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Content-Based FGS Coding Mode Determination for
Video Streaming Over Wireless Networks

Bin-Feng Hung and Chung-Lin Huang, Member, IEEE

Abstract—Video streaming is the major subject of Amendment
for MPEG-4 and it is developed in response to the growing needs
on a video-coding standard for the video communication. The fine-
granular scalability (FGS) combined with the temporal scalability
addresses a variety of challenging problems in delivering video.
The FGS video encoder makes the coding mode decision based on
the video content and the current available bandwidth in order to
achieve higher perceptual video quality. In this paper, we develop
a mode selection method to find the most suitable scalable coding
mode from six coding schemes: FGS, FGST, FGS-SE, and FGST
with background composition based on the contents of the video
sequences.

Index Terms—Background composition, coding mode selection,
fine-granular scalability (FGS), scalable video coding, video
streaming.

I. INTRODUCTION

REAL-TIME video transmission over the wireless net-
works has become reality due to the increasing popularity

of personal computers and the maturity of network transmis-
sion technology. However, the current quality of streaming
video over the wireless networks still needs a great deal of
improvement before the network video can be accepted as an
alternative broadcasting media. The main obstacle in designing
such systems is the varying characteristics of the networks (i.e.,
bandwidth variations, packet loss, and network congestion).
To cope with these problems and provide quality-of-service
(QoS) guarantees, several scalable coding schemes have
been proposed for networks video streaming. One of these
techniques is the MPEG-4 fine-granular scalability (FGS)
scheme [1]–[3], [14], that provides a new level of abstraction
between the encoding and transmission process by supporting
signal-to-noise ratio (SNR), spatial, and temporal scalabilities
through the enhancement layers.

To ensure a good visual quality for FGS video streams
over the networks, different kinds of video are suitable for
different kinds of scalable coding schemes and an effective bit
allocation needs to be employed that allows the enhancement
of specific objects within a video sequence. Thus, a hybrid
temporal-SNR FGS scheme [4] and a content-based selective
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enhancement scheme [5] have been adopted by MPEG-4 as
the video streaming standards. However, any single scalable
coding scheme is not effective for streaming the video over
the networks because the amount of motion-activity and image
quality varies considerably on a scene basis. In this paper, we
develop a mode decision algorithm that can select the most
suitable MPEG-4 FGS related scheme to encode the video
sequence for network video streaming. The decision making is
based on the features extracted from the base layer bit stream
(i.e., the content of the video sequence) and the transmission
bandwidth, and it results in the minimal perceptual distortion
of the coded video sequences.

Schaar and Radha [4] proposed two strategies based on the
PSNR value and the base layer information to determine the
temporal-SNR tradeoff. The first method is a simple heuristic
rate allocation algorithm, it encodes a video sequence with dif-
ferent frame rates and chooses the most suitable frame rate ac-
cording to the peak-signal-to-noise ratio (PSNR) values, which
is not a good measurement for the perceptual quality of the video
sequences. The second method measures the video sequence’s
temporal activity and texture complexity so that a rate control
algorithm may find the best tradeoff between individual image
quality and motion smoothness. The video sequences may be
coded in different schemes such as FGS or FGST. However, they
did not mention how to make decision based on these features
nor consider the available transmission bandwidth. Turaga and
Chen [8] develop a mode decision method for the coding process
such as intra/inter mode decision, and frame skipping etc. Their
method (modeled as a binary hypothesis testing problem) is well
understood in traditional classification theory.

In this paper, we propose a content-based coding mode deter-
mination method to select the most suitable one from the six
coding FGS schemes: FGS, FGST, FGS-SE (FGS combined
with selected enhancement) and FGST-BC (FGST combined
with background composition) for the input coding unit (CU). A
coding unit consists of a sequence of consecutive video frames.
We extract the spatial and temporal features from the video se-
quences by using the information that can be easily extracted
from each CU. The extracted features are combined with the
available transmission bandwidth as a feature vector. We can
make the coding mode decision based on the feature vectors ex-
tracted from the video sequences. Similar to [8], we model the
coding mode decision problem as a hypothesis testing problem
which is well-understood as a traditional classification problem.
However, the difference is in that we convert the problem of
minimization of total cost to a standard maximum-likelihood
problem so that the number of decision modes can be extended
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to more than two. Besides, we utilize the spatial-temporal distor-
tion metric [7] as the error measurement and apply the decision
making for each CU instead of each frame to fully utilize the
spatial-temporal characteristics of the video sequence.

