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A Robust Scene-Change Detection Method for Video Segmentation
Chung-Lin Huang and Bing-Yao Liao

Abstract—This paper proposes a new method that combines detection with scenes involving fast camera or object motion.
the intensity and motion information to detect scene changes such The histogram-based methods ignore the spatial distribution of
as abrupt scene changes and gradual scene changes. Two Majokyq |yminance or colors. Consecutive frames may have different

features are chosen as the basic dissimilarity measures, and self- tial distributi but similar hist d th d
and cross-validation mechanisms are employed via a static sceneSPatia! distribution, but simiiar histograms, and they are de-

test. We also develop a novel intensity statistics model for detecting clared to belong to the same shots. This paper proposes a scene-
gradual scene changes. Experimental results showthatthe proposedchange detection algorithm with three contributions: 1) relaxing

algorithms are effective and outperform the previous approaches. threshold selection problem; 2) higher detection rate (i.e., scene
Index Terms—Abrupt scene changes, gradual scene changes,change should not be missed); and 3) lower false alarm rate.
scene-change detection.
1. ABRUPT SCENE-CHANGE DETECTION

I. INTRODUCTION Here, we will explain how to choose the basic features for the
g(j)ssimilarity measure between frames and how to apply static

OR video, a common first step is to segment the videos in ; .
temporal “shots,” each representing an event or continug ene test to characterize the scene-change type and to facilitate
’ detection process.

sequence of actions. A shot represents a sequence of frames
ture_d from a unique and cpntinugus record from_a camera. TRe Measurement of the Changes Between Frames
main problem of segmenting a video sequence into shots is the _ _
ability to distinguish between scene breaks and normal changed he effectiveness of detecting the scene changes depends on
that happen in the scene. These changes may be due to thethf-suitable choice of similarity metric between two frames.
tion of large objects or the motion of the camera. When speclg#t X andY” be two frames, and their difference is denoted
effects are involved, two shots are merged using gradual trar®f-d(X, Y"). Several different classes of metrics are discussed
tion. The types of gradual transitions used mostly are dissonRelow.
fade in, and fade out. A fade is a gradual transition between al) Pixel-Based DifferenceThe first class relies on the mea-
scene and a constant image (fade out) or between a consgtiement of corresponding pixel-pixel differences. It is not a
image and a scene (fade in). A dissolve is a gradual transiti@fod metric for change detection due to its sensitivity to object
from one scene to another, in which the first scene fades out @il camera motion. One alternative is to smooth the image in
the second scene fades in. the beginning. Smoothing can be performed on the spatial im-
To segment a video sequence into shots, a dissimilarity mé@ges before the differences are taken. We choose the DC image
sure between two frames must be defined. This measure mdifference [4] as our first basic dissimilarity measure for scene
return a high value only when two continuous frames fall in difdetection. The DC image difference is defined as

ferent video shots. Dissimilarity measure is mainly based on a _ B
pixel-based methods [1] and histogram-based methods [2], [3]. dpe(X,Y) =3 En: |Cx(m,n) = Cy(m,n)| (1)

The pixel-based methods are highly sensitive to motion of Ob__ereCX(m,n) and Cy (m, n) are the DC image of frames

jects. Histogram-based methods provide a better tradeoff %é" . ) )
tween accuracy and speed, and its performance is good for ear_1d_Y, Wh'Ch are denoted aﬁX(k? ) and fy (k,0). _They
glwded into 8 8 blocks. The DC image of fram¥ is de-

case of abrupt scene changes such as cuts. The best perform@rr?c

is obtained by 2 test [3]. Unfortunately, in presence of dissolvel€mined as

the difference between consecutive frames may be too low to 1 & . .

be misinterpreted as a difference due to motion. Operations on Cx(m,n) = 3 Z Z Jx (8m+14,8n + ). @

fully decompressed or uncompressed video do not permit rapid 1=04=0

processing because of the data size. Other algorithms [4], [SR) Histogram-Based DifferenceiVe survey several types of

are developed to operate directly on MPEG compressed daigtogram based algorithms and find théttest has in general

without having to first perform full frame decompression. better performance with respect to other measures. So we adopt
The two main problems in most existing algorithms are: 1fie x” test [3] as our second feature

they are threshold-dependent algorithms and 2) they suffer fa@g (X,Y)

m
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Fig. 1. Example of edge detection: (a) the original image; (b) the edge image; and (c) dilated image with eadius

These two features are chosen for a number of reasons. First lower covering ratio means that these two frames are more
they are easy to compute in the pixel domain. In addition, it 8milar to each other from edge information point of view. Ra-
desirable to have both pixel- and histogram-based measuresdiesr controls the covering range and how smooth a static tran-
cause they complement each other's weaknesses. Pixel-basgon is. The transition of two consecutive frames with covering
techniques may generate false alarms whenever there are ffasb larger than a predefined threshold is considered as a non-
moving objects or fast camera movement in the video. Histatic—or dynamic—scene.
togram-based techniques are fairly immune to these effects but
they may miss scene changes if the luminance distribution of tBe Scene Transition Classification

frames does not change significantly. Here, we combine the tWoe can further extend the concept of the static scene test to
methods—as well as scene-transition analysis—and develop sify the abrupt scene transition types. By analyzing the static
robust scene-change method. property of a number of frames preceding the detected peak of
potential scene change, and those of the succeeding frames, we

B. Static Scene Test . o : . X
_ _ . . _ generalize the scene transition types into three main categories:
A static scene is characterized in the sense that all objectsl) static scene to static scene;

present in the scene exhibit rather small motion compared to the,z) dynamic scene to static scene or vice versa;
frame size, and global movement caused by the camera is slovxg) dynamic scene to dynamic scene.

and smooth. In a static scene, we find a minimal variation of both

the spatial and temporal information of the consecutive framgs. Detection Algorithm

The temporal visual content of static scene does not have signit- _ ) )
icant change. On the other hand, in dynamic scene, there exiggased on [4], our detection algorithm starts with the local

fast object movements or camera zooming and panning motif§ak selection using a sliding window, since scene change is
The dynamic activities are difficult to formularize by analyzing local activity in the temporal domain. We declare two kinds
the spatial and temporal difference of the pixels or histogramof abrupt scene change: genuine and ambiguous, in order to

1) Edge Detection:The static scene test is based on a simpl€lax the threshold problem. Two gray zones are allowed in our
observation: the intensity of edges of a static scene will be pf#o-phase system, and the final decision for ambiguous decla-
served around the spatial location near the original place fofagion will be made in the second phase. The overall system ar-
period of time. Inter-frame edge variations are not obvious, th@Bitecture is shown in Fig. 2.
it permits us to track the positions of intensity edges by edge dedn the first phase, we locate the highest and the second highest
tection. We use a simple gradient operator (i.e., Sobel maskspg#ks of DC image difference in the midst of the sliding window,
compute the gradient image [see Fig. 1(b)]. and then calculate the raticbetween the first and second peaks.

2) Edge Dilation: To handle the small motions of multiple Two thresholds are used, a larggf,,, and a smallen,,,,. The
objects in the transition from frame F1 to the next frame F2, thp@rameter. is imposed to avoid false alarm against fast panning
edge pixels of succeeding image F2 are dilated by a radiusr zooming scenes. For genuine scene change with a larger
[6]. The edge pixels of F2 are referred as 'entering’ edge pixefe are sure that only those dramatic changes are detected and
with respect to F1. All entering edge pixels that are less thartaus false detections are avoided. For ambiguous scene change
distancer from the closest entering edge pixel in F1 are ableith a smaller:, we may have to go through the second phase. In
to cover the original edge pixels of F1 by dilation, if the tranthe second phase, we take advantage of the second measure for
sition is smooth and static. Dilation with radiuss achieved cross-validating the ambiguous one that may be a scene change
by replacing each edge pixel with a diamond whose height anith blunt peak or a false alarm due to fast camera and object
width are2r + 1 pixels. Fig. 1(c) gives an example with= 3. motion.

A covering ratiow is then defined to indicate the static level, While the local peak in the midst of the difference sequence

which is shown in the following: indicates an ambiguous scene change, we first employ the
Sy E{F\(z,y)} E {(Fa(z, )} second feature (histogram) measured across the peak. In t.he
a=1- : ZIF (4) second phase, we also use two thresholding values to classify

> ey Bz y)} the scene types in terms of five different video transition types

where E{-} denotes the edge-detection operation, and bar dsee Table I). If it is smaller than the lower threshold, then type
notes dilation. E is declared, which indicates no scene change. If it is larger
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Phase
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(Type C)
[*Yes >higher threshold No—‘ (Type D)
Scene Transition
Test
(Cross-Validation)
No(Validated) Yes(Fail)
Fig. 2. Overall system of the abrupt change detection.
than the lower threshold, we employ the self-validation, which TABLE |

is basically a static scene test algorithm. It applies the static POSSIBLEVIDEO TRANSITION TYPESACROSS THEAMBIGUOUS PEAK
scene test algorithms (Section 11-B) on the frames across t-

“Scene Test Histogram measure Scene Change Transition
possible scene cut to differentiate whether the scene is static thresholdin Type
W— 0 — pe
dynamic. Second, if it is larger than the higher threshold ar™gggic ™ | 5 higher threshold No A
the scene is a dynamic scene (Type C), then a real scene ¢t static > lower threshold No B
identified. Instead, if it is larger than the higher threshold and < higher threshold
is a static scene (Type A), then no scene cut is declared. Fina Dynamic i 2 higher threshold Yes C
if the histogram measure is between the smaller threshold a Pynamic 2 lower threshold Ambiguous D
the larger threshold, then it may be types B or D. Still, the stat. ... .. | higher threshold
g Yy yp St | <lower threshold B

Ny
scene test algorithm is required to differentiate the type B frol pynan .

type D. For type B, there is no scene cut declared, whereas iu1
type D, we need to apply the cross-validation.

For type D, we apply cross-validation to find out the possibleith two dynamic scenes on the both sides of the peak. Dy-
scene transition type on both sides of the ambiguous peak [Seamic-to-dynamic transition usually indicates continuous ob-
tion II-C]. From our observations of all the video sequencegct or camera motion, rather than a real scene change. From
human eyes cannot easily differentiate scene transitions sucloasexperiments, we find that we may declare a false alarm in
dynamic-to-dynamic transitions. Normally, there are very fetiis case. On the other hand, if the scene transition type is not a
cases in video sequences that are found to be real scene chadgeamic-to-dynamic, a real scene change will be declared. This
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second detector (histogram-based) uses the information of video sa, —

transition to validate or invalidate the ambiguous scene cut de-
clared by the first detector. Most of the false alarms declared by **} s A T
the histogram detector are due to sudden light changes, while . "
the edge information is more or less invariant to these changes.
i L]
Ill. GRADUAL SCENE-CHANGE DETECTION %um /

Gradual scene change consists of dissolve, fade-in, and_E am | {
fade-out. Here, we propose a novel detection algorithm based v
on an intensity statistics model. o |

amp | J

A. Dissolve, Fade-In, and Fade-Out .'l

The gradual transition in which the changes from framéo ] e i e - S0
ns IS much faster than those prior to frame and after frame e
nz. Common form of gradual transition includes the special ef- @)
fect of dissolving, fading in, and fade out. A dissolve operation 876 ; ; ;
from sceneX to Y in time duration?’ is a sequence of frames 014 /"‘“"”‘““—‘“H‘T
represented by /f

012 //
%Y—i—(l—%)X, 0<t<T. (5) %m /-/
£
. . . 008 J

A fade-in is a special case with = 0 and fade-out” = 0. 8
Comparison based on successive frames alone will not be useful é 0.06 //
for the detection of gradual scene transitions because changes ™
are small in this case. Camera and object motions always intro- 794 /
duce a larger variation than a gradual transition. Yeo’s method  ,;, /
[4] compares every frame with the followirigh frame. Their /
method works for certain kinds of video sequences; however, % o g = m 2
its limitation is that the duration of detecting transition must be frame
fixed. Besides, the “plateau” is not assuring flatness during the (b)

transition, and it will miss the gradual scene change. Next, V¥% 3. (a) Dissimilarity sequences using DC image difference for comparing

will develop a new approach to detect gradual scene change; fixed frame with all its successive 49 frames. (b) Dissimilarity sequences for
comparing a seed with all its successive 49 frames.

B. Intensity Statistics Model

The intensity similarity between two frames within a scen@ frame with itself and its successiy&/ — 1) frames as the
depends on their relative distance. The farther their distance"i§]-distance measute
the less correlation is observed. We develop an intensity statis-
tics model based on this assumption. We assume that the ca¥? n-gigtance = 14(Xi, Xj)[7 =4, +1,...,i+ N =1} (6)
relation (similarity measure) between two frames within a shot
is totally independent if their relative distance is long enoughherei denotes its frame numbei(-) represents the DC image
We discover that, for any frames near the reference frame, thdifference measure.
dissimilarity measure almost increases exponentially with theirThe N -distance measursodel shown in Fig. 4 is divided
distance. For those who are “far” away from the reference franmeto four segments. In segment 1 (with a constant leri@gth
their difference measures are somehow limited. Since we &wmes within this segment are correlated to the reference frame
sumed their independence with each other, the difference méd-to some degree and their differences increase with their dis-
sures are randomly distributed but reaching a vibrated consttarices. As the temporal distance increases, the monotonic in-
(with a small variation)—see Fig. 3. creasing difference will finally become saturated. In segment
We first define a seed’ as the beginning frame of a gradual2, since the temporal distance from the frames to the reference
transition. Here, we find that the dissimilarity increases linearfyame is so long that there is almost no correlation between the
with their distance during the transition. After the transition iffames in segment 2 and reference frakite However, the dif-
over, the difference measures (over a temporal window distarfeeent measure in segment 3 is linear increasing. In segment 3
N) are randomly distributed since the frames after transition g@gradual transition with an unknown leng#), the temporal
totally different from theseed We also find that the difference distance from frameX and the reference framg&’ is so long
measure during the transition is definitely nondecreasing, whitthat 4( X, X”) (difference betweetX and X'’) is random. The
is a very crucial property for our detection algorithm. Furtheisame scenario occurs for the rest of the frarieim segment
more, we define the difference measure generated by compagd herefore, the distance measure of the frames in segment 3



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 12, DECEMBER 2001 1285

framel is larger than a threshold, then we declare the fragment

Gradual change, non-decreasing from frame £ to frame!l is high frequency fragment, else
it is low frequency fragment. Once several continuous low
v frequency fragments are identified, the gradual scene-change
Correlated, non-decreasing P — segment (consists of fragments) is located.
Here, we use a quantitative measure to differentiate the
dual#ansitior low frequency fragments from the high-frequency fragments.
We employ a local “score” record mechanisBrore;(q),
X g = 0,...N — 1 record mechanism for each framieof the
N-distance measurgi(X;, X;)}, and a global “track” record
< 3 > < 4 > mechanisnl'rack(p), p = 1,... L, for all frames. The length
G ¢ of theTrack is L that is the total number of frames in the video
N sequencéL > N). For low frequency fragments, they score
Uncorrelated Uncorrelated “1", whereas score “0” is given for high frequency fragments.
random random For instance, frames within the duration of nondecreagihg
have been marked score “1". We initiali#zore;(¢) = 1, for

g=0,...N — 1. For a high frequency fragmefi, {], we reset
Fig. 4. Ideal model of théV-distance measure of a frame nears a seed. Scm’ei(q) =0,forqg =k, k+1,...,I. The seed-searching
stepS is the fragment length = [ — k.
has little relation with the reference frame The difference be-  From ourmodeldiscussedin Sectionlll-B, framesinsegments
tweenZ and.X depends on the dissimilarity measure betwgen 1 and 3 have score “1”. Since gradual scene change does occurin
and X themselves, which increases with their relative distancgegment 3 only, we need to ignore the scores in segment 1 due to
The statistics property of segment 4 is similar to segment 2. correlation behavior of the reference frame and its neighboring
frames. The correlated distance in segment £ig Which is an
C. Gradual Scene-Change-Detection Algorithm important parameter for our proposed model. All local scores for
The goal of our gradual scene-change detection is to loc#@mes are then stored and accumulated intrdiek record with
the transitions in which th&’-distance measuneriations seem Proper shifts. The following procedure shows how to accumulate
to be linear (or gradual). If we further differentiate thedis- theScore;(g) record to thél'rack(p) record
tance measutet will become linear in segment 1 and a constant forg =0,1,....N — 1
in segment 3, respectively. In segments 2 and 4, the difference
distributions after differentiation are still random. To distinguish
these segments, we may compute theart crossing raté In Track(p) =Track(p) + Scorei(q).
segments 2 and 4 (with random characteristic), we may find highTo develop a fast seed-searching process, we select one
zero crossing rate, whereas in segments 1 and 3, we expect i everyS consecutive frames faV-distance measurd he

dop=q+1i

zero crossing rate. Our method is illustrated as follows. seed-searching algorithm finds a frame ingerf which the
1) N-distance measuré&or any frameseedor nonseedwe T'rack(p) is the maximum accumulated score A5.5 — C/S.
may perform theV-distance measure using (6). WhereN denotes the distance df-distance measures' indi-
2) Difference operationForm a difference operation @ cates the seed-searching step éhe the assumed correlated
to generatey!’ as distance, respectively. Note that the score is the highest score

M ={d (X, X:. X, P+l i+t N—9 a frar_n_e can possibly achieve. All frames within the gradual
M= A (X0, X5 Xja) [ =804 Lot } transition should also have the same score. We declare a gradual
=1d(Xi, Xj1a) transition with the beginning frame and durationG, where
—d(X;, X)lj=44i+1,....i+N—-2}. (7) framesp,p+ 1,...,p + G — 1 have the same highest scores

3) Zero-crossing rate calculation Compute the zero OPServed in the track record.

crossing rate o/’ To prevent the false alarm of the sub-sequence that illustrates
) ) the similar/N-distance measumith the pre-defined model, we
If & (Xi, Xa—1, Xi) X d/ (X, Xy Xpqa) assume:
<O0fori<k<i+N-2 1) a significant histogram change will be observed between
then a zero crossing at framieis observed the two extremes of declared gradual transition—else, we

bypass this seed and look for the next seed;
2) G is supposed to be larger than a constant (in our case,
G = 8).

4) Low-pass filteringlmplement a simple low-pass filter to
keep the low frequency segments and to remove the high-
frequency segments.

For zero crossing at framé& and next zero crossing

at frame !l that d'(X;, Xp—1,Xx) x d'(X;, X3, Xp41)<0

and d'(X;,X;—1,X;) x  d(X;, Xi, Xi41)<0, where Here, we evaluate the performance of our proposed method.

t <k <i+N-2¢<1 < i¢+N-2andl > k Abruptand gradual scene changes are separately evaluated be-
Now if the number of zero crossings between fralm@and cause of their different performance measures. The success of

IV. EXPERIMENTAL RESULTS
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TABLE 1l

VIDEO SEQUENCESTYPESUSED IN THE EXPERIMENTS

TABLE I
SCENE-CHANGE STATISTICS | OF OUR SYSTEM

Sequence Sequence Type Number of frames Sequence Abrupt Change Gradual Change
French Kiss Situation Comedy 14259 Total Miss False Total Miss False
The Rock Action Movie 9669 French Kiss 95 0 0 2 0 2

Movie Clips..- | Mixed 10562 {\%Q:R"(‘,\q]’é\*:«i;f 151 . 3 dedo o 00
News News 7965 Movie Clips 71 4 1 0 0 0
Music Videos Mixed 12968 T e
Advertisements Mixed 2607 Music Videos 67 0 0 59 3 13
Sports Progtams J Mixed 13627 Advertisements | 72 3 L i 0 0
sports Programs 31 2 4 57 5 15

gradual scene-change detection involves the precision of the du-
ration detected. Various types of video streams are tested in TABLE IV

the experiments, which are summarized in Table Il. About 500
abrupt scene changes and 120 gradual scene changes in total
tested in the experiments and the results are verified manuall

SCENE-CHANGE STATISTICS Il OF OUR SYSTEM

Recall Precision
Abrupt ‘Gradual Cover | Abrupt - Gradual @ Cover

by human observation. We apply the performance measureme g¢770, 939 72% 96.8% 78% 54%

[7], and then we compute the statistics of the experimental re-

sults of the testing video streams. Finally, some individual cases

are selected and discussed.

A. Performance Parameters

B. The Statistics of the Results

Various types of video streams are tested in the experiments,
their contents are summarized in Table Il. We give the statistics

The performance of a scene-change-detection algorithm@fsCUr experimental results in Tables Il and IV. _
usually expressed in terms of recall and precision. The recalll) Abrupt Changes:For abrupt scene-change detection, the
parameter defines the percentage of true detection (perfornigorted recallis about 97.7%. Most of the misses are due to the
by the detection algorithm) with respect to the overall ever@ditcome of the second phase detection when video transition
(scene changes) in the video streams. Similarly, the precisior] ¥€ D is found, and cross-validation indicates dynamic-to-dy-
the percentage of correct detection with respect to the ovel¥iMIC scene transition. Some misses occurred because the ratio

declared event. The recall and precision are defined as

N,
Recall =——=— % 100% and

NC + Nrn
Precision =——%— + 100%
recision Nc + Nf >k (6]
where
N, number of correct detection;
N, number of miss;
Ny number of false detection;

N.+ N,, number of the existing events;
N.+ Ny number of overall declaration.

between the first peak and the second peak are even smaller than
the lower threshold that makes the first phase detector fail. In
other words, they suffer great variations in scene contents before
or after the scene change. False detections are dominantly de-
cided by the first detector (pixel-based) only, and the results are
not effectively cross-validated by the histogram measure (i.e.,
the ratio between the first peak and the second is larger than the
higher threshold). In general, they manifest themselves as the
local peaks, but are small from global point of view. If we apply
the self and cross validation to both genuine scene change and
ambiguous scene change, the precision increases dramatically
to almost 98%.

2) Gradual Change:We show two examples of gradual
scene change detected by our algorithm. We demonstrate the plot

In case of dissolves, these two parameters do not indicate #iéhe track of a long dissolve (about 2 s) and the plot of the track
precision of the detected duration. The detected dissolve degsour dissolves (obtained from an MTV video) in Figs. 5 and
not always coincide with the real dissolve, sometimes it is i, respectively. In both cased, = 50, S = 5, andC = 20.
cluded in the real dissolve. Sometimes it ends a few frames lafetom Table 111, we find that the proposed gradual scene-change
To consider such “partial” error, two new parameters have begatection method is prone to false alarm than miss. Since our
defined:cover recalland cover precision The cover recall is statistical model is based on segmenting the linear behavior
defined as the percentage of covered length of correct detect¢drame dissimilarity, once the characteristics of frames are

dissolve with respect to the length of the real dissolve; wheregigear it will be declared gradual scene change. However,
the cover precision can be defined similarly as

b b
Recalleoyer = — * 100% andPrecisioncover = — * 100% (9)
a ¢

sometimes, false alarms may happen. We give two false alarm
examples. In Fig. 7, duration from frame 338 to 368, there is
a slow panning sequence. Since the camera panning motion
generates a long sequence witlore;(p) = 1 and linear

wherea is the length of the real dissolvejs the length of the increasing accumulated score is identified, a gradual scene
declared dissolve arids the length of the real dissolve covereathange is declared. In Fig. 8, from frames 1316 to 1365, there

by the declared dissolve.

are a linear increasing difference, however, the presence of two
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Fig. 5. Track plot of a long dissolve segment—frame 45 to 104.

of T AR VAR 1 R

W

] 50 200 250 300 as50
frame

Fig. 6. Track plot of four dissolves detected in an MTV video.

0.4

S
o

et

B 0.08

0.04

0.02

09

o8

0.7

08

04

[eX]

02

0.1

300 320 340 360 380 400
frame

(b)

Fig. 7. False alarm due to the statistical similarity: (a) 100-distance meas
of frame 300 (NBA basketball sequence) and (b) local score distribution.
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Fig. 8. False alarm due to the statistical similarity: (a) 50-distance measure of
frame 1316 and (b) local score distribution. Note two peaks in (a) are due to
flashlight.

peaks of difference (due to sudden flashlight) are interpreted as
an uncorrelated difference segment (segment 2). The original
segment with monotonic increasing difference is divided into
three segments, and the last segment is declared as the gradual
scene-change segment.

Currently, we use a fixed’ (i.e., correlation distance) in our
system. For frames with correlation distance larger than this
predefined constant, we cannot ignore the scores outside this
fixed segment but to mistakenly identify the scores indicating
the existence of a seed. This is the main reason why lots of false
alarms are declared. To overcome this problem, we modify our
algorithm as follows. If theVth difference value (comparing to
the first reference image frame) is less than a threshold, which
means that the scene content does not change significantly in the
durationV, then we ignore all scores reported for this reference
frame by redefining” = N. Otherwise,C' = predefined con-
stant. Therefore, the false alarms can be reduced, however, we
can still improve our algorithm by determinirig adaptively.

V. CONCLUSION

We have illustrated the advantages of our method over the
conventional threshold problem in avoiding the false alarms by
using the validation mechanism. Experimental results show that
avery high detection rate is achieved while the false alarmrate is
gam paratively low. It also proves that the statistical model-based
approach is reliable for gradual scene-change detection.
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