition phase

In our experiments, there are 360 testing sequences for per-
formance evaluation. There are 15 different human pos-
tures, and each one is performed twice by 12 different in-
dividuals. As shown in Figure 17, every testing sequence,
O, is evaluated by 15 HMMs. The likelihood of the ob-18
servation sequences can be computed for each HMM as
Pi = log(P(O|λi)), where λi is the model parameter of the
ith HMM. The HMM with maximum likelihood is selected
to represent the recognized posture which is currently per-
formed by the human actor in the test video sequence.

The experimental results are shown in Table 2. Each pos-
ture is tested 24 times by 12 different individuals. The recog-
nition errors are caused mainly by the incorrect BAPs. The
BAP estimation algorithm may fail if the extracted fore-
ground object is noisy or ambiguous, which is caused by the
occlusion between the limbs and the torso. The limitation of
our algorithm can be summarized as follows.

(1) Since the BAP estimation is based on the preceding
BAP in the previous time instance, the error propaga-
tion cannot be avoided. Once the error of the previous
BAP is above certain level, the search range for the fol-
lowing BAP no longer covers the correct BAP, and the
system may crash.

(2) The occlusion of human body is the major challenge
for our algorithm. By using two views, some occlusion
in one view should be clear in the other view. However,
if the arm is swing beside the torso, it makes occlu-
sion in both the facade and flank views. The occlusion
among the limbs and the torso will make BAP estima-
tion fail, since the matching process cannot differen- 19
tiate the limb from the torso in the silhouette image.

(3) Arm swing is another difficult issue. The side viewer
cannot differentiate whether one arm or two arms is
being raised. The silhouette of the arm swing viewed
from the front view is not very reliable for accurate an-
gle estimation.

(4) It cannot tell if a facade is a front view or just a back
view. We may add the face-finding algorithm to iden-
tify whether the human actor is facing toward the cam-
era or not.

6. CONCLUSION AND FUTURE WORKS

We have demonstrated real-time human motion analysis
method for HCI system by using a new overlapped hierar-
chical tritree search algorithm with less searching time and
wider search range. The wider search range enables us to
track some fast human motions under lower frame rate. In
the experiments, we have shown some successful examples.
In the near future, we may extend to multiple person track-

ing and analysis, which may be used in HCI systems such as 20
human identification, surveillance, and gesture recognition.
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