II. OVERVIEW OF THE FGS

Three types of techniques have been proposed for FGS in
MPEG-4, bit-plan coding of the discrete cosine transform
(DCT) coefficients [11], wavelet coding of image residue [12],
and matching pursuit coding of image residue [13]. However,
the first one has been chosen due to its comparable coding
efficiency and implementation simplicity. The basic idea of
FGS is to encode a video sequence into a base layer and an
enhancement layer. The base layer encoder uses a nonscalable
coding to reach the lower bound of the bit-rate range. The
enhancement layer encoder codes the difference between the
original picture and the reconstructed picture using bit-plane
coding of the DCT coefficients. The bit stream of the FGS
enhancement layer may be truncated, and the decoder still may
reconstruct the video from the incomplete bit stream. To further
improve the video quality and the flexibility of the codec,
several modifications of FGS have been proposed as follows.

A. FGS With Content-Based Selective Enhancement [5]

FGS coding scheme combined with the adaptive quantization
and prioritized transmission of specific regions of a video se-
quence provides good visual image quality. FGS-based adaptive
quantization is achieved through bitplane shifting of the selected
macroblocks within an FGS enhancement-layer frame. The en-
coder shifts up the set of coefficients of the designated mac-
roblock by a number of bitplanes relative to the nonenhanced
macroblocks coefficients. This adaptive quantization tool is re-
ferred to as selective enhancement (SE), since the selected mac-
roblocks within a frame can be enhanced relatively to the others.
The purpose of FGS-SE is to improve the image quality of the
selected region at the cost of deteriorating the other regions.

B. Hybrid Temporal-SNR FGS [4]

A limitation of the current FGS implementation is that the
frame rate is locked to the original base layer frame rate, in-
dependent of the available bandwidth. In [4], a hybrid tem-
poral-SNR scalability scheme is proposed to support: 1) SNR
scalability while maintaining the same frame rate; 2) temporal
scalability by increasing only the frame rate; and 3) both SNR
and temporal scalabilities. In addition to the standard SNR FGS
frames, this hybrid structure includes multicast-capable (MC)
residual frames in the enhancement layer. Each FGST picture is
predicted from the base layer frames that do not coincide tem-
porally with the designated FGST picture, thus, this leads to the
desired temporal scalability feature.

C. Temporal Scalability With Background Composition [1],
[6]

There are two modes of temporal scalability in MPEG-4:
standard mode and the background composition mode. In the
second mode, only the motion smoothness of the selected ob-

Fig. 1. Basic concept of temporal scalability with background composition.

ject is enhanced in the enhancement layer and other regions are
sacrificed to save the total bit rate. For temporal scalability with
background composition, in the enhancement layer, only the se-
lected objects are coded further to achieve higher frame rate than
that of the base layer. As shown in Fig. 1, frames “a” and “d”
of the enhancement layer are the copies of the corresponding
frames in the base layer. Other frames in the enhancement layer
are obtained by overlapping the selected objects onto the “back-
ground,” which is made of the the two base layers of the pre-
ceding and succeeding frames.

D. Rate Control for Hybrid Temporal-SNR FGS

The structure of the FGS hybrid temporal-SNR scheme al-
lows the tradeoffs between temporal resolution and SNR im-
provements for video streaming. The decision is based on the
available bandwidth, video sequence’s characteristic, and pos-
sible user preferences. If the video sequence’s motion activity
and texture complexity can be characterized by PSNR value
or the base layer information, then we can make better tem-
poral-SNR tradeoff.

III. CODING MODE DETERMINATION

In video streaming, we need to consider the tradeoff between
the image quality of each frame and the temporal smoothness
of the sequence based on the contents of the video sequence
and the available transmission bandwidth. Furthermore, the con-
tent-based MPEG-4 coding scheme also needs to make another
tradeoff between the video quality of the foreground objects and
the background. The above two concerns can be modeled as a
cost minimization problem and the total cost is defined by a cer-
tain combination of the perceptual spatial and temporal distor-
tion measurement. Here, we convert a mode decision problem
into a hypothesis testing problem.

