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A Robust Scene-Change Detection Method for Video Segmentation
Chung-Lin Huang and Bing-Yao Liao

Abstract—This paper proposes a new method that combines
the intensity and motion information to detect scene changes such
as abrupt scene changes and gradual scene changes. Two major
features are chosen as the basic dissimilarity measures, and self-
and cross-validation mechanisms are employed via a static scene
test. We also develop a novel intensity statistics model for detecting
gradualscenechanges.Experimental resultsshowthat theproposed
algorithms are effective and outperform the previous approaches.

Index Terms—Abrupt scene changes, gradual scene changes,
scene-change detection.

I. INTRODUCTION

FOR video, a common first step is to segment the videos into
temporal “shots,” each representing an event or continuous

sequence of actions. A shot represents a sequence of frames cap-
tured from a unique and continuous record from a camera. The
main problem of segmenting a video sequence into shots is the
ability to distinguish between scene breaks and normal changes
that happen in the scene. These changes may be due to the mo-
tion of large objects or the motion of the camera. When special
effects are involved, two shots are merged using gradual transi-
tion. The types of gradual transitions used mostly are dissolve,
fade in, and fade out. A fade is a gradual transition between a
scene and a constant image (fade out) or between a constant
image and a scene (fade in). A dissolve is a gradual transition
from one scene to another, in which the first scene fades out and
the second scene fades in.

To segment a video sequence into shots, a dissimilarity mea-
sure between two frames must be defined. This measure must
return a high value only when two continuous frames fall in dif-
ferent video shots. Dissimilarity measure is mainly based on a
pixel-based methods [1] and histogram-based methods [2], [3].
The pixel-based methods are highly sensitive to motion of ob-
jects. Histogram-based methods provide a better tradeoff be-
tween accuracy and speed, and its performance is good for the
case of abrupt scene changes such as cuts. The best performance
is obtained by test [3]. Unfortunately, in presence of dissolve,
the difference between consecutive frames may be too low to
be misinterpreted as a difference due to motion. Operations on
fully decompressed or uncompressed video do not permit rapid
processing because of the data size. Other algorithms [4], [5]
are developed to operate directly on MPEG compressed data
without having to first perform full frame decompression.

The two main problems in most existing algorithms are: 1)
they are threshold-dependent algorithms and 2) they suffer false
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detection with scenes involving fast camera or object motion.
The histogram-based methods ignore the spatial distribution of
the luminance or colors. Consecutive frames may have different
spatial distribution, but similar histograms, and they are de-
clared to belong to the same shots. This paper proposes a scene-
change detection algorithm with three contributions: 1) relaxing
threshold selection problem; 2) higher detection rate (i.e., scene
change should not be missed); and 3) lower false alarm rate.

II. A BRUPT SCENE-CHANGE DETECTION

Here, we will explain how to choose the basic features for the
dissimilarity measure between frames and how to apply static
scene test to characterize the scene-change type and to facilitate
the detection process.

A. Measurement of the Changes Between Frames

The effectiveness of detecting the scene changes depends on
the suitable choice of similarity metric between two frames.
Let and be two frames, and their difference is denoted
by . Several different classes of metrics are discussed
below.

1) Pixel-Based Difference:The first class relies on the mea-
surement of corresponding pixel–pixel differences. It is not a
good metric for change detection due to its sensitivity to object
and camera motion. One alternative is to smooth the image in
the beginning. Smoothing can be performed on the spatial im-
ages before the differences are taken. We choose the DC image
difference [4] as our first basic dissimilarity measure for scene
detection. The DC image difference is defined as

(1)

where and are the DC image of frames
, and , which are denoted as and . They

are divided into 8 8 blocks. The DC image of frame is de-
termined as

(2)

2) Histogram-Based Difference:We survey several types of
histogram based algorithms and find thattest has in general
better performance with respect to other measures. So we adopt
the test [3] as our second feature

if
otherwise

(3)

where is the bin value of the histogram of frame, and
is the overall number of bins.
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Fig. 1. Example of edge detection: (a) the original image; (b) the edge image; and (c) dilated image with radiusr = 3.

These two features are chosen for a number of reasons. First,
they are easy to compute in the pixel domain. In addition, it is
desirable to have both pixel- and histogram-based measures be-
cause they complement each other’s weaknesses. Pixel-based
techniques may generate false alarms whenever there are fast
moving objects or fast camera movement in the video. His-
togram-based techniques are fairly immune to these effects but
they may miss scene changes if the luminance distribution of the
frames does not change significantly. Here, we combine the two
methods—as well as scene-transition analysis—and develop a
robust scene-change method.

B. Static Scene Test

A static scene is characterized in the sense that all objects
present in the scene exhibit rather small motion compared to the
frame size, and global movement caused by the camera is slow
and smooth. In a static scene, we find a minimal variation of both
the spatial and temporal information of the consecutive frames.
The temporal visual content of static scene does not have signif-
icant change. On the other hand, in dynamic scene, there exist
fast object movements or camera zooming and panning motion.
The dynamic activities are difficult to formularize by analyzing
the spatial and temporal difference of the pixels or histogram.

1) Edge Detection:The static scene test is based on a simple
observation: the intensity of edges of a static scene will be pre-
served around the spatial location near the original place for a
period of time. Inter-frame edge variations are not obvious, thus
it permits us to track the positions of intensity edges by edge de-
tection. We use a simple gradient operator (i.e., Sobel masks) to
compute the gradient image [see Fig. 1(b)].

