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Abstract

We show that the vector quantizer (VQ) techniques can be used to optimize a matching pursuit dictionary and improve
the PSNR performance at low bitrates. The basis functions are the shape part, and the inner product values are the gain part
of the VQ. The performance is evaluated based on a comparison of the PSNR in encoding motion residuals obtained using a
matching pursuit coder with a reference dictionary and that obtained from the coder with a gain–shape optimized dictionary.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The matching pursuit (MP) algorithm was :rst pro-
posed to analyze the time–frequency structures of a
signal using an over-complete basis set (dictionary)
[8]. In this article, vector quantizer (VQ)-based tech-
niques are proposed for optimizing an MP dictionary
for video coding. Since Vetterli and Kalker [15] pro-
posed their :rst MP video coder, various approaches
to improving the coding eAciencies and enhancing
the functionalities of an MP video codec have been
proposed. Results presented in [9] indicate that MP
coding of motion residuals yields performance supe-
rior to that of H.263 and MPEG-4 from both quanti-
tative (PSNR) and subjective points of view. In [1],
eAcient methods were proposed to encode atom po-
sitions. Proposed in [2] was a procedure for selecting
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between MP and block-DCT. In [1,6,16], SNR scal-
ability was added to an MP video codec. A simple
MP-based multiple description strategy was presented
in [14]. Dictionary approximation techniques aimed
at speeding up an MP-encoder were proposed in [10].
In this article, we extend our results in [3] by provid-
ing a VQ-based atom optimization method that is par-
ticularly necessary for an MP video codec. The VQ
approach to designing MP dictionaries for video cod-
ing was also studied in [13]. A technique for design-
ing frames to approximate each training vector for an
MP was proposed in [4] for speech and electrocardio-
gram(ECG) signals analysis.
In NeG and Zakhor’s MP codec [9], an eAcient

subset of a large basis set is selected as a dictio-
nary, according to the residual patterns in some video
sequences, to reduce the number of inner products
at each iteration. However, their method simply se-
lects an eAcient subset from among these sequences,
and the subset is not necessarily optimized to the
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Fig. 1. Block diagrams of dictionary optimization methods.

sequences. For this reason, we adopt a popular
VQ-based optimization technique for designing the
dictionary of an MP codec. We show that it is worth-
while to use VQ design methods to learn MP dictio-
naries to encode motion residuals. Fig. 1 shows block
diagrams of the proposed method. The advantage of
the proposed method is that once a test sequence is
approximated eAciently using the trained-dictionary
(i.e. codebooks), the proposed method provides good
performance for the test sequence. However, like
most of the VQ-based algorithms, our approach suf-
fers when the test sequence and the training sequences
for the trained dictionary have diGerent characteris-
tics. This problem is well known in VQ design, and
many interesting related subjects have been discussed
in [12].
The implementation of our MP video codec is not

optimal. The performance of our video codec could be
improved if it were implemented according to those
algorithms proposed in [9,1] for atom positions. In
Section 2, the gain–shape product VQ techniques for
optimizing the dictionary of an MP codec will be in-
troduced. In Section 3, experimental results will be
given. Conclusions will be drawn in Section 4.

2. Matching pursuit dictionary optimization using
VQ

We employ VQ techniques to optimize an MP dic-
tionary. Before describing our method, we will brieMy
review the matching pursuit theory and the gain–shape
product VQ.

2.1. Matching pursuit theory

The matching pursuit algorithm represents an im-
age by means of linear expansion of the image with
respect to a dictionary, D, which is a collection of
many complete bases; for example, both the Fourier
and wavelet bases can belong to the dictionary, and
the dictionary is dense for all L2(R2) functions [8].
The image function f can be decomposed into

f = 〈f; g�0〉g�0 + Rf;

where Rf is the residual image after approximating
f in the direction of g�0 , and g�0 is chosen such that
|〈f; g�0〉| is maximum in D. This procedure is per-
formed each time on the following residue that is ob-
tained. It was showed that for an image f,

f =
+∞∑
n=0

〈Rnf; g�n〉g�n :

2.2. Gain–shape vector quantizer

The purpose of a VQ is to approximate a random
input vector to its close representative vector (called a
codeword); then, the index of the codeword can be ef-
fectively encoded and transmitted [7,5]. The decoder
can easily, with the help of codebooks, recover the
corresponding codeword from an index. However, in
high-dimensional space, the vector space is too big
to manage eAciently, in terms of both computational
storage and time needed by a VQ. Therefore, the VQ
is usually constrained. The constrained VQ leads to
increased eAciency in terms of time and storage, but
the accuracy of the VQ is degraded. The gain–shape
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product VQ is a constrained VQs. It has been success-
fully used to code the waveforms as well as the param-
eters of speech signals [11]. The gain–shape product
VQ assumes that the element X in the training random
variable X has a product code structure:

X = gS;

where g is a scale (called the gain) and S is a nor-
malized vector (called the shape). For a detailed de-
scription of the codec structure and the optimized
codebook design for a gain–shape product VQ, the
reader is referred to [5,11].

