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Content-Based FGS Coding Mode Determination for
Video Streaming Over Wireless Networks

Bin-Feng Hung and Chung-Lin Huanllember, IEEE

Abstract—Video streaming is the major subject of Amendment enhancement scheme [5] have been adopted by MPEG-4 as
for MPEG-4 and it is developed in response to the growing needs the video streaming standards. However, any single scalable
on avideo-coding standard for the video communication. The fine- coding scheme is not effective for streaming the video over

granular scalability (FGS) combined with the temporal scalability . L .
addresses a variety of challenging problems in delivering video. € networks because the amount of motion-activity and image

The FGS video encoder makes the coding mode decision based orfuality varies considerably on a scene basis. In this paper, we
the video content and the current available bandwidth in orderto  develop a mode decision algorithm that can select the most
aCh'e&’e h'?hef percep;“g' V'?_e‘é q#a“ty- In this Elaper, \;Vildeve(qup suitable MPEG-4 FGS related scheme to encode the video
a mode selection method to find the most suitable scalable co Ing . . - . .
mode from six coding schemes: FGS, FGST, FGS-SE, and FGsTSeduence for network video streaming. The decision mgkmg is
with background composition based on the contents of the video pased on the features exltracted from the base layer bit stream
sequences. (i.e., the content of the video sequence) and the transmission
Index Terms—Background composition, coding mode selection, bandwidth, and it results in the minimal perceptual distortion

fine-granular scalability (FGS), scalable video coding, video Of the coded video sequences.
streaming. Schaar and Radha [4] proposed two strategies based on the

PSNR value and the base layer information to determine the
temporal-SNR tradeoff. The first method is a simple heuristic
rate allocation algorithm, it encodes a video sequence with dif-
EAL-TIME video transmission over the wireless netferent frame rates and chooses the most suitable frame rate ac-
works has become reality due to the increasing populariggrding to the peak-signal-to-noise ratio (PSNR) values, which
of personal computers and the maturity of network transmig-not a good measurement for the perceptual quality of the video
sion technology. However, the current quality of streamingequences. The second method measures the video sequence’s
video over the wireless networks still needs a great deal tefmporal activity and texture complexity so that a rate control
improvement before the network video can be accepted asagjorithm may find the best tradeoff between individual image
alternative broadcasting media. The main obstacle in designigality and motion smoothness. The video sequences may be
such systems is the varying characteristics of the networks (igded in different schemes such as FGS or FGST. However, they
bandwidth variations, packet loss, and network congestioa)d not mention how to make decision based on these features
To cope with these problems and provide quality-of-servigsor consider the available transmission bandwidth. Turaga and
(QoS) guarantees, several scalable coding schemes hawen [8] develop a mode decision method for the coding process
been proposed for networks video streaming. One of thesgch as intra/inter mode decision, and frame skipping etc. Their
techniques is the MPEG-4 fine-granular scalability (FGShethod (modeled as a binary hypothesis testing problem) is well
scheme [1]-[3], [14], that provides a new level of abstractiamderstood in traditional classification theory.
between the encoding and transmission process by supportingn this paper, we propose a content-based coding mode deter-
signal-to-noise ratio (SNR), spatial, and temporal scalabiliti@sination method to select the most suitable one from the six
through the enhancement layers. coding FGS schemes: FGS, FGST, FGS-SE (FGS combined
To ensure a good visual quality for FGS video streamgith selected enhancement) and FGST-BC (FGST combined
over the networks, different kinds of video are suitable fakith background composition) for the input coding unit (CU). A
different kinds of scalable coding schemes and an effective bidding unit consists of a sequence of consecutive video frames.
allocation needs to be employed that allows the enhancemens extract the spatial and temporal features from the video se-
of specific objects within a video sequence. Thus, a hybrigences by using the information that can be easily extracted
temporal-SNR FGS scheme [4] and a content-based selecfiggn each CU. The extracted features are combined with the
available transmission bandwidth as a feature vector. We can
make the coding mode decision based on the feature vectors ex-
Manuscript received October 15, 2002; revised May 1, 2003. This work wigacted from the video sequences. Similar to [8], we model the
E‘g’g%fgéggf"&%‘;ﬁgggat'onal Science Council, Taiwan, R.0.C. under Projigd yin 4 mode decision problem as a hypothesis testing problem
B.-F. Hung is with Etron Technology, Inc., HsinChu 300, Taiwan, R.0.C. Which is well-understood as a traditional classification problem.
C.-L. Huang is with the Electrical Engineering Department, Nationgiowever, the difference is in that we convert the problem of
Teing Hua University, HsinChu 300, Taiwan, R.0.C (e-mail: clhuang@eg.;iniz ation of total cost to a standard maximum-likelihood
nthu.edu.tw).
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to more than two. Besides, we utilize the spatial-temporal distor- e,
tion metric [7] as the error measurement and apply the decision ' d
making for each CU instead of each frame to fully utilize the

. o . Enhancement
spatial-temporal characteristics of the video sequence. Layer

Il. OVERVIEW OF THEFGS Copy

Three types of techniques have been proposed for FGS in
MPEG-4, bit-plan coding of the discrete cosine transform Basc Layer @
(DCT) coefficients [11], wavelet coding of image residue [12],
and matching pursuit coding of image residue [13]. However,
the first one has been chosen due to its comparable COdH@ 1. Basic concept of temporal scalability with background composition.
efficiency and implementation simplicity. The basic idea of

FGS is to encode a video sequence into a base layer angefdis enhanced in the enhancement layer and other regions are
enhancement layer. The base layer encoder uses a nonscalgfifificed to save the total bit rate. For temporal scalability with

coding to reach the lower bound of the bit-rate range. Thgckground composition, in the enhancement layer, only the se-
enhancement layer encoder codes the difference between|#ged objects are coded further to achieve higher frame rate than
original picture and the reconstructed picture using bit-plaggat of the base layer. As shown in Fig. 1, frames “a” and “d”

coding of the DCT coefficients. The bit stream of the FG§f the enhancement layer are the copies of the corresponding
enhancement layer may be truncated, and the decoder still P@¥nes in the base layer. Other frames in the enhancement layer
reconstruct the video from the incomplete bit stream. To furthgfe gbtained by overlapping the selected objects onto the “back-

improve the video quality and the flexibility of the codecground,” which is made of the the two base layers of the pre-
several modifications of FGS have been proposed as followseeding and succeeding frames.

ST [®]

A. FGS With Content-Based Selective Enhancement [5]  D. Rate Control for Hybrid Temporal-SNR FGS

FGS coding scheme combined with the adaptive quantizationThe structure of the FGS hybrid temporal-SNR scheme al-
and prioritized transmission of specific regions of a video séews the tradeoffs between temporal resolution and SNR im-
guence provides good visual image quality. FGS-based adapfwvevements for video streaming. The decision is based on the
guantization is achieved through bitplane shifting of the selectadailable bandwidth, video sequence’s characteristic, and pos-
macroblocks within an FGS enhancement-layer frame. The aible user preferences. If the video sequence’s motion activity
coder shifts up the set of coefficients of the designated mamnd texture complexity can be characterized by PSNR value
roblock by a number of bitplanes relative to the nonenhanced the base layer information, then we can make better tem-
macroblocks coefficients. This adaptive quantization tool is reeral-SNR tradeoff.
ferred to as selective enhancement (SE), since the selected mac-
roblocks within a frame can be enhanced relatively to the others. I1l. CODING MODE DETERMINATION
The purpose of FGS-SE is to improve the image quality of the

. . . . In video streaming, we need to consider the tradeoff between
selected region at the cost of deteriorating the other regions 9

‘the image quality of each frame and the temporal smoothness
. of the sequence based on the contents of the video sequence
B. Hybrid Temporal-SNR FGS [4] and the available transmission bandwidth. Furthermore, the con-

A limitation of the current FGS implementation is that tthnt-based MPEG-4 Coding scheme also needs to make another
frame rate is locked to the original base layer frame rate, iffadeoff between the video quality of the foreground objects and
dependent of the available bandwidth. In [4], a hybrid temhe background. The above two concerns can be modeled as a
poral-SNR scalability scheme is proposed to support: 1) SNfgst minimization problem and the total cost is defined by a cer-
scalability while maintaining the same frame rate; 2) temporgin combination of the perceptual spatial and temporal distor-
scalability by increasing only the frame rate; and 3) both SNfn measurement. Here, we convert a mode decision problem
and temporal scalabilities. In addition to the standard SNR FGfg a hypothesis testing problem.
frames, this hybrid structure includes multicast-capable (MC) To decide which coding mode is optimal, we may try all the
residual frames in the enhancement layer. Each FGST piCth%&sible coding modes, evaluate the cost corresponding to each
predicted from the base layer frames that do not coincide tefjpde, and choose the one with the smallest cost. However, such
porally with the designated FGST picture, thus, this leads 0 thg exhaustive search approach is impractical for real time im-
desired temporal scalability feature. plementation due to its complexity. An alternative method is to

- ] N identify the feature vectors that can be easily computed from the

C. Temporal Scalability With Background Composition [1], yideo data and used as good indicators to the optimal mode se-
[6] lection. We want to build a classifier that takes the feature vector

There are two modes of temporal scalability in MPEG-4from each input CU) as input and comes up with the probability
standard mode and the background composition mode. In tifehe most probable hypothesis, which then enables us to make
second mode, only the motion smoothness of the selected obding mode selection appropriately.
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y o of which the feature vectors are located. To make the optimal
Resion R, /' a partitions, we need to minimize the total additional cost of each
o) N aa B of the misclassified CUSs, i.e., the dark symbols in Fig. 2.
o ©O © / AL Rk, The mode decision process can be treated as a problem of the
o OO o \' 0% 4 A additional cost minimization. It may be written as
/ o
; X .
o A O *\A Ming, .. Ry Zdi X,E€R; +"'+Zdi X,ERyy (1)
T D S PR i i
0L a4 ° whered; |x.er,= |cij — ci1| |j that indicates the addi-
. tional cost of the misclassified vectoy; (i.e., CU ) to re-
RWS DD gion R; |;z rather than the correct regid®,. These regions

may consist of noncontiguous subregions and the boundaries
Fig. 2. Partitioning the feature space. between them may be arbitrarily shaped. Hence, we formulate
the problem of cost minimization in terms of choosing the re-

To build a classifier, in the training phase, we collect the feQiOns instead of specifying the linear boundaries or the thresh-

ture vectors from the video data and then use an exhausfi/eS Separating them. Partitioning the feature space to mini-
search to find their corresponding coding modes that lead to {R&€ the total cost is similar to the traditional classification
minimal perceived distortion. Then, we may estimate the proB[oblem. In a traditional classification problem, there is a set
ability density function (pdf) for these feature vectors under dif2f Probabilities correspondm_g 1o each feature veqtor in the dif-
ferent hypotheses. The pdfs of the feature vectors under eachff:f)r/'g’n.t hypotheses,'whereas in our problem, t-here is asetof costs
pothesis are modeled as a mixture of Gaussians. Once we hdve * — 17_' - Lyj =1,..., M} corresponding to each' CU
these pdf distributions, we use the maximum perceptual ratigus, the first step to formulate our problem as a classification

test for a new input feature vector (corresponding the input cBjoblem is to convert the set of cost;f} into the probability

to determine the most likely hypothesis, and then use the red{fi{Sities. _ _ o
to make the coding mode decision. Since our problem is multimodel classification problem, the

cost minimization process is much more complex than the bi-

model problem. However, for each CU) if the cost for se-

o ] ] lecting modej is much smaller than selecting the other modes,
A mode decision problem is equivalent to a hypothye ... « ¢, forj # k, then we have more confidence in

esis-testing problem. Suppose there afekinds of decisions hoasing modg as the best decision. To simplify the classifi-

{D1,Ds,..., Dy} and let the corresponding costs b&ation process, instead of minimizing the total additional cost

{C1,C5,...,Ch}, respectively. The goal of the strategy i i.e., (1)], we maximize the total cost saving of the correctly

fassified CUs, which can be written as

A. Transforming Mode Decision Into Classification Problem

to make the decision based on the minimal cost. To ma
the optimal mode decision, one can try all the coding modes

and choose the one that generates the lowest cost. HowenRixy, .. [Z |Ci.worst — Cill ’ )
computing all the actual costs; before making a decision is 7 Xi€R

very computationally intensive as this involves trying all coding

modes to determine the minimal cost. So, we need to identify Tt Z |€iworst = ¢,
the features that provide a good estimate of the cost for a coding !

mode determination but with less computation. We make a dd0€rec; wors: i the cost of the worst mode for Cl{with fea-

)

X ERAI:|

cision based on tha! hypotheses, (e.gH:, Ho, ..., or Hy), ture vectorX;). Since the cost differences between each two

whereH,, : if Cj, = min{Cy,Cs, ..., CM},jg —1...M. coding modes must be in proportional to the probability den-
Having collected a training set df CUs, we exhaustively Sity for a certain hypothesis, we may find the pdf of the fea-

Compute the costs cﬁ CUs |nM Codlng modesy egczj, 7 = ture VeCtOI‘XL by COUﬂtIﬂg Its appearance n l‘egltﬁ’}, with

1...L,j = 1...M, wherec; ; denotes the cost of assigning ¢i.worst — Cij| times (as shown in Fig. 3).