To decide which coding mode is optimal, we may try all the
possible coding modes, evaluate the cost corresponding to each
mode, and choose the one with the smallest cost. However, such
an exhaustive search approach is impractical for real time im-
plementation due to its complexity. An alternative method is to
identify the feature vectors that can be easily computed from the
video data and used as good indicators to the optimal mode se-
lection. We want to build a classifier that takes the feature vector
(from each input CU) as input and comes up with the probability
of the most probable hypothesis, which then enables us to make
coding mode selection appropriately.
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Fig. 2. Partitioning the feature space.

To build a classifier, in the training phase, we collect the fea-
ture vectors from the video data and then use an exhaustive
search to find their corresponding coding modes that lead to the
minimal perceived distortion. Then, we may estimate the prob-
ability density function (pdf) for these feature vectors under dif-
ferent hypotheses. The pdfs of the feature vectors under each hy-
pothesis are modeled as a mixture of Gaussians. Once we have
these pdf distributions, we use the maximum perceptual ratio
test for a new input feature vector (corresponding the input CU)
to determine the most likely hypothesis, and then use the result
to make the coding mode decision.

A. Transforming Mode Decision Into Classification Problem

A mode decision problem is equivalent to a hypoth-
esis-testing problem. Suppose there arekinds of decisions
{ } and let the corresponding costs be
{ }, respectively. The goal of the strategy is
to make the decision based on the minimal cost. To make
the optimal mode decision, one can try all the coding modes
and choose the one that generates the lowest cost. However,
computing all the actual costs before making a decision is
very computationally intensive as this involves trying all coding
modes to determine the minimal cost. So, we need to identify
the features that provide a good estimate of the cost for a coding
mode determination but with less computation. We make a de-
cision based on the hypotheses, (e.g., or ),
where if , .

Having collected a training set of CUs, we exhaustively
compute the costs of CUs in coding modes, e.g., ,

, , where denotes the cost of assigning
CU to coding mode . For each CU, we identify features to
form a feature vector . Given the feature
vector the classifier selects the most probable hypothesis.

Assume that we extract two features from each CU in a
training set to form a feature vector with two components

and suppose that there are a total of three
modes. Then, we can exhaustively compute the costs of all CUs
in all three modes, and classify all the CUs into three groups
(shown as triangles, squares, and circles in Fig. 2), which
represent three hypotheses,, , and respectively. Our
objective is to partition the feature space into three regions,

, , or , and make decision , , or , for the CU

of which the feature vectors are located. To make the optimal
partitions, we need to minimize the total additional cost of each
of the misclassified CUs, i.e., the dark symbols in Fig. 2.

The mode decision process can be treated as a problem of the
additional cost minimization. It may be written as

Min (1)

where that indicates the addi-
tional cost of the misclassified vector (i.e., CU ) to re-
gion rather than the correct region . These regions
may consist of noncontiguous subregions and the boundaries
between them may be arbitrarily shaped. Hence, we formulate
the problem of cost minimization in terms of choosing the re-
gions instead of specifying the linear boundaries or the thresh-
olds separating them. Partitioning the feature space to mini-
mize the total cost is similar to the traditional classification
problem. In a traditional classification problem, there is a set
of probabilities corresponding to each feature vector in the dif-
ferent hypotheses, whereas in our problem, there is a set of costs
{ } corresponding to each CU.
Thus, the first step to formulate our problem as a classification
problem is to convert the set of cost {} into the probability
densities.

Since our problem is multimodel classification problem, the
cost minimization process is much more complex than the bi-
model problem. However, for each CU, if the cost for se-
lecting mode is much smaller than selecting the other modes,
i.e., , for , then we have more confidence in
choosing mode as the best decision. To simplify the classifi-
cation process, instead of minimizing the total additional cost
[i.e., (1)], we maximize the total cost saving of the correctly
classified CUs, which can be written as

Max

(2)

where is the cost of the worst mode for CU(with fea-
ture vector ). Since the cost differences between each two
coding modes must be in proportional to the probability den-
sity for a certain hypothesis, we may find the pdf of the fea-
ture vector by counting its appearance in region , with

times (as shown in Fig. 3).
Here, we let

and the probability of each hypothesis is
. So, we have,
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Fig. 3. Repeating the feature vectors by cost difference.

Then, (2) can be rewritten as:

Max

Max

(3)

Therefore, we have converted the original problem of mini-
mizing the total cost as shown in (1) into a maximal hypothesis
testing problem.