2.3. Dictionary optimization

Let X be our random variable for dictionary
optimization, and let the original dictionary con-
tain only separable basis: {g�(x)g�(y)|�; �}, where
‖g�(x)g�(y)‖ = 1 and the size of the basis function
in the dictionary is truncated to b × b. g�(x) and
g�(y) each is a 1D basis functions at which index is,
respectively, to be � and �. Let fk(x; y) be the kth
motion residual frame in the training sequence, and
let the lth matching pursuit residual of the kth frame
be Rlfk(x; y). The matching pursuit decomposition
of fk(x; y) up to N (k) atoms is

fk(x; y) =
N (k)−1∑
n=0

〈F(Rnfk); g�n(x)g�n(y)〉g�n(x)g�n(y)

+RN (k)fk(x; y); (1)

where F is composed of the following steps: :nding
the largest energy block (the highlighted block shown
in the left part of Fig. 2) and then restricting the match-
ing pursuit on the block(as shown in the right part of
the :gure). The image patch, say of size b× b, where
the :rst atom is selected by applying matching pursuit
to the block, is the result of F . Our training random
variable X is obtained from all the matching pursuit
residuals in our training sequence:

X = {F(Rnfk)(x; y); k = 1; 2; : : : ;

n= 0; 1; : : : ; N (k)− 1}:
The vector space of our random variable X is of di-
mension b×b, which is the size of a basis function in
our dictionary. A basis function is a vector mapped to
the points s̃ on the radial 1 sphere in a vector space.

Similarly, an element in the random variable X is
mapped to a point, say p̃, in the vector space. The in-
ner product of the element and the basis function is
equivalent to the projection of p̃ in the direction of
s̃. In our implementation, b is set to 35; the resultant
vector space is of size 35×35, which is too big for an
eAcient VQ design. We thus consider the gain–shape
product VQ for our task because the basis functions
form the shapes, and the inner product values form
the gains.
Our objective is to :nd the shape and gain code-

books that minimize the average distortion incurred in
encoding the training vectors in X . Since the dictio-
nary used in our implementation is constructed from
the tensor product of two one-dimensional basis sets,
two shape codebooks, corresponding to the shape
along the x-dimension and that along the y-dimension,
respectively, are required. Let Ng and Ns indicate, re-
spectively, the number of regions of the gain and shape
partitions, and let R be the regions in the vector space.
We have R= {Ri;j; k ; i; j = 1; : : : ; Ns; k = 1; : : : ; Ng}:
Three codebooks are adopted in our method:

• the gain codebook Cg={ĝk ; k=1; 2; : : : ; Ng}, where
ĝk is the centroid of the region Gk =

⋃Ns
i; j=1 Ri;j; k ,

which is the region of the input vector space that
maps into the gain codeword ĝk ;

• the x-axis shape codebook Csx={Ŝxi; i=1; : : : ; Ns},
where Ŝxi is the centroid of the region Axi =⋃Ns
j=1

⋃Ng
k=1 Ri;j; k , which is the region of the in-

put vector space that maps into the x-axis shape
codeword Ŝxi;

• the y-axis shape codebook Csy = {Ŝyj; j =
1; : : : ; Ns}, where Ŝyj is the centroid of the region
Ayj =

⋃Ns
i=1

⋃Ng
k=1 Ri;j; k , which is the region of the

input vector space that maps into the y-axis shape
codeword Ŝyj.

Finally, we adopt a partition R = {Ri;j; k ; i; j =
1; : : : ; Ns; k=1; : : : ; Ng} of Ns×Ns×Ng cells describ-
ing the encoder, that is, if X is an element of X and
X ∈Ri;j; k ; then X is mapped into (i; j; k). We express
this as g(X ) = ĝk , Sx(X ) = Ŝxi, and Sy(X ) = Ŝyj.
The average distortion is de:ned by

D(Cg; Csx; Csy; R) = E{d(X ; g(X )Sx(X )Sy(X ))};
where d is the Euclidean distance. After slight mod-
i:cation of the VQ theory, there are four necessary
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Fig. 2. Left: Highlighted block has the largest energy. Right: Inner product block search is limited around the block.
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Fig. 3. The PSNR performance of our MP codec for various testing sequences using the dictionary trained by selecting various numbers
of atoms from each residual frame in all the training sequences. Left: Testing Akiyo. Right: Testing Mother and Daughter. Dictionary
with 200 atoms for each residual gives the best PSNR for these sequences.

conditions for optimal codebook design:

• optimal partition for :xed Cg, Csx, and Csy;
• optimal Cg for :xed Csx, Csy, and partition R;
• optimal Csx for :xed Csy, Cg, and partition R;
• optimal Csy for :xed Csx, Cg, and partition R.

