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Abstract. This paper introduces a model-based hand gesture
recognition system, which consists of three phases: feature
extraction, training, and recognition. In the feature extraction
phase, a hybrid technique combines the spatial (edge) and the
temporal (motion) information of each frame to extract the
feature images. Then, in the training phase, we use the prin-
cipal component analysis (PCA) to characterize spatial shape
variations and the hidden Markov models (HMM) to de-
scribe the temporal shape variations. A modified Hausdorff
distance measurement is also applied to measure the sim-
ilarity between the feature images and the pre-stored PCA
models. The similarity measures are referred to as the pos-
sible observations for each frame. Finally, in recognition
phase, with the pre-trained PCA models and HMM, we can
generate the observation patterns from the input sequences,
and then apply the Viterbi algorithm to identify the gesture.
In the experiments, we prove that our method can recognize
18 different continuous gestures effectively.

Key words: Hand gesture recognition – Principal compo-
nent analysis (PCA) – Hidden Markov model (HMM) –
Hausdorff distance measurement – Viterbi algorithm

1 Introduction

Hand gesture is normally used in our daily life to communi-
cate with one another. Children know how to make gesture
communication before they can talk. Clearly, gesture recog-
nition has become one of the most interesting research topics
in human-computer interface. Most of the recent works [1]
related to hand gesture interface techniques have been cat-
egorized as: glove-based methods and vision-based meth-
ods. The vision-based methods, based on the computer vi-
sion techniques, have been proposed for locating objects
and recognizing gestures. The gloved-based gesture recog-
nition methods require expensive wired “Dataglove” equip-
ment [2]. Gesture recognition research has many applications
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such as window-based user interface [3] and video coding
[4].

The model-based static gesture recognition approach pro-
posed by Davis and Shah [5], uses a finite-state machine to
model four qualitatively distinct phases of a generic ges-
ture. Hand shapes are described by a list of vectors and then
matched with the stored vector models. A dynamic gesture
recognition system for American sign language (ASL) inter-
pretation has been developed by Charayaphan et al. [6]. They
propose a method to detect the direction of hand motion by
tracking the hand location, and use adaptive clustering of
stop location, simple shape of the trajectory, and matching
of the hand shape at the stop position to analyze 31 ASL
signs.

A more reliable method called the space-time gesture
recognition method developed by Darrell et al. [7] repre-
sents gestures by using sets of view models. It recognizes
the gestures by matching the view models to stored gesture
patterns using dynamic time warping. Cui and Weng [8] pro-
pose a learning-based hand sign recognition framework by
using the multiclass, multivariate discriminant analysis sys-
tem to select the most discriminating feature (MDF), and
then applying a space partition tree to reduce time complex-
ity. Hunter et al. [9] explore posture estimation based on
the 2D projective hand silhouettes for vision-based gesture
recognition. They use Zernike moments and normalization to
separate the rough posture estimate from specific translation,
rotation, and scaling.

The most difficult part of gesture identification is to clas-
sify the posture against complex backgrounds. Triesch et al.
[10] employ elastic graph matching for the classification of
hand postures in gray-level images. Heap et al. [11] con-
struct a 3D deformable point distribution model of the hu-
man hand. Then, they use this model to track an unmarked
human model with six degrees of freedom. Another simpli-
fied method (by Lee and Kunii [12]) assumes that the posi-
tions of fingertips in the human hand, relative to the palm, is
almost always sufficient to differentiate the gestures. They
propose the skeleton-based model consisting of 27 bones and
19 links, each link has different degrees of freedom.

However, gesture recognition is more generally treated
as a time variation problem, therefore, more and more com-
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Fig. 1. The flow diagram of hand gesture recognition system

puter vision researchers have become aware of using hidden
Markov models (HMMs) to model the image sequence of
gestures. Starner et al. [13] use HMM to recognize a full
sentence and demonstrate the feasibility of recognizing a
series of complicated series of gesture. Bobick et al. [14]
present a state-based method for representation and recog-
nition of gesture from a continuous stream of sensor data.
The variability and repeatability evidence in a training set
of a given gesture is classified by states.

The major difficulties of the complex articulated-objects
analysis are the appearance of large variation of 2D hand
shapes, the view point sensitive for 2D hand shapes and
motion trajectories, the transition between the meaningful
gestures, and the interference of complex background. The
gesture image sequence is basically composed of spatial and
temporal variation signals, so we need to apply the princi-
pal component analysis (PCA) and HMM to model the spa-
tial and the temporal shape variation of the gestures. Figure
1 shows the flow diagram of our model-based hand track-
ing and recognition. We use the Hausdorff distance mea-
surement to measure the differences of the input gestures
and pre-stored PCA shape models. The differences are then
converted to observations for HMM training (in the train-
ing phase) or for state sequence evaluation (in the recog-
nition phase) by using the Viterbi algorithm based on the
pre-trained HMM. The most likely state transition sequence
is associated with the gesture to be recognized.