B. Continuous Probability

Since the number of the feature vectors is limited, the condi-
tional pdf of , i.e., is a discrete function. Instead
of using these discrete pdfs, we can model these probability data
by using a continuous pdf consisting of a mixture of Gaussians.

where

To classify a feature vector, we need to know the probability
of occurrence of that vector. However, the pdf for a new input
vector is not known since it may not present in the training data
set. By modeling the pdf of the feature vector using a mixture
of Gaussians, we ensure that any input feature vector may be ef-
fectively classified. These Gaussian mixtures are trained based
on the modified feature vectors using the Greedy expectation
maximization (GEM) algorithm [9]. Fig. 4 shows the trained
Gaussian mixtures in the modified feature space, in which,

, and are modeled by a mixture of Gaussians with 3, 3,
and 2 distributions, respectively. Each ellipse represents a Guas-
sian distribution and the center of the ellipse denotes the mean

Fig. 4. Modeling the data by mixture of Gaussians.

of the Guassian; the diameter of the ellipse denotes the variance
of the Gaussian.

Using the continuous pdf, (3) can be rewritten as

Max

(4)

The function corresponds to the continuous pdf
comprising a mixture of Gaussians, and it is obvious that
the maximization problem in (4) can be simplified as

.
Hence, to classify a feature vector, we calculate the prob-

ability of the feature vector assigned to each mode and select
the mode with the highest probability. The entire classification
scheme may be summarized as follows: 1) given the training
data and the cost, we count the feature vector (assigned to mode
) a number of times based on the cost difference between the

current mode and the worst mode; 2) we use the GEM algo-
rithm [9] to estimate thea priori probabilities , as well as
the class conditional probability density functions ,
as the Gaussian mixture; and 3) with these continuous pdfs, we
compute the probability of input feature vector assigned to each
mode and select the most possible one.

IV. CODING MODE DETERMINATION

Here, we apply the classifier to determine which coding mode
is the most suitable one for the current input CU. Each CU con-
sists of a video sequence of 30 frames, and the base layer en-
coder defines a CU as a group of picture (GOP) with 5 frames/s.
The quantization errors of DCT coefficients and the skipped
frames are considered by the enhancement layer encoder. For
different types of video sequence, we apply different types of
enhancement layer encoders, e.g., for high motion sequences,
we emphasize the temporal smoothness, whereas for low mo-
tion and high texture complexity sequences, we highlight the
spatial details. Therefore, for different video sequence, we need
to develop different enhancement layer encoders. The features
of each CU are extracted from the base layer encoder and com-
bined with the current transmission bit rate as a feature vector,
which can be used to determine the optimal coding mode.
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Fig. 5. Illustration of bit rate allocation for six coding modes.

A. FGS Coding Modes

The temporal scalability with background composition is in-
cluded in MPEG-4 standard [1] for non-FGS temporal scala-
bility, however the background composition [6] has not been
included in MPEG-4 standard for FGST. Since this function-
ality is compatible to FGST and it provides a flexible scheme
for bit rate allocation for different objects in the video sequence,
we add FGST with background composition as another coding
scheme. There are six coding modes: FGS, FGS-SE, FGST9,
FGST9-BC, FGST13, FGST13-BC of which the properties are
briefly summarized as follows (Fig. 5).

1) FGS. FGS is similar to SNR scalability, and the en-
hancement layer frame rate is the same as the base
layer (5 frames/s), thus, the image quality per frame is
improved in the enhancement layer.

2) FGS-SE. The additional property of FGS-SE is that the
enhancement layer encoder uses bit plane shifting to im-
prove the image quality of the selected region.

3) FGST9. One B frame is inserted between two base layer
frames in the enhancement layer, thus, the total frame rate
is 9 frames/s. The temporal smoothness is improved in the
enhancement layer, however, the image quality per frame
is sacrificed.

4) FGST9-BC. The selected object is coded in the enhance-
ment layer and the background region is formed by back-
ground composition. Thus, the spatial-temporal quality of
the object is enhanced at the cost of deteriorating quality
of the background region.

5) FGST13. Two B frames are inserted between two base
layer frames in the enhancement layer, thus, the total
frame rate is 13 frames/s.

6) FGST13-BC. The difference between FGST13-BC and
FGST9-BC is that the total frame rate is 13 frames/s rather
than 9 frames/s.

Fig. 6 shows the bit rate allocation under these modes. The
six coding modes provide different tradeoffs between the spatial
and the temporal video quality.

Fig. 6. Perceived distortion metric.

B. Cost Function

To measure the perceived quality under each coding mode,
we use a spatial-temporal distortion metric [7], from which the
distortion is computed by means of comparing the edges sta-
tistics in the same spatial-temporal (S-T) region of the test se-
quence and the reference sequence. To evaluate this metric, first
the luminance components of the input and output video streams
are processed using the horizontal and vertical edge enhance-
ment filters. These processed streams are partitioned into the
S-T regions in which the features that quantify the spatial ac-
tivity as a function of angular orientation are extracted. These
are then clipped to emulate perceptibility thresholds. Distortions
due to gains and losses in feature values are calculated using
the functional relationships between the input and output fea-
ture values that emulate the visual masking. These distortions
are then collapsed over space and time. The choice of the edge
enhancement filters and the perceptibility thresholds are opti-
mized based on their correlation with the perceptual distortions
as shown in Fig. 6. The details of all operation blocks are demon-
strated as follows.

1) S-T Region Size:The horizontal and vertical edge en-
hanced input and output video streams are divided into localized
S-T regions. Features are then extracted from each S-T region by
calculating statistics over the S-T region, which includes eight
horizontal pixels, eight vertical lines and six video frames.

2) Description of Features:For a given image pixel located
at row , column , and time , the horizontal and vertical edge
enhancement filter responses will be denoted as and

, respectively. These responses can be converted into
polar coordinates ( ) using the relationships

where . The first feature ( ) is de-
fined as . This feature is computed as
standard deviation (stdev) over the S-T region and then clipped
at the perceptibility threshold of . It is sensitive to
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the changes in the overall amount of spatial activity within a
given S-T region. The second feature () is defined as

mean

mean

where if and
, otherwise, ,

. Similarly, if
, and

, otherwise . This feature is sensitive to
changes in the angular distribution. The parameters are selected
as , , and .

3) Impairment Masking:The gain and the loss of or
must be examined separately, since they produce fundamentally
different effects on the quality of perception (e.g., loss of the
spatial activity due to blurring and gain of the spatial activity
due to noise of blocking). For a given S-T region, the gain and
the loss distortions or are defined as

gain

loss

where is the positive part operator (i.e., negative values are
replaced with zero) and is the negative part operator (i.e.,
positive values are replaced with zero).

4) Spatial Collapsing Function:It is computed for each
temporal index as the average of the worst 5% of the measured
distortions over the spatial index, this produces a time history
of the gain and loss samples (i.e., and ) which
must then be temporally collapsed. It can be mathematically
written as: for

and for
.

5) Temporal Collapsing Function:It is computed as the
mean of the and over the entire CU period (1
second). It can be mathematically written as

gain
gain

loss
loss

6) Spatial-Temporal Distortion:It is computed by com-
bining the loss and gain of and as

Furthermore, the selective enhancement and the background
composition functionality provide a tradeoff between the video
qualities of the background region and the object region under
the same transmission bit rate. Thus, the total distortion of the
entire video sequence should consist of the distortions of the
selected object region and the background region, which is de-
fined as

where the weighting coefficientdenotes the visual importance
of the selected object in the video sequence.is defined as
shown in the equation, at the bottom of the page, where the value
of is clipped at 0.85 (i.e., if , then ).

The perceived distortion metric of the FGS video sequences
under different frame skipping rates is called thetemporal
distortion, whereas the perceived distortion metric of the FGS
video sequences under the same frame rate but different total
bit rates is named thespatial distortion. From our experiments,
we find that different types of video sequences suffer different
amount of perceptual distortion under the same kind of video
impairment. Thus, the distortion metric provides a pertinent
measurement of the perceptual video quality.

C. Feature Selection

The video impairment mainly consists of the spatial and the
temporal distortion. The high motion sequences are sensitive
to the temporal distortion; whereas the high texture complexity
sequences are sensitive to the spatial distortion. Thus, to char-
acterize the video sequence, the selected features must charac-
terize the motion activity, as well as the texture complexity of
the video sequence.

Besides, since the weighting coefficient is(it is a function
of object’s size), and the total bit budget must also be taken into
consideration for bit rate allocation, the object size and trans-
mission bandwidth are also essential features for the system to
make the coding mode selection. The feature vector is defined
as

where and represent thetemporal (or motion) ac-
tivity of foreground and background, respectively; and

represent thetexture complexityof foreground and back-
ground, respectively; is thesizeof foreground object;

is the transmissionbandwidth.
Since the transmission bit rate is unknown during the video

streaming, we assume that the classifier’s decision is insensitive
to the small variation of transmission rate, and an encoder de-
signed for certain bit rate range (not exactly at a specific bit rate)
is reasonable. In this paper, we consider three bit rate ranges as
0 100 kb/s, 100 200 kb/s, and 200 300 kb/s.

To characterize different video sequences, we need to select
the features highly correlated with the spatial-temporal distor-
tion of video sequences. We test several features which may rep-
resent thetemporal activity(or thetexture complexity) of video
sequences, and then choose the one with the highest correlation
with the spatial-temporal distortion. To perform the frame-drop-
ping (the frame rate of the source video sequence is 5 frames/s),
we need to compute the correlation between the temporal
distortion and thetemporal activitywhich is the motion vector
magnitude or the frame difference. The correlations of the tem-
poral distortion and either one of the two features representing
thetemporal activityof the video sequences is defined as shown

Area of foreground object
Entire frame area if foreground object exist

otherwise
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TABLE I
CORRELATION BETWEEN THE TEMPORAL ACTIVITY

AND THE TEMPORAL DISTORTION

in the first equation, at the bottom of the page, where in-
dicates thetemporal activity(i.e., the motion vector magnitude
or the frame difference). The value of correlationis shown in
Table I.

By encoding source video sequences into 200 kb/s video
stream at 30 frames/s, we compute the correlationbetween
the spatial distortion and thetexture complexity(i.e., the
high frequency energy or the as defined in TM5). The
high frequency energy can be obtained by taking a frame,
down-sampling it by a factor of 2 horizontally and vertically,
then up-sampling it back to the original size, and finding the
energy in the difference between this and originally frame. The
correlation of the spatial distortion and either one of the two
features representing the texture complexity of the sequences
is defined as shown in the second equation, at the bottom of
the page, where indicates thetexture complexity(i.e.,
high frequency energy or defined in TM5). The value of
correlation is shown in Table II.

From the experiment results (Tables I and II), we choosemo-
tion vector magnitudeandhigh frequency energyto represent
the temporal activity and the texture complexity of the video se-
quences, because they demonstrate higherand .

D. The Training Process

We have collected 22 standard MPEG test sequences in QCIF
(176 144 format at a frame rate of 30 Hz for the training set
and divide them into 500 CUs (30 frames per CU), of which
270 CUs are selected for training and 230 CUs are used for
testing. Each CU is down-sampled to meet six different frame
rates for six different coding schemes. We encode all CUs in
training set for all six coding modes at three different bit-rates

TABLE II
CORRELATION BETWEEN THE SPATIAL COMPLEXITY

AND THE SPATIAL DISTORTION

(100, 200, 300 kb/s) and extract the feature vectors for each CU
at the same time. We assign 5 frames/s for the base layer, so that
the bit rate for base layer is fixed at 30 kb/s. To train the classi-
fier, we then decode all CUs in the training set and compute the
distortion metric corresponding to each of them. Then, we can
group all CUs in the training set into six hypotheses as

To model the mode decision problem as the hypothesis testing
problem, we count the appearance of the feature vector,,
(with the minimal cost , if it assigned to region ) a number
of times, and then compute the pdf of the fea-
ture vector in each hypothesis, { , }.
Finally, we model the pdfs of all the feature vectors in each hy-
pothesis (a discrete pdf) as a mixture of Gaussians and train this
model by using GEM algorithm [9] to obtain the continuous
pdfs of the feature vectors of each hypothesis. Thus, given a set
of training CUs, we can find all the feature vectors , com-
pute the conditional probability of every CU for each hypoth-
esis , and the probability of each hypothesis .
After the training process, for an input CU, we may select the
best coding mode by finding the corresponding hypothesis with
the highest probability.