Given an initial set of three codebooks and the four
necessary equations, the well-known iterative joint op-
timization algorithm can be used to obtain a locally
optimal quantizer [5].

3. Experimental results

Various performance evaluations were carried out
to demonstrate the performance of an MP codec

using a dictionary optimized by gain–shape VQ.
Five video sequences; Akiyo, Mother and Daughter,
Sean, Miss America, and Salesman, were used in our
experiments for obtaining a trained dictionary. The
common features of these sequences are that they
contain mostly one or two head-and-shoulder-type
objects, and that there is not much fast global motion
of these objects against their backgrounds. Each video
sequence is encoded at 10 frame/s and in QCIF format
for 3 s. Fig. 3 plots the performance evaluation of our
MP codec for various testing sequences using the dic-
tionary trained by selected from each residual frame
a given number of atoms from all the testing video
sequences. The test sequences are coded at 24 kbit/s,
10 frame/s, and in the QCIF format. The motion es-
timation part of our method for all the sequences is
identical to that of H.263, which is available publicly
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Fig. 4. PSNR comparisons with diGerent dictionaries at low bit rates for testing sequences. Top Left: Average PSNR performance of all the
test sequences. Top Right: Claire. Middle Left: Container. Middle Right: Mother and Daughter. Bottom Left: Salesman. Bottom Right: Sean.
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at http://www.nta.no/brukere/DVC/. Also, our rate
control for a testing sequence is synchronized with
H.263 such that our MP codec consumes approxi-
mately the same number of bits in encoding each
motion residual frame as does that in H.263. Atoms
are selected according to the method proposed in [9].
An atom is encoded in our MP as follows: 16 bits for
the locations of a basis, :xed HuGman codings for
the horizontal and vertical indexes, respectively, and
the adaptive arithmetic code for the quantized inner
product values. The initial shape codebooks are those
in the 2D separable Gabor dictionary given in [9].
Here, the parameter �=(s; �;  ) is a triplet consisting,
respectively, of a positive scale, a modulation fre-
quency, and a phase shift. The constant K� is chosen
such that the following 1D Gabor sequence is of unit
norm

g�(i) =K�g
(
i − N=2 + 1

s

)

×cos
(
2#�(i − N=2 + 1)

16
+  

)

i∈{0; 1; : : : ; N − 1}:
Each shape codebook has 20(=Ns) codewords. To-
tally, we have 400 basis functions. The initial gain
codebook is a uniform scalar quantizer of size
10(=Ng). The results of the :gure show that the
dictionary trained by selecting 200 atoms from each
residual frame in all the training videos gives the
best PSNR performances for our testing sequences.
According to the experimental results, this dictionary
is used for our further performance evaluation on the
eAciency of our method at various low bit rates.
Fig. 4 gives the PSNR performance comparisons

at various low bit rates using our dictionary with the
dictionary proposed in [9]. All the curves in the :gure
were obtained by applying our MP codec with diGer-
ent dictionaries to various testing sequences encoded
in QCIF format at 10 frame/s for the :rst 3 s. There
are :ve testing videos: Container, Claire, Mother and
Daughter, Salesman, and Sean. Among them, The
videos Container and Claire are not used in the ex-
periment for obtaining our dictionary and Container
is not a head-and-shoulder-type video. As in our pre-
vious experiment, the algorithm in H.263 gives the
motion vector estimations and the rate control of as-
signing bits to each residual frame. The parameters

Table 1
Average PSNR with diGerent dictionaries at various bit rates

Bit rate 14.8 19.9 29.4 39.1

PSNR initial 30.5175 31.9666 33.7810 34.8798
dictionary
PSNR trained 30.7582 32.4164 34.3002 35.4331
dictionary
Gain with +0.2407 +0.4498 +0.5191 +0.5533
trained

of the testing sequences are 10 frame/s for the :rst
3 s in QCIF format. The top left sub:gure gives an
averaged PSNR comparison of dictionary eAciency.
All these curves indicate that the proposed VQ-based
dictionary optimization method can indeed the PSNR
performance of an MP codec at low bit rates.
Table 1 gives a summary of the average PSNR of all
the testing sequences of diGerent dictionaries versus
bit rates. According to the results given in the table,
the average improvements of using our gain–shape
optimized dictionary are between 0.25 and 0:5 dB
when the bit rates are ranging from 15 to 40 kbit/s.

4. Conclusion

We have shown that the techniques used to design
gain–shape product VQ codebooks can be used to op-
timize the dictionary of matching pursuit and improve
the PSNR performance at low bit rates for an MP
codec. Experimental results how that between 0.25
and 0.5 dB improvement was obtained for our video
sequences when encoded with bit rates ranging from
15 to 40 kbit/s, using a gain–shape optimized dictio-
nary than that of the initial dictionary.
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