The hand gesture recognition system can be described in
three phases: the training phase, the feature extraction phase,
and the recognition phase. We represent each gesture by a
sequence of states. The state transition indicates the spatial
temporal variability of the gesture, which is invariant to the
speed of motion. In the feature extraction phase, we develop
a new method, which combines the edge and motion infor-
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Fig. 2a–f. Edge information.a andd are the original images.b ande are
the gradient strength images.c andf are results after the Ostu thresholding

mation to extract the shape of the moving object. Then, in
training phase, we develop a simple training algorithm for
the PCA models and HMM which characterize the spatial
and the temporal variation of gestures. Finally, in the recog-
nition phase, we apply pre-stored PCA models to observe
the input gesture, and use the Hausdorff distance measure
to find the similarity between the extracted features and the
pre-stored PCA models. In the experiments, we show that
our gesture recognition system is insensitive to motion speed
and trajectory direction, and it can precisely recognize 18
different gestures in complex background.

2 Feature extraction phase

Here, we assume that the moving objects in complex back-
ground are somehow identifiable by their edge boundaries.
Usually, the edge information is too noisy to be applicable
for computer vision system, and most of the edge informa-
tion is redundant. Here, we assume that the background is
complex but stationary, the moving hand is the only moving
object in the scene. Using the frame difference, we can par-
tially capture the motion information. By accumulating the
motion information of the moving objects in several con-
secutive frames, we may localize the moving pixels more
accurately.

First, we apply the Sobel operators [17] and Ostu thresh-
olding method [18] to extract the edges in the scene (see
Fig. 2). Second, we find the motion information by using
the motion accumulator and the noise remover. Finally, we
apply the AND operation on the edges and the accumulated
motion pixels to acquire the real moving edges.

2.1 Motion accumulator

To find the edge information from the object movement, we
assume that the gesture in the sequence is non-stationary. In
the spatial-temporal space, the motion detector may capture
all the possible moving objects by examining the local gray-
level changes. LetFi be theith frame of the sequence and
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Di be the difference image ofith and (i+1)th frame defined
as

Di = Tt {|Fi − Fi+1|} , (1)

whereTt is a thresholding operation with thresholdt:

Tt (f (x, y)) =

{
1, if f (x, y) ≥ t,
0, if f (x, y) < t,

whereDi = {f (x, y)|0 ≤ x ≤ 255,0 ≤ y ≤ 255}. Here, we
let the image size ofFi andDi be 256× 256, andt = 20
which is experimentally determined. Pixels with value 1 in
the difference image are treated as the motion pixels. Since
we are interested in the motion information, however, the
difference image between two continuous frames provides
very limited motion information. Therefore, we develop a
motion accumulator to collect more motion information. A
motion accumulator used to collect the motion pixels from
Di to Di+n and fromDi to Di−n is defined as
n

Ω
j=0

Ai+j = Di−j OR. . .ORDi−1 ORDi ORDi+1OR. . .

. . .ORDi+j . (2)

Using the difference images, we accumulate the motion
pixels forward one frame and backward one frame, and then
put them in the motion accumulator. The accumulation op-
eration continues until the total number of motion pixels
is larger than a certain threshold that will be mentioned in
the next section. For theith frame, the motion accumulator
collects the motion pixels from difference images, e.g.,Di,
Di+1, Di−1, . . ., Di−n, Di+n.

2.2 Search region finding

In the first image frame, it is difficult to locate the object’s
position (inside search region); however, in the succeeding
frames, it is easier to track the moving object by referring
to the rectangle (enclosing the search region) of the first
frame. The search region of the first frame is determined by
the following four steps.

1. Determine the minimum frame duration numberf∗
s as

f∗
s = arg min

fs

∑
y

∑
x

{
fs

Ω
n=−fs

Ai+n (x, y)

}
≥ ts ,

1 ≤ fs < T , (3)

wherets = 1800 is the search region threshold,T is the
length of image sequence, andΩ is defined in Eq. 2.

2. Usef∗
s to find the imageAs:

As =
f∗

s

Ω
n=−fs

Ai+n . (4)

Figures 3a and 3c illustrate theAs of these two examples.
3. Since the imageAs is noisy, we apply a 3× 3 median

filter and the noise remover to reduce the noise. The
noise remover will be introduced in the next section.

4. Find a rectangle to circumscribe the search region based
on the density of the motion pixels insideAs, and the
distribution of the motion pixels.

Fig. 3a–d. Determine the search region for the first frame.a and c are
the accumulated images which are noisy.b andd are noise-filtered images
which are used to determine the search region

Fig. 4a,b. Illustrates the results of different thresholds

The operation of the last step is straightforward, it tries
different-sized rectangle blocks, at various locations of the
imageAs, to enclose a certain amount of motion pixels. The
rectangle block at a certain location that encloses the motion
pixels with the largest ratio of the number of motion pixels to
the entire rectangle area will be selected as the search region.
In this way, we can exclude the motion information of the
arm from the search region since the motion pixels in the
arm area are loosely distributed. Figures 3b and 3d illustrate
the results of noise reduction and the search regions.

2.3 Feature image generation

Once we find the search region, we apply the same operation
(Eqs. 3 and 4) again with a higher threshold (ts = 2400) to
obtain the images (see Figs. 4a and 4b) with more accumu-
lated motion pixels. Comparing Fig. 4 with Fig. 3, we find
that the former provides more motion information. Since the
imageAs is noisy, we need to apply a 3× 3 median filter
and then use thenoise remover to reduce noise. Thenoise
remover (see Fig. 6) consists of three operations illustrated
as follows.

1. Search and mark all the 8× 8 overlapped regions on an
256× 256 imageAs(x, y), these regions, which enclose
at least 20 motion pixels, are defined as
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Fig. 5a,b. The extracted active motion pixels:a and b show the effect of
noise remover applied on with Fig. 4a and 4b, respectively

Fig. 6a–d. The operation of noise remover. Betweena andb is a mapping
from 8× 8 overlapped regions to points defined in Eq. 5. Betweenb and
c is continuity checking defined in Eq. 6. We see that (u1, v1) in B∗(u, v)
is eliminated. Finally, we restore all motion pixels as active motion pixels
by referringc for the blocks moved froma to d as defined by Eq. 7

B(u, v) =




1,
y1+7∑
y=y1

x1+7∑
x=x1

As (x, y) ≥ 20

0, otherwise

,

u, v ∈ I, x1 = 2u, y1 = 2v, (5)

whereI = {1, . . .128}, andB(u, v) is a 128× 128 im-
age. These regions are selected because the motion pixels
belonging to the same object are close together.

2. Check the local continuity of these regions. The local
continuity atB(u, v) = 1 is satisfied if and only if at
least two of its eight-connected neighbors have value 1.

B∗ (u, v) =




1,
1∑

i=−1

1∑
j=−1

B (u + i, v + j) ≥ 3 ,

0, otherwise.

(6)

3. Retrieve the active motion pixels by using

{A∗
s(x + i, y + j) | i, j = 0,1, . . . ,7}

=




{As(x + i, y + j)|i, j = 0,1, ...,7)} ,

if B∗(u, v) = 1 ,

0, otherwise,

(7)

wherex = 2u, y = 2v. Figures 5a and 5b illustrate the
results of applying the noise remover on Figs. 4a and 4b.

After having extracted the edge (spatial) and the motion
(temporal) information, we can combine these two kinds of

Fig. 7a–d. Results of “AND” and “Thinning” operations.a is obtained from
the “AND” operation on Fig. 2c and Fig. 5a.c is obtained from the “AND”
operation on Fig. 2f and Fig. 5b.b andd are the thinned images ofa andc
respectively

information to locate the object by using “AND” and “thin-
ning” operations [24]. The “AND” operator keeps all the
pixels in both the binarized edge image and the motion de-
tected image, whereas the “thinning” operator removes the
redundant contour pixels. Figure 7 illustrates the results of
“AND” and “thinning” operations. The feature image is gen-
erated after applying “AND” and “thinning” operations on
the motion pixel mages. In the experiments, we assume that
the background is stationary, however, a small movement of
the body during the gesture making is acceptable.

3 Model generation phase

Model-based vision is a robust approach for locating and
recognizing the object motion in the real scene with a lot of
spatial-temporal varieties. Here, we use PCA as the spatial
description model and HMM as the temporal description
model for the gestures.

3.1 Spatial description models

The PCA is the kernel concept of the so-called active shape
models (ASMs) [15]. This method models the natural vari-
ability within a class of shapes. Each instance of an object’s
shapes can be represented by an ordered set of characteris-
tic points located on the boundary. We manually locate the
feature points on the training set images (i.e., Figs. 8a and
8b) by ensuring that each point plays an essential role on
the boundary of the images. These points characterizing the
shape feature are called “landmark points”. The PCA-based
method analyzes the statistics of the coordinates of these
points over the training set. These landmark points on dif-
ferent images have minimal difference, so that we can align
them with different scale, rotation, and translation before
training (see Figs. 8c and 8d). By minimizing a weighted
sum of squares of distances between corresponding points
on different shapes, we align every shape to the first shape,
calculate the mean shape, and then align every shape to the
mean shape. The details of the alignment processing of the
training set can be found in [15, 16]. Having generated the
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Fig. 8a–d. The positions of the labeled
points are shown around the boundary
of the hand.a andb illustrate the hand
shapes with labeled points.c shows the
result thatb is aligned witha. d shows
the aligned shape of a training set

N aligned shapes and the mean shapex, we may calculate
the deviation of the aligned shapes from the mean shape,
dxi as

dxi = xi − x . (8)

Then, we can obtain the 2n × 2n covariance matrix,S, as

S =
1
N

N∑
i=1

dxidx
T
i . (9)

Applying the PCA, we can project the original 2n dimension
shape points vector to another axis to reduce the dimension.
We first calculate the eigenvectors of the covariance matrix
S (i.e., p1, . . . , p2n) such that

Spk = λkpk with pT
k pk = 1 , (10)

whereλk is thekth eigenvalue ofS, with λk ≥ λk+1. Ac-
cording to the PCA, it is sufficient to use the firstt eigenvec-
tors to describe the shape variation. Another advantage of
this method is that the models represent the global variation
rather than the local variation of the shape.

Now we determine how many terms are enough for us
to describe the shape variation. If we defineλT as

λT =
2n∑
k=1

λk and λt =
t∑

k=1

λk , (11)

then, based on the experimental results,λt/λT = 0.8 is suffi-
cient. We use 90 landmark points (n = 90) and 10 eigenvec-
tors (t = 10) which suffice the constraint. Given an arbitrary
shape, we can usex = x + P·b to approximate it, where
P = (p1, . . .pt) is the matrix of the firstt eigenvectors, and
b = (b1, . . . bt)T is a vector of weights which are determined
by the eigenvalues (λ1, . . . , λt). The shape variations can
be described by the first four principal components (t = 4)
illustrated in Fig. 9.

3.2 Temporal description models

HMMs have been used to model speech signal pattern for
speech recognition [19] and have been applied in the vi-
sual communication dealing with the problems in which
the time variation is significant. The earliest application by
Yameto et al. [20] uses HMM to recognize tennis swings.
Recently, HMMs have been applied to recognize gestures
[13, 14, 21–23]. However, the previous HMM-based meth-
ods either avoid the problem of identifying the hand shape
against complex background or require stereo camera to ob-
tain 3D data for input. Most of the HMMs are trained by
using a complicated Baum-Welch training algorithm [19].

b1

b2

b3

b4
Fig. 9. Illustration of the effects of varying the parameters, b1, b2, b3, and
b4 of hand model

An HMM is a doubly stochastic process with an unob-
servable hidden stochastic process, but it can only be ob-
served through another set of stochastic processes that pro-
duce the observed sequence. The hidden states “drive” the
model dynamic. At each time instance, the model is in one
of its hidden states. Transitions among the hidden states are
generated by probabilistic rules. The observable states pro-
duce outcome during hidden state transition or while the
model is in one of its hidden states. Such outcome is mea-
surable by an outside observer and is also governed by a
set of probabilistic rules. Here, we limit our HMM as the
forward-chaining HMM which is a special case of HMMs
that have zero probability of returning to an earlier state.

If there areN states andM possible observations, the
HMM is described by (Q, π,A,B, V ), whereQ(= {q1, q2,
. . . , qN}) denote a set of states,V ({v1, v2, . . . , vM}) is the
set of output observations (symbols).

A(= {aij}, with aij = Pr(qj at t + 1 | qi at t)) denotes
the state transition probability distribution (STPD).

B(= {bj(k)}, with bj(k) = Pr(vk at t | qj at t)) is the
observation probability distribution (OPD).

π(= {πι}, with πl = Pr(ql at t = 1)) is the initial state
probability distribution (SPD).

At some time stept, a new state is reached or stays in
the same state, based on the STPD. The system outputs a
symbol at each time step and the symbol is stochastically
chosen from among a discrete set.

In speech recognition, one HMM is associated with
each different phoneme or word. In our gesture recogni-
tion, one HMM is trained for 18 different gestures and
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Table 1. Initial state probability distribution (SPD)

State 1 2 3 4 5 6 7 8 9 10 11 12
Pr 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 0 0 1/16
State 13 14 15 16 17 18 19 20 21 22 23 24
Pr 1/16 1/16 1/16 1/16 1/16 1/16 0 0 0 0 0

the observation is the similarity measurement between the
pre-defined PCA models and the feature image. The train-
ing process for the HMM with different gestures is re-
quired so that the parameters of HMM can truly describe
the spatio-temporal dynamics of the desired gesture action.
The training is to optimize the maximum likelihood measure,
log(Pr(observation |model)), over a set of training exam-
ples for the particular gesture associated with the model.
Such optimization involves the use of computationally costly
expectation-maximization procedure – Baum-Welch algo-
rithm [19]. To simplify our implementation of HMM, we as-
sume that the HMM is a first-order stochastic process which
is stationary. Therefore, instead of using the Baum-Welch al-
gorithm, we may implement the following training process
for our HMM.

3.3 Training procedures for HMM

Here, we are developing a system to recognize 18 differ-
ent gestures. The hand shape of these 18 gestures can be
classified into 24 different groups, so we define 24 states
(N = 24) to represent the possible instant appearance of the
designated gestures. Some of them are intermediary states
that can never appear in the beginning frame of the gestures.
The rest of them are assumed to have the same initial prob-
ability of appearance. Here, we assume that each unknown
input gesture is either asimple gesture or is a combination
of two or more simple gestures called ahybrid continuous
gesture. For a hybrid gesture, we may find that there exists
aninterconnecting gesture between every two simple ges-
tures, which does not indicate any semantic meaning. These
interconnecting gestures will be observed as one of the so-
called intermediary states. However, we may also find that
two simple gestures may be connected smoothly to make a
hybrid gesture without any interconnecting gesture. Table 1
shows the SPD. The states with probability zero means that
these states belong to the intermediary states of gestures and
they will never appear in the beginning of gestures. Here,
we assign the zero probability for the unreachable states and
an equal probability for the others.

In the training phase, given all possible gestures, we in-
vestigate the STPD of all the possible transitions for each
state. Each state may have 5, 4, 3, or 2 transition choices.
Since we have a sequence of all possible shape varieties that
belong to the same state, we may divide the duration of state
into steps. In each step, we have the smallest pre-defined
identifiable and allowable shape varieties of the correspond-
ing gesture. Here, we categorize these 24 states into three
classes based on (1) different duration (or number of steps),
(2) intermediate state or meaningful state, (3) large or small
shape varieties. The first class consists of state-2, 12, 13, 14,
16, 17, and state-18 and their average duration is 40 steps.
The second class covers state-1, 3, 4, 5, 6, 7, 8, 9, 10, 11,

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Speed of gesture v  (Steps/Frame)

P
ro

ba
bi

lit
y

Normal
Distribution

η=10
σ2=6.5077

Fig. 10. Normal distribution with mean = 10 steps/frame and variance
= 6.5077

15, 20, 21, 22, 23, and state-24, and their average duration
is 28 steps. The last class is state-19 with average duration
20 steps.