CU i to coding modg. For each CU, we identify featuresto ~ Here, we let

form a feature vectaX = [z1, 22, . .. ,mK]T. Given the feature N, :Z lc; o —citl |

vectorX the classifier selects the most probable hypothesis. — e e R
Assume that we extract two features from each CU in a

training set to form a feature vector with two componentsNM :Z [eiworst = cinrl [ ep,,» N =Nutoo 4 Nu

X = [LII‘17J,’2]T and suppose that there are a total of three . . ,

modes. Then, we can exhaustively compute the costs of all ¢ _the prob/ab|||ty of each hypothesis B(H]) =

in all three modes, and classify all the CUs into three groupt/™V:- - P(Hi;) = Nar/N. So, we have,

(shown as triangles, squares, and circles in Fig. 2), whidh; worst — ¢ 1]

represent three hypothesés$,, H,, and H3 respectively. Our N, -

objective is to partition the feature space into three regions, |¢i worst — Ci,n|

Ri, R, or R3, and make decisio®, D,, or D3, for the CU N

p(X =X, | H],. ..,

p(X =Xi|Hy).
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Fig. 4. Modeling the data by mixture of Gaussians.
Fig. 3. Repeating the feature vectors by cost difference.

of the Guassian; the diameter of the ellipse denotes the variance

Then, (2) can be rewritten as: of the Gaussian.

N i,worst — Ci Using the continuous pdf, (3) can be rewritten as
Maxn, _n., [_1 Y o el 9 pof, (3)
N % Ny X,€ER;
Nu € worst — Ci,n| } Maxg, .. .ry, |:P(H{)/ p(X | H{)dX_|_...
+ B — XeR,
N i Ny Xi:€ERNn

wP(H) [ p (X Hy x| @
=MaXg,..r,, [P(H{) Z p(X:Xi|H{)+-~- JXeRy

K€k The function p(-) corresponds to the continuous pdf
+p(H}y) Z p(X =X; | wa)} (3) comprising a mixture of Gayssians, and it is .obv?c.)us that
X.eRy the maximization problem in (4) can be simplified as
— - / !
Therefore, we have converted the original problem of mini = argMaxi<icy { P(H)p(X | Hy)}-
. . . . ._Hence, to classify a feature vectdr, we calculate the prob-
mizing the total cost as shown in (1) into a maximal hypothesgl%i"ty of the feature vector assigned to each mode and select
testing problem. . . . . e
the mode with the highest probability. The entire classification
scheme may be summarized as follows: 1) given the training
data and the cost, we count the feature vector (assigned to mode
Since the number of the feature vectors is limited, the contj')—al number of times based on the cost difference between the
tional pdf of X;, i.e.,p(X; | Hj) is a discrete function. Insteadcyrrent mode and the worst mode; 2) we use the GEM algo-
of using these discrete pdfs, we can model these probability dgtam, [9] to estimate tha priori probabilitiesP(H!), as well as
by using a continuous pdf consisting of a mixture of Gaussiange class conditional probability density functiopsX | H!),
k as the Gaussian mixture; and 3) with these continuous pdfs, we
fe(X) = Zvrjzp (Xj36;), m+--+m=11;>0 compute the probability of input feature vector assigned to each
j=1 mode and select the most possible one.

B. Continuous Probability

where
o oy IV. CODING MODE DETERMINATION
W (Xj30;) = (2m) 15il Here, we apply the classifier to determine which coding mode
- exp (—0.5 (X —may)" Sj_1 (X; —mx;)). isthe most suitable one for the current input CU. Each CU con-
sists of a video sequence of 30 frames, and the base layer en-
To classify a feature vector, we need to know the probabilippder defines a CU as a group of picture (GOP) with 5 frames’/s.
of occurrence of that vector. However, the pdf for a new inptthe quantization errors of DCT coefficients and the skipped
vector is not known since it may not present in the training daf@ames are considered by the enhancement layer encoder. For
set. By modeling the pdf of the feature vector using a mixtugifferent types of video sequence, we apply different types of
of Gaussians, we ensure that any input feature vector may begfhancement layer encoders, e.g., for high motion sequences,
fectively classified. These Gaussian mixtures are trained basgsl emphasize the temporal smoothness, whereas for low mo-
on the modified feature vectors using the Greedy expectatigdn and high texture complexity sequences, we highlight the
maximization (GEM) algorithm [9]. Fig. 4 shows the trainedpatial details. Therefore, for different video sequence, we need
Gaussian mixtures in the modified feature space, in witigh to develop different enhancement layer encoders. The features
H,, andH3 are modeled by a mixture of Gaussians with 3, 3f each CU are extracted from the base layer encoder and com-
and 2 distributions, respectively. Each ellipse represents a Guaised with the current transmission bit rate as a feature vector,
sian distribution and the center of the ellipse denotes the meahnich can be used to determine the optimal coding mode.
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) ) . ) ) . Fig. 6. Perceived distortion metric.
Fig. 5. lllustration of bit rate allocation for six coding modes.

A. FGS Coding Modes B. Cost Function

Th | labili ith back d ... . . To measure the perceived quality under each coding mode,
e temporal scalability with background COmMposition is INq, ;g 5 spatial-temporal distortion metric [7], from which the

cluded in MPEG-4 standard [1] for non-FGS temporal scalgisiorion is computed by means of comparing the edges sta-
bility, however the background composition [6] has not begfics in the same spatial-temporal (S-T) region of the test se-
included in MPEG-4 standard for FGST. Since this functiony ence and the reference sequence. To evaluate this metric, first
ality is compatible to FGST and it provides a flexible schemge juminance components of the input and output video streams
for bit rate allocation for different ObjeCtS in the video sequencgye processed using the horizontal and vertical edge enhance-
we add FGST with background composition as another codifgent filters. These processed streams are partitioned into the
scheme. There are six coding modes: FGS, FGS-SE, FGSE9T regions in which the features that quantify the spatial ac-
FGST9-BC, FGST13, FGST13-BC of which the properties atiity as a function of angular orientation are extracted. These
briefly summarized as follows (Fig. 5). are then clipped to emulate perceptibility thresholds. Distortions

1) FGS. FGS is similar to SNR scalability, and the erfjuefto gains lantlti 'F’Sserf, In Leature va:]uefs are ca(ljculated lfjsmg
hancement layer frame rate is the same as the bégg unctional relationsnips between the input and output fea-

: . re values that emulate the visual masking. These distortions

:;yperr()\(g;r;r?ﬁslzhtg:csér:]:nwa?%? quality per frame Lgre then collapsed over space and time. The choice of the edge

. . . enhancement filters and the perceptibility thresholds are opti-

2) FGhS'SE' Thet Iadd|t|onal groperty gft F?S'SEh.'f? tha;t thr%ized based on their correlation with the perceptual distortions

enhancement fayer encoder uses bt pian€ Shitting to s oy g\ in Fig. 6. The details of all operation blocks are demon-
prove the image quality of the selected region.

J strated as follows.
3) FGST9. One B frame is inserted between two base Iayerl) S-T Region SizeThe horizontal and vertical edge en-

frames in the enhancement layer, thus, the total frame rgnced input and output video streams are divided into localized
is 9 frames/s. The temporal smoothness is improved in tReT regions. Features are then extracted from each S-T region by
enhancement layer, however, the image quality per framagiculating statistics over the S-T region, which includes eight
is sacrificed. horizontal pixels, eight vertical lines and six video frames.

4) FGST9-BC. The selected object is coded in the enhance2) Description of FeaturesFor a given image pixel located
ment layer and the background region is formed by backt rows, columnj, and timet, the horizontal and vertical edge
ground composition. Thus, the spatial-temporal quality @hhancement filter responses will be denotedi&s j,¢) and
the object is enhanced at the cost of deteriorating qualit(z, j, t), respectively. These responses can be converted into

of the background region. polar coordinatesK, §) using the relationships
5) FGST13. Two B frames are inserted between two base
layer frames in the enhancement layer, thus, the total R(i,j,t) =/H(i,j, )2 + V (i, ], )
frame rate is 13 frames/s. o L [V(,5,t)
6) FGST13-BC. The difference between FGST13-BC and 6(i,j,t) =tan |:I{(L—_]t):|

FGST9-BC s that the total frame rate is 13 frames/s rather

than 9 frames/s. where(z, j,t) € {S — T region}. The first feature f;) is de-

Fig. 6 shows the bit rate allocation under these modes. Theed asf; = {stdev[R(i, j,t)]}|,. This feature is computed as
six coding modes provide different tradeoffs between the spatshndard deviatiors(dey over the S-T region and then clipped
and the temporal video quality. at the perceptibility threshold dP(P = 12). It is sensitive to
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the changes in the overall amount of spatial activity within where the weighting coefficiedtdenotes the visual importance

given S-T region. The second featuyg)is defined as of the selected object in the video sequenteas defined as
{meadHV (i, j,1)]}, shown in the equation, at the bottom of the page, where the value
f2 = of A is clipped at 0.85 (i.e., iA > 0.85, thenA = 0.85).

o {.rn(.aat@{iV(f,l{, Dl The perceived distortion metric of the FGS video sequences
WhETEH‘/‘(Z.,j,t) = R(i,j,t) if R(i,4,t) 2 T'min ?”dmﬂ/Q— under different frame skipping rates is called tteenporal

Af < 0(i,5,1) < mm/2 + Ab, otherwise, HV (i, j,t) = 0, distortion whereas the perceived distortion metric of the FGS
m = 0,....3 Similarly, HV" = R(i,j.t) = R(i,j.t) if \ideo sequences under the same frame rate but different total
R(i, j,t) 2 Tmin, aNdmm /2= AG < 0(i, 5, t) < (m+1)7/2— it rates is named thepatial distortion From our experiments,
Af, otherwiseH V = R(i, j, ¢) = 0. This feature is sensitive to e fing that different types of video sequences suffer different
changes in the angular distribution. The parameters are selecigthnt of perceptual distortion under the same kind of video
asrmin = 20, A = 0.05236, and P = 4. impairment. Thus, the distortion metric provides a pertinent

3) Impairment Masking:The gain and the loss ofi or f> 1 easurement of the perceptual video quality.
must be examined separately, since they produce fundamentally

different effects on the quality of perception (e.g., loss of the. Feature Selection
spatial activity due to blurring and gain of the spatial activity
due to noise of blocking). For a given S-T region, the gain aqg
the loss distortiong; or f, are defined as

The video impairment mainly consists of the spatial and the
mporal distortion. The high motion sequences are sensitive
to the temporal distortion; whereas the high texture complexity

gain(s, ) =pp {logw |:fout(57 t)} } sequences are sensitive to the spatial distortion. Thus, to char-
/ fin(s,1) acterize the video sequence, the selected features must charac-
Jout(5,1) — fin(s,1) terize the motion activity, as well as the texture complexity of
losg(s, £) :”p{ Fn(5,2) } the video sequence.

wherepp is the positive part operator (i.e., negative values ar? Bg_&dt(?s, since thdet\;]veltgr:tl;flg_tc;e;ﬁm?nt\liét IIS a:)untctll(on it
replaced with zero) andp is the negative part operator (i.e.0 object’s size), and the total bit budget must also be taken into

positive values are replaced with zero) ‘consideration for bit rate allocation, the object size and trans-
4) Spatial Collapsing Functionit is.computed for each mission bandwidth are also essential features for the system to

temporal index as the average of the worst 5% of the measuréﬁake the coding mode selection. The feature vector is defined

distortions over the spatial indexthis produces a time history as .
of the gain and loss samples (i.gain(¢) andloss(t)) which X =[MAsg,TCtg, MApy, TCyg, Sizesq, BW]

mqst then be. temporally F:ollapsed. It can bg mathematicawhereMAfg andM A,, represent theemporal (or motion) ac-
written as:gain(t) = gain(sy,t) + --- + gain(ss,¢) for tjvity of foreground and background, respectively¢’;, and

gain(sy,t) > --o--- > gain(ss,t) > - > gain(sio,1) 7, represent theexture complexitgf foreground and back-
and loss(t) = loss(si,t) + --- + loss(ss,t) for ground, respectivelySize s, is the sizeof foreground object;
loss(s1,t) < -+ <loss(ss,t) < --- < loss(s100,1). BW is the transmissiobandwidth

5) Temporal Collapsing Functionit is computed as the  gjnce the transmission bit rate is unknown during the video
mean of thegain(t) andloss(t) over the entire CU period (1 greaming, we assume that the classifier's decision is insensitive

second). It can be mathematically written as to the small variation of transmission rate, and an encoder de-
_ > gain(t) > losg(t) signed for certain bit rate range (not exactly at a specific bit rate)
gain= Z 5 loss= Z 5 is reasonable. In this paper, we consider three bit rate ranges as
t=1 t=1 0~ 100 kb/s, 106~ 200 kb/s, and 208 300 kb/s.
6) Spatial-Temporal Distortion:lt is computed by com-  To characterize different video sequences, we need to select
bining the loss and gain of, and f> as the features highly correlated with the spatial-temporal distor-
D371 = 0.38 % f1_joss + 0.39 % fo_1oss — 0.23 % fo_gain- tion of video sequences. We test several features which may rep-

Furthermore, the selective enhancement and the backgro
composition functionality provide a tradeoff between the vid
qualities of the background region and the object region un
the same transmission bit rate. Thus, the total distortion of t
entire video sequence should consist of the distortions of t &t
selected object region and the background region, which is
fined as

resent theemporal activity(or thetexture complexiyof video
@aﬁuences, and then choose the one with the highest correlation
ith the spatial-temporal distortion. To perform the frame-drop-
ﬁg (the frame rate of the source video sequence is 5 frames/s),
need to compute the correlatipp between the temporal
ortion and théemporal activitywhich is the motion vector
agnitude or the frame difference. The correlations of the tem-
poral distortion and either one of the two features representing
DT =X-D} "+ (1-X) - Dy " thetemporal activityof the video sequences is defined as shown

0.5, if foreground object exist
otherwise

Area of foreground objec
A= Entire frame area
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TABLE | TABLE I
CORRELATION BETWEEN THE TEMPORAL ACTIVITY CORRELATION BETWEEN THE SPATIAL COMPLEXITY
AND THE TEMPORAL DISTORTION AND THE SPATIAL DISTORTION
Motion Vector Mag. |Frame Diff. High Freq. Energy  |Xi in TMS
P -0.8466 -0.8039 Ps -0.8987 -0.8738

dicates theemporal activity(i.e., the motion vector magnitude@! the same time. We assign 5 framesf/s for the base layer, so that

or the frame difference). The value of correlatjgris shown in the bit rate for base layer is fixed at 30 kb/s. To train the classi-

Table I. fier, we then decode all CUs in the training set and compute the
By encoding source video sequences into 200 kb/s vidéistortion metric corresponding to each of them. Then, we can

stream at 30 frames/s, we compute the correlatiohetween group all CUs in the training set into six hypotheses as

the spatial distortion and théexture complexity(i.e., the H;:Cj=min{Cy,Cs,...,Cs}, j=1...6.

high frequency energy or th&; as defined in TM5). The - . .
high frequency energy can be obtained by taking a frame,TO model the mode decision problem as the hypothesis testing

down-sampling it by a factor of 2 horizontally and verticallyProPlem, we count the appearance of the feature vedigr,

then up-sampling it back to the original size, and finding th@ith the minimal cost; ;, if it assigned to regio; ) a number
energy in the difference between this and originally frame. TI [Ci.worse — ¢i | imes, and then compute the pdf of the fea-
correlation of the spatial distortion and either one of the twibre VectorX in each hypothesis, {X | H;), j = 1,...6}.
features representing the texture complexity of the sequendally, we model the pdfs of all the feature vectors in each hy-
is defined as shown in the second equation, at the bottomR&thesis (a d_|screte pdf) as a mixture ofGau_SS|ans and.tram this
the page, wheréature indicates theexture complexityi.e., Model by using GEM algorithm [9] to obtain the continuous
high frequency energy ok; defined in TM5). The value of pdfs of the feature vectors of each hypothesis. Thus, given a set
correlationp, is shown in Table 1. of training CUs, we can find all the feature vectdiX }, com-
From the experiment results (Tables | and I1), we chause Pute the conditional probability of every CU for each hypoth-
tion vector magnitudand high frequency energip represent €sisp(X | H;), and the probability of each hypothesi$H).
the temporal activity and the texture complexity of the video séfter the training process, for an input CU, we may select the
quences, because they demonstrate highandp,. best coding mode by finding the corresponding hypothesis with
the highest probability.

D. The Training Process

We have collected 22 standard MPEG test sequences in QCIF
(176x 144 format at a frame rate of 30 Hz for the training set We have tested 230 CUs to illustrate the performance of the
and divide them into 500 CUs (30 frames per CU), of whicbhoding mode selection method. As shown in Table lli(a), the
270 CUs are selected for training and 230 CUs are used frccess rate of making the best decision is only 63.5%, how-
testing. Each CU is down-sampled to meet six different franaver, if we allow more additional distortion compared with the
rates for six different coding schemes. We encode all CUs lirest one, then the success rate will be increased. As shown in
training set for all six coding modes at three different bit-rategable 1li(b), if we allow more additional distortion, then the

V. EXPERIMENTAL RESULTS

E [(feature— piseature) (TemporalDist — i Temporal_Dist )]
\/var(featurgvar(TemporalDist)

pt =

L
> [(feature — piseature) * (TemporalDist; — premporal_pist )] /L
=1

i=1 i=1

B .
\/|:Z (feathQ - lfffcaturc)2 /L:| * |:Z (Tempora-lDiSti - NTomporal_Dist)2 /L

E [(feature - Nfoaturc) (Spatla-I-DISt - MSpatial_Dist)]
\/var(featurgvar(SpatialDist)

Ps =

[(feature - /Jlfoaturc) * (Spatla-l-DBtl - MSpatial_Dist)] /L

K2

L
=1

L
\/|:Z (feature - //llfeature)2 /L:| * |:Z (SpatlalDIStt - MSpatial_Dist)z /L
=1 =1
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TABLE 11l TABLE V
PERFORMANCE OF THECLASSIFIER STREAMING “SALESMAN" AT 200 Ks/S
Mode Success Allowable | Success CU 1{2]3/4{5/6{7|8(9/10
Selection Rate Add. Dist. Rate Optimal Mode|[1{2]1]2{1{1]2]2]1{ 1
1’st 63.48% 0% 63.48% Selected Mode|1{1]1]1[1]1{1{1]1] 1
2’nd 75.8 % <5% 80.14% AC(%) 0]2]0{0]0{0[1]5/0] O
3'rd 85.65% <10% | 87.83%
4’th 92.61% <20% 93.33% TABLE VI
5’th 97.25% STREAMING “STEFAN" AT 300 KB/S
6’th 100 %
CU 1/2]34/5[6/7(8|9]10
@) (b) Optimal Mode|3]6[3]33[6/3[3[3] 3
Selected Mode|3{3|3(3]3{3|3|3(3]| 4
TABLE IV AC(%) _|0[2[0]o[o]5]o]o[o]|36
STREAMING “HALL MONITOR” AT 100 KB/s
TABLE VII
Cu 1]2|3]4{5(6|7|8|9|10 STREAMING “SuUzIE” AT 100 KB/S
Optimal Mode|3(6(6]6]6/6/6(6]1] 6
Selected Mode|1{6]6/6]6/6]6{6/6] 6 CU 1|2 [3}4|5
AC (%) _ |2|0/0]0/0]0]0[0]5] O Optimal Mode 6| 1 6/6[6
Selected Mode|3| 3 3|36
chance of choosing the correct mode (i.e., the allowable addi- AC(%) 1712941410
tional distortion within 10%) will increase to 88%. TABLE VIl

To illustrate the impact of mode selection failure, we define STREAMING “M OM" AT 300 KB/S
the additional cost (AC) as shown at the bottom of the page.

The classifier's performance for six MPEG-4 video se- Cu 1]2|3/14[5]6 |7 1819]10
quences (e.g., Hall Monitor, Salesman, Stefan, Suzie, Mom, Optimal Mode|3/312/4| 1 |2 | 1] 1[3]1
and Akiyo) using six coding modes (e.g., FGS, FGST9, Selected Mode|3)3/3/3/3 133 |3 3|3
FGST13, FGS-SE, FGST9-BC, and FGST13-BC) based on AC(%) _10/011]5]10]10]10]16]0j26
the perceptual distortion metrics are shown in Tables IV-IX.

We compare the additional code of the selected mode for TABLE IX

. STREAMING “AKIYO” AT 300 KB/S
each CU. From the experiments, we have demonstrated that
our method is efficient and the AC of misclassified modes CU 1/23]4[5]6]7(89]10
will be less than 10% for most of the cases, as shown in OptimalMode| 1|1 3{1[1|1]1(3]1]1
Tables IV and V. Furthermore, we observe the cases of which Selected Mode} 3313|313 1313]3]3]3
the AC is larger than 10% and conclude that there are two AC(%) |12]32/031]26]44]240|31]20

reasons: 1) insufficient feature vectors in the training set and
2) video sequences with low motion activity and low texturactivity is insensitive to the distortion. Thus, there is no guar-
complexity. antee that the best coding mode will be selected for this kind
The probability of the feature vector belonging to certain hyef video sequences. The cost difference between two different
pothesis is related to the number of appearance of such feattwding modes is too little for our algorithm to select an effective
vector in the training set. Thus, the selected mode for the Cldé®ding mode. However, we may improve the performance by:
of which the number of corresponding feature vectors in tHg choosing better features to characterize the video sequences;
training set is not sufficient, may not be the best one. For eR} using more complex Gaussians to model the distribution of
ample, the cases of the tenth CU of Stefan and the second CWaafture vectors; or 3) making decision by user preference for
Suzie are rare in our training set. The performance of these tthis kind of video sequences.
video sequences is shown in Tables VI and VII. This problem Our classifier has been trained at three different transmission
can be improved by collecting a larger training set. bandwidths, 100, 200, and 300 kb/s, however, we then model
Tables VIl and IX are examples of the cases of slow motiahe originally discrete pdf of the feature vectors by mixture
and low texture complexity video sequences. From these figk Gaussians to obtain the continuous pdf. Therefore, we may
ures, we can find that the cost difference between two differeletst our algorithm at the other transmission bandwidths, e.g.,
coding modes is quite small because the perceived quality5ff~ 300 kb/s, and show the outcomes of the classifier. The
Mom and Akiyo with low texture complexity and low motioncomparisons between the optimal modes and the selected modes

AC

__ | Dist. of the best mode-Dist. of the chosen m (>j<e100(7
- Dist. of the best mode 0
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Fig. 7. Optimal mode versus selected mode at different transmission rates.

at different transmission bit rates for the fifth CU of Stefan an

d

the fourth CU of Salesman are shown in Fig. 7. In Fig. 7(a),

our classifier provides the optimal selection mode, since the ¢
lected mode and the optimal mode induce the same distorti
However, in Fig. 7(b), the difference between the optimal moc
and the selected mode is also very small.

VI. CONCLUSION

This paper has proposed a mode determination scheme to
cide which FGS coding mode in MPEG-4 is the most suitab

le

one for the input CU. The mode determination scheme converts

the problem of minimization of the total cost into a standard

maximum likelihood problem. The experimental results illus
trate that the mode determination scheme provides an effici
strategy to encode the video sequences under a given bit |
range. Since the priori probabilities and the conditional prob
bility density functions are available after the off-line training
process, the mode determination can be an on-line operatiot
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