V. EXPERIMENTAL RESULTS

We have tested 230 CUs to illustrate the performance of the
coding mode selection method. As shown in Table III(a), the
success rate of making the best decision is only 63.5%, how-
ever, if we allow more additional distortion compared with the
best one, then the success rate will be increased. As shown in
Table III(b), if we allow more additional distortion, then the

feature TemporalDist

feature TemporalDist

feature TemporalDist

feature TemporalDist

feature SpatialDist

feature SpatialDist

feature SpatialDist

feature SpatialDist
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TABLE III
PERFORMANCE OF THECLASSIFIER

(a) (b)

TABLE IV
STREAMING “HALL MONITOR” AT 100 KB/S

chance of choosing the correct mode (i.e., the allowable addi-
tional distortion within 10%) will increase to 88%.

To illustrate the impact of mode selection failure, we define
the additional cost (AC) as shown at the bottom of the page.

The classifier’s performance for six MPEG-4 video se-
quences (e.g., Hall Monitor, Salesman, Stefan, Suzie, Mom,
and Akiyo) using six coding modes (e.g., FGS, FGST9,
FGST13, FGS-SE, FGST9-BC, and FGST13-BC) based on
the perceptual distortion metrics are shown in Tables IV–IX.
We compare the additional code of the selected mode for
each CU. From the experiments, we have demonstrated that
our method is efficient and the AC of misclassified modes
will be less than 10% for most of the cases, as shown in
Tables IV and V. Furthermore, we observe the cases of which
the AC is larger than 10% and conclude that there are two
reasons: 1) insufficient feature vectors in the training set and
2) video sequences with low motion activity and low texture
complexity.

The probability of the feature vector belonging to certain hy-
pothesis is related to the number of appearance of such feature
vector in the training set. Thus, the selected mode for the CUs,
of which the number of corresponding feature vectors in the
training set is not sufficient, may not be the best one. For ex-
ample, the cases of the tenth CU of Stefan and the second CU of
Suzie are rare in our training set. The performance of these two
video sequences is shown in Tables VI and VII. This problem
can be improved by collecting a larger training set.

Tables VIII and IX are examples of the cases of slow motion
and low texture complexity video sequences. From these fig-
ures, we can find that the cost difference between two different
coding modes is quite small because the perceived quality of
Mom and Akiyo with low texture complexity and low motion

TABLE V
STREAMING “SALESMAN” AT 200 KB/S

TABLE VI
STREAMING “STEFAN” AT 300 KB/S

TABLE VII
STREAMING “SUZIE” AT 100 KB/S

TABLE VIII
STREAMING “M OM” AT 300 KB/S

TABLE IX
STREAMING “A KIYO” AT 300 KB/S

activity is insensitive to the distortion. Thus, there is no guar-
antee that the best coding mode will be selected for this kind
of video sequences. The cost difference between two different
coding modes is too little for our algorithm to select an effective
coding mode. However, we may improve the performance by:
1) choosing better features to characterize the video sequences;
2) using more complex Gaussians to model the distribution of
feature vectors; or 3) making decision by user preference for
this kind of video sequences.

Our classifier has been trained at three different transmission
bandwidths, 100, 200, and 300 kb/s, however, we then model
the originally discrete pdf of the feature vectors by mixture
of Gaussians to obtain the continuous pdf. Therefore, we may
test our algorithm at the other transmission bandwidths, e.g.,
50 300 kb/s, and show the outcomes of the classifier. The
comparisons between the optimal modes and the selected modes

AC
Dist. of the best mode-Dist. of the chosen mode

Dist. of the best mode
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(a)

(b)

Fig. 7. Optimal mode versus selected mode at different transmission rates.

at different transmission bit rates for the fifth CU of Stefan and
the fourth CU of Salesman are shown in Fig. 7. In Fig. 7(a),
our classifier provides the optimal selection mode, since the se-
lected mode and the optimal mode induce the same distortion.
However, in Fig. 7(b), the difference between the optimal mode
and the selected mode is also very small.

VI. CONCLUSION

This paper has proposed a mode determination scheme to de-
cide which FGS coding mode in MPEG-4 is the most suitable
one for the input CU. The mode determination scheme converts
the problem of minimization of the total cost into a standard
maximum likelihood problem. The experimental results illus-
trate that the mode determination scheme provides an efficient
strategy to encode the video sequences under a given bit rate
range. Since the priori probabilities and the conditional proba-
bility density functions are available after the off-line training
process, the mode determination can be an on-line operation.
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