Furthermore, we subdivide each state transition into sev-
eral step transitions. Without anya priori information, we
assume that the transition probability of each step is equal.
We model the speed of gesture (or the number of steps in
each state) as a normal distribution shown in Fig. 10. The
mean value is 10 steps/state and the variance is 6.5077. The
distribution depends on the experiments of the gestures cap-
tured. Next, we calculate the interstate transition probability.
The s is the step number of the state, andv is the speed of
gesture (v steps/frame). The interstate transition probability
p is

p =
∑

i

Pr
(
v ≥ i | s = i

)
Pr (s = i) ,

1 ≤ i ≤ duration of the state, (12)

wherei is the current step, and we sum up all possible steps.
The results are stored in the STPD (see Table 2).

In the training phase, to obtain the OPD, the system
extracts all possible features in the input frame and then
identifies the moving object in this frame. The outputs of
measurement are the possible observations that are weighted
by the degree of similarity to the corresponding PCA models
of the designated state. For each input frame, which may be
assigned to statel, we select the best five observations by
comparing the corresponding edge feature image with a set
of PCA models. The similarity weighting between the edge
feature image (Al) and the PCA models (Bj) is defined as

Wl,j =
5∑

i=1

H∗ (Al, Bi)

/
H∗ (

Al, Bj

)
,

j = 1,2, · · · ,5 , (13)

wherej indicates the specific one of the five selected obser-
vations for each input frame, the numeratorΣiH

∗(Al, Bi)
is the normalization factor, andH∗ is the modified Haus-
dorff distance measure, which will be defined in Sect. 4.1.
A smaller distanceH∗(Al, Bj) will generate a larger weight
Wl,j .

For each observed gesture (an image sequence), we find
that in any time instance it may be assigned to several pos-
sible states with different state probabilitiesp(qj). With the
state initial probabilityπi and the state transition probability
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aij , we can calculate thep(qj). For instance, we find that,
when the gesture-1 is an input gesture, at a certain time in-
stance, we have the probabilities of state-1, state-2, state-21
and state-22 as 0.6949, 0.0142, 0.0181, and 0.2729, respec-
tively. Similarly, for each frame in the image sequence, we
may have different observations with different observation
probabilities (i.e.,p(νk)). It is computed based on the modi-
fied Hausdorff distance measurement between the input hand
shape and the possible corresponding observations described
by the PCA pre-stored models. In this training phase, given
as many images as possible, we calculate thep(qj) andp(νk).
For each stateqj , we may calculatep(qj |νk) by using Eq. 13
to generateWl,j and accumulatingWl,j for observationνk

as

p
(
qj |νk) =

∑
NT

Wj,k∑
NT

∑N
l=1 Wl,k

, (14)

where theN is the number of states and theNT is the
number of training image frames. To obtainp(νk|qj) and
then generate the OPD (as Table 3), we can use the following
relationship

p(νk|qj) = p(qj |νk)p(νk)/p(qj) . (15)

4 Recognition phase

To recognize a continuous gesture, we use the Hausdorff
distance measurement to observe the input frame, and then
refer to the OPD and STPD to generate the observation pat-
terns and all the possible observation sequences. With these
observation sequences, we may use the Viterbi algorithm to
generate the best match state sequence that has the maximum
probability to indicate the correct gesture.

4.1 Hausdorff distance measurement

Here, we observe the input frame by applying the Hausdorff
distance measurement to measure the similarity between the
pre-defined PCA models and the feature image. LetA be the
feature image of the desired object andB be the instance
of PCA model (by adjusting the shape parameters, we can
generate different shapes). SetsA andB are two finite point
sets, i.e.,A = {a1, . . . ap} andB = {b1, . . . bq}, the forward
and the reverse Hausdorff distance are defined as

h(B,A) = max
b∈B

min
a∈A

‖b − a‖ and

h(A,B) = max
a∈A

min
b∈B

‖a − b‖ , (16)

where‖ · ‖ is the Euclidean norm. The Hausdorff distance
is defined as

H(A,B) = max(h(A,B), h(B,A)) . (17)

In real cases, we only need to compare some portions
of setsA and B. In complex background with occluded
object contour, we are not sure whether the designated object
is inside the feature image or not. The partial Hausdorff
distance is defined as

HfF fR (A,B) = max(hfF (A,B), hfR (B,A)) , (18)

Fig. 11a. is the set of points andb is the corresponding Voronoi surface
(or distance transform). Thebrighter cells indicate the shorter distance than
the darker cells

where the partial forward Hausdorff distance, and the partial
reverse Hausdorff distance are defined as

hfR (B,A) = f th
b∈B min

a∈A
‖ b − a ‖ and

hfF (A,B) = f th
a∈A min

b∈B
‖ a − b ‖ . (19)

The fF and fR are the forward fraction and the reverse
fraction,f th

x∈X q(x) denotes thef -th quantized value ofq(x)
over the setX [24, 25].

Dubuisson et al. [26] propose a modified Hausdorff dis-
tance which has better performance for object matching than
the original Hausdorff distance. This is due to the fact that
the Hausdorff distance value indicates the maximum distance
between these two point sets. Generally, for less noisy im-
ages, the modified Hausdorff distance has better measuring
performance. The modified Hausdorff distance is defined as

H∗(d(A,B), d(B,A)) =
Nad(A,B) + Nbd(B,A)

Na + Nb
, (20)

with the forward and reverse Hausdorff distances defined as

d(B,A) =
1
Nb

∑
b∈B

d(b, A) ,

d(A,B) =
1
Na

∑
a∈A

d(a,B) , (21)

where d(b, A) = mina∈A ‖b − a‖ and Na and Nb are the
number of points of two point setsA andB, respectively.

Usually, the number of points in the feature imageA is
much larger than the number of points of the shape model
B. From the equation of forward Hausdorff distance, we
need to find a minimum distance from every point in set
B to all the points in setA. The computation is so time
consuming that we need to develop a fast method by using
the Voronoi surface, which has also been referred to as a
distance transform to reduce the redundant computation of
distance. Let setA be the point set shown in Fig. 11a, (we
use 13 points to show it clearly) and the Voronoi surface
d(p) of the setA is

d(p) = min
a∈A

‖ p − a ‖ , (22)

wherep is any point in the same space. Fig. 11b illustrates
the Voronoi surface of setA. Once the Voronoi surface hav-
ing been generated, we can easily get the minimum distance
from each point of setB to setA without computing the
distances between all points ofA.
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4.2 The observations of the input frame

By investigating the results of the shape similarity measure-
ment, we cannot expect that the observation is always accu-
rate, in other words, the measurement between the feature
image and the pre-stored PCA models does not imply that
the shortest distance always indicates the accurate model. In
recognition phase, for each input frame, we may determine
the possible observations by comparing the corresponding
feature image with all the possible pre-stored models. In a
complex and non-stationary scene, the feature image may be
noisy, and the comparison is based on the modified Haus-
dorff distance measurement.

Given an image sequence, we compare all the frames
of this sequence with the PCA models and determine the
possible observations for each frame. For the first frame,
we only select the PCA models which correspond to the
states with non-zero initial state probability. We compare
each pre-stored PCA model with the feature image by us-
ing the modified Hausdorff distance measurement. Here, we
choose the first five best observations. From these observa-
tions, we refer to the OPD and find all the possible states
to which this input frame belongs. Then, we use the current
state to generate the next probable states for the next frame
observation by referring to the STPD. By investigating all
the observations in the training set, we are certain that select-
ing five best match observations is enough, since the right
observation should be one of these five selections. For the
other image frames in the input gesture sequence, we do the
same observation operations.

4.3 Observation patterns generation
for simplifying the observation set

Now, we consider that if we have an average of 30 frames
per input image sequence, then we will have 530 (i.e., about
1021) possible observation sequences, of which each contains
30 observations. Therefore, it is computationally unfeasible
for the Viterbi algorithm to determine the best matched state
path (sequence). To solve this problem, we need another
training procedure that simplifies the possible observation
sequences for the Viterbi algorithm to operate effectively.
Here, we take advantage of the relationships among these
observations. For each input frame, there is an observation
set that indicates the possible states to which the designated
input frame belongs. By investigating all the observation
sets of the input frames, we find that some observations
have much higher possibility of appearance. The modified
Hausdorff distances of these selected observations have been
used in the training procedure to generate the observation
patterns for each observation in the observation set.

In this training stage, given an image identified as obser-
vation j, we use the similarity measure to find the best five
observations asSj = {ojk| k = 1, . . .5} in which the best
matched observation is not necessarily observationj. For
each observation inSj , if it is observationi, i.e., ojk = Oi,
then the correspondingith accumulator forOi is increased
by one, i.e.,ACCi = ACCi+1. We test as many input frames
as possible for each specific observationj. Having collected

Table 4. OPT: The observation patterns with strength> 0.15

Observation # Observation Pattern
1 1 2 4 5 8 9 21 22 X X
2 2 3 4 7 8 9 10 20 23 X
3 3 4 5 7 10 11 12 18 24 X
4 3 4 6 7 8 9 20 24 X X
5 3 5 7 11 16 17 21 23 X X
6 3 4 6 7 9 12 20 X X X
7 3 7 12 17 18 19 X X X X
8 3 4 5 8 9 10 15 24 X X
9 3 5 6 7 9 12 20 X X X
10 3 5 8 10 11 24 X X X X
11 3 5 8 10 11 21 23 X X X
12 5 7 9 12 13 20 X X X X
13 3 4 9 12 13 18 20 X X X
14 6 7 13 14 18 20 24 X X X
15 3 4 8 9 10 11 15 23 24 X
16 5 7 16 17 18 20 X X X X
17 5 7 16 17 18 19 X X X X
18 7 12 16 18 19 20 X X X X
19 7 12 16 17 18 19 X X X X
20 5 7 9 12 18 19 20 X X X
21 3 4 5 10 11 21 22 23 X X
22 1 3 10 11 15 21 22 23 24 X
23 3 4 5 10 11 21 23 24 X X
24 3 4 5 10 11 15 24 X X X

and accumulated the selected observations for every obser-
vation, we calculate the so-called relative observation ap-
pearing probabilities (ROAP) by normalization (by dividing
the accumulators by the number of input image frames), and
then eliminate the observations with ROAP< 0.15. The re-
sults are stored in the so-calledobservation patterns table
(OPT) illustrated in Table 4. Figure 12 illustrates the ROAP
of each observation in the observation pattern. With the OPT,
we may reduce the number of all the possible observation
sequences. Finally, the gesture recognition process may re-
fer to the OPT and determine which observations should be
selected.

Let the selected observation set for framei beSi = {oij};
we want to find a corresponding reduced observation setS′

i.
For each observationoij , we have referred an observation
pattern (referring to Table 4) and form a subsetS′

i(⊆ Si)
in which all o′

ijs have at least four common observations
in their observation patterns. We illustrate an example in
the following. Given an observation set of an input frame
as {3,4,6,7,9}, we want to reduce the observation set. If
the matching condition is severe (i.e., the observation pat-
tern should contain all the same five observations), then the
observation set will be reduced to{4,6}. If we relax the
matching condition, i.e., the observation pattern will contain
the same four observations, then the observation set will be
reduced to{4,6,9}.

4.4 Gesture recognition using the Viterbi algorithm

Given a sequence of image representing a certain meaning
gesture, we apply (1) the feature extraction process to ex-
tract the meaningful hand shapes, (2) the Hausdorff distance
measure to generate the possible observations, and (3) the
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Fig. 12. The ROAP of the each observation will be
used to generate the observation pattern table (OPT)

Viterbi algorithm [19] to find the corresponding most prob-
able state transition sequence. The hand gesture recognition
system can be illustrated in the following steps.

1. For each input frame, we change the parameters of pre-
stored PCA models to find the most similar shape that
matches with the feature image and then use the Haus-
dorff distance measure to make observation by measur-
ing the distance between them.

2. Use different pre-stored PCA models to observe theith
input feature image frame and generate an observation
setSi = {Oij}.

3. Use the pre-trained OPT (Table 4) to simplify the obser-
vation set.

4. Use the Viterbi algorithm to calculate the log-probability
of the state transition sequences, and pick the maximum.

5. If the maximum is still below a certain threshold, then
reject, else accept.

The Viterbi algorithm can be viewed as a special form
of a forward and backward algorithm, where only the max-
imum path at each step is taken instead of all paths. This
optimization reduces the computational load of finding the
most likely state sequence. The Viterbi algorithm consists of
the following steps.

1. Initialization. For all statesi, α1(i) = πibi(O1); ψi(i) = 0,
i = 1,2, . . . N , whereα1(i) is the probability of which
observationO1 occurs at timet = 1 and at statei, and
ψ stores the optimal states.

2. Recursion. From t = 2 to T for all state j, αt(j) =
Max1�i�N [αt−1(i)aij ]bj(Ot); ψt(j) = argmax1�i�N

[αt−1(i)aij ].
3. Termination. Pr=Max1�i�N [αT (i)]; i∗ =argmax1�i�N

[αT (i)].
4. Backtracking. From t = T − 1 to 1, i∗t = ψt+1(i∗t+1).

In Fig. 13a, we show six frames of an image sequence,
and in Fig. 13b we illustrate all the possible observations
of one of every two frames of the image sequence of the
gesture. Then we refer to the OPT (Table 4) to generate the
reduced observation set of each frame shown in Fig. 13c. In
Fig. 13d, we illustrate the table of the 14 input observation
sequences, which have the best corresponding accumulated
probabilities and the best matched state sequences. We can
see that these fourteen best match state sequences correspond
to the same gesture.

5 Experimental results and discussion

Here, we illustrate the experimental results of hand gesture
recognition system. The input hand gestures include sim-
ple gestures and hybrid gestures (combined of two or more
simple gestures). We have tested 10 simple gestures and 8
hybrid gestures (see Fig. 14). In our system, these 10 simple
gestures may contain one, two or three states, 5 hybrid ges-
tures may consist of two or more smoothly connected simple
gestures without any intermediary gesture, and the other 3
hybrid gestures require one intermediary gesture to connect
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Fig. 13a–d. The best state sequences are determined
by applying the Viterbi algorithm.a The input image
sequence.b Possible observations for each frame.c
Reduced Observations for each frame.d The best
state sequences

every two simple gestures. For the hybrid gestures, we need
to build a corresponding active shape model to extract the
new gesture.

In our experiments, the image frame size is 256×256, its
frame rate is 30 frames per second. The camera that we use
in the experiment is a SONY XC7500. The captured image
frames are stored in the DRAM of an Oculus-F/64 frame
grabber, and then transferred to the host computer (Pentium
PC 300 MHz) for further processing. For each gesture, the
frame number of image sequence is above 30. The input
image sequence is taken at three different time intervals: no-
gesture period, the action (gesture-making) period, and the
silent period. Here, we assume that the complex background
is stationary and we can use the frame difference detector
(FDD) to identify the beginning and the end of the gesturing
period in the image sequence.

The feature extraction algorithm is applied in both of
the training and recognizing phases. Our method has been
tested in indoor scenes with different backgrounds by a vari-
ety of gesture sequences made by different users. The results
are good enough to provide both reliable tracking and accu-
rate hand shape description. It is easily trained for different
users and lighting conditions. The only limitation is that our
method is based on the frame difference operation, if the
hands are stationary or moving too slowly, then the feature
image cannot be extracted accurately.

The shape variability in duration of gesture is accounted
for in the recognition or model evaluation process. In recog-

nition process, a sequence of gesture images is tested over
the trained HMM in order to decide which gesture it rep-
resents. The probabilities of state sequences are evaluated
using Viterbi algorithm. Different from [21], who consider
the velocity of the hands as training and test feature, we use
the hand shape variability to associate with the state of the
HMM. The dynamic time-warping ability of the Viterbi al-
gorithm will still hold in our system. However, if the gesture
is made too fast, the observation accuracy will be lower, so
that the Viterbi algorithm will pass through the fringes of the
density function and receive a lower log-probability score.

In the training stage, we may have pre-determined dif-
ferent state sequences for different gestures (see Table 5).
During the recognition stage, the outputs of the Viterbi al-
gorithm are the best probable state sequences, which are
compared with the pre-determined state sequence of each
gesture for identification. There are ten training sequence
samples for each gesture. We find that most of the input
gestures can be identified accurately. The best match state
sequence corresponding to the most probable state sequence
that identifies the gesture made in the image sequence. How-
ever, in very few cases, we may find that the most probable
state sequence does not indicate the same gesture as the
other state sequences. Therefore, we can discard it and ex-
amine the next best one. The feature extraction process of
our system is insensitive to the illumination changes and the
complexity of the background. The most time-consuming
stage of the recognition system is the observation process,
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Fig. 14. Continued on next page

which selects the best match shape for each PCA model and
applies a one-by-one Haudorff distance measure between
the pre-stored shape models and the feature image. It takes
about 60 s to generate the feature images, 70 s to observe
each image frame, and 25 s to identify the gesture by Viterbi
algorithm.

In the experiments, we have asked 20 people to make 18
different gestures. Each individual makes every gesture five
times. The motion speed and the motion trajectory of the
same gesture made by different persons are somehow quite
different. Sometimes, the individual’s clothes create a com-
plicated background of the image sequence during gesture
making. It may make the system generate wrong observa-
tions. On the average, the correct identification rate of our
hand gesture recognition system for simple gesture is above

92% and the correct recognition rate of the hybrid gesture
is about 87%. The breakdown recognition results for the 18
gestures are given in Table 6. From Table 6, we find that
some input gesture image sequences are unidentified instead
of misidentified, because if the most probable output state
sequences do not match with any pre-determined state se-
quences (Table 5) completely, then it is unidentified. How-
ever, if we allowpartial matching for gesture recognition,
then the recognition rate will be increased (i.e., the recog-
nition rate will be above 95%), however, it also increases
the misidentification rate. For instance, it may misidentify
gesturea as gesturep; gesturee as gesturem; gestureq
as gesturer; or gesturel as gestureo, and vice versa. The
misidentification has the following two reasons. (1) Feature
image contains too little information of the moving object. It
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Fig. 14a. shows a gesture consisting of state-9 and state-1.b shows a gesture consisting of state-1 and state-2.c shows a gesture consisting of state-12 and
state-13.d shows a gesture consisting of state-3 and state-4.e shows a gesture consisting of state-14 and state-6.f shows a gesture consisting of state-6,
state-20, and state-7.g shows a gesture consisting of state-8 and state-9.h shows a gesture consisting of state-16 and state-17.i shows a gesture consisting
of state-5 only.j shows a gesture consisting of state-19 and state-18.k shows a gesture consisting of state-9, state-1, and state-2.l shows a gesture consisting
of state-3, state-4, state-15, state-8 and state-2.m shows a gesture consisting of state-14, state-6, state-20 and state-7.n shows a gesture consisting of state-5,
state-10, state-9 and state-1.o shows a gesture consisting of state-3, state-4, state-23 and state-5.p shows a gesture consisting of state-9, state-1, state-21
and state-5.q shows a gesture consisting of state-8, state-9 and state-1.r shows a gesture consisting of state-4, state-3 and state-24, state-9 and state-1
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Table 5. The state sequence of the 18 gestures in the experiment

Gesture Corresponding state transition sequence
a 9. . . 1. . .

b 1. . . 2. . .

c 12. . . 13. . .
d 3. . . 4. . .

e 14. . . 6. . .

f 6. . . 20. . . 7. . .

g 8. . . 9. . .

h 16. . . 17. . .
i 5. . .

j 19. . . 18. . .
k 9. . . 1. . . 2. . .

l 3. . . 4. . . 15. . . 8. . . 9. . .

m 14. . . 6. . . 20. . . 7. . .

n 5. . . 10. . . 9. . . 1. . .

o 3. . . 4. . . 23. . . 5. . .

p 9. . . 1. . . 21. . . 5. . .

q 8. . . 9. . . 1. . .

r 4. . . 3. . . 24. . . 9. . . 1. . .

Table 6. The correctly identified sequence numbers (each gesture has 100
test image sequences)

Gesture a b c d e f g h I j k l m n o p q r
Identified
number 90 93 89 92 98 94 96 83 94 88 86 79 88 90 93 87 92 81

occurs because the desired object is stationary or moving too
slow, and the system cannot extract the feature image accu-
rately. (2) The shape variety between two continuous frames
is enormous. It happens when the motion of the gesture is
too fast.

6 Conclusion and further work

The gesture recognition system consists of four major com-
ponents: feature extraction, PCA, Hausdorff distance, and
HMM. Our method has proved to be very effective to ex-
tract the moving handshape in the complex stationary back-
ground. The PCA model is also a very reliable method to
describe the moving hand shape. The proposed simplified
training process for HMM has the drawback that, once we
want to add a new gesture into the system, we need to re-
train HMM. Therefore, the flexibility of our simplified HMM
is the major issue in our future research. We need to elimi-
nate the concern that the more gestures there are to be recog-
nized, the more complicated and time-consuming processes
may be expected.
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