2) Edge Dilation: To handle the small motions of multiple
objects in the transition from frame F1 to the next frame F2, the
edge pixels of succeeding image F2 are dilated by a radius
[6]. The edge pixels of F2 are referred as ’entering’ edge pixel
with respect to F1. All entering edge pixels that are less than a
distance from the closest entering edge pixel in F1 are able
to cover the original edge pixels of F1 by dilation, if the tran-
sition is smooth and static. Dilation with radiusis achieved
by replacing each edge pixel with a diamond whose height and
width are pixels. Fig. 1(c) gives an example with .
A covering ratio is then defined to indicate the static level,
which is shown in the following:

(4)

where denotes the edge-detection operation, and bar de-
notes dilation.

A lower covering ratio means that these two frames are more
similar to each other from edge information point of view. Ra-
dius controls the covering range and how smooth a static tran-
sition is. The transition of two consecutive frames with covering
ratio larger than a predefined threshold is considered as a non-
static—or dynamic—scene.

C. Scene Transition Classification

We can further extend the concept of the static scene test to
classify the abrupt scene transition types. By analyzing the static
property of a number of frames preceding the detected peak of
potential scene change, and those of the succeeding frames, we
generalize the scene transition types into three main categories:

1) static scene to static scene;
2) dynamic scene to static scene or vice versa;
3) dynamic scene to dynamic scene.

D. Detection Algorithm

Based on [4], our detection algorithm starts with the local
peak selection using a sliding window, since scene change is
a local activity in the temporal domain. We declare two kinds
of abrupt scene change: genuine and ambiguous, in order to
relax the threshold problem. Two gray zones are allowed in our
two-phase system, and the final decision for ambiguous decla-
ration will be made in the second phase. The overall system ar-
chitecture is shown in Fig. 2.

In the first phase, we locate the highest and the second highest
peaks of DC image difference in the midst of the sliding window,
and then calculate the ratiobetween the first and second peaks.
Two thresholds are used, a larger and a smaller . The
parameter is imposed to avoid false alarm against fast panning
or zooming scenes. For genuine scene change with a larger,
we are sure that only those dramatic changes are detected and
thus false detections are avoided. For ambiguous scene change
with a smaller , we may have to go through the second phase. In
the second phase, we take advantage of the second measure for
cross-validating the ambiguous one that may be a scene change
with blunt peak or a false alarm due to fast camera and object
motion.

While the local peak in the midst of the difference sequence
indicates an ambiguous scene change, we first employ the
second feature (histogram) measured across the peak. In the
second phase, we also use two thresholding values to classify
the scene types in terms of five different video transition types
(see Table I). If it is smaller than the lower threshold, then type
E is declared, which indicates no scene change. If it is larger
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Fig. 2. Overall system of the abrupt change detection.

than the lower threshold, we employ the self-validation, which
is basically a static scene test algorithm. It applies the static
scene test algorithms (Section II-B) on the frames across the
possible scene cut to differentiate whether the scene is static or
dynamic. Second, if it is larger than the higher threshold and
the scene is a dynamic scene (Type C), then a real scene cut is
identified. Instead, if it is larger than the higher threshold and it
is a static scene (Type A), then no scene cut is declared. Finally,
if the histogram measure is between the smaller threshold and
the larger threshold, then it may be types B or D. Still, the static
scene test algorithm is required to differentiate the type B from
type D. For type B, there is no scene cut declared, whereas for
type D, we need to apply the cross-validation.

For type D, we apply cross-validation to find out the possible
scene transition type on both sides of the ambiguous peak [Sec-
tion II-C]. From our observations of all the video sequences,
human eyes cannot easily differentiate scene transitions such as
dynamic-to-dynamic transitions. Normally, there are very few
cases in video sequences that are found to be real scene changes

TABLE I
POSSIBLEVIDEO TRANSITION TYPESACROSS THEAMBIGUOUSPEAK

with two dynamic scenes on the both sides of the peak. Dy-
namic-to-dynamic transition usually indicates continuous ob-
ject or camera motion, rather than a real scene change. From
our experiments, we find that we may declare a false alarm in
this case. On the other hand, if the scene transition type is not a
dynamic-to-dynamic, a real scene change will be declared. This
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second detector (histogram-based) uses the information of video
transition to validate or invalidate the ambiguous scene cut de-
clared by the first detector. Most of the false alarms declared by
the histogram detector are due to sudden light changes, while
the edge information is more or less invariant to these changes.

III. GRADUAL SCENE-CHANGE DETECTION

Gradual scene change consists of dissolve, fade-in, and
fade-out. Here, we propose a novel detection algorithm based
on an intensity statistics model.

A. Dissolve, Fade-In, and Fade-Out

The gradual transition in which the changes from frameto
is much faster than those prior to frame and after frame

. Common form of gradual transition includes the special ef-
fect of dissolving, fading in, and fade out. A dissolve operation
from scene to in time duration is a sequence of frames
represented by

(5)

A fade-in is a special case with and fade-out .
Comparison based on successive frames alone will not be useful
for the detection of gradual scene transitions because changes
are small in this case. Camera and object motions always intro-
duce a larger variation than a gradual transition. Yeo’s method
[4] compares every frame with the followingth frame. Their
method works for certain kinds of video sequences; however,
its limitation is that the duration of detecting transition must be
fixed. Besides, the “plateau” is not assuring flatness during the
transition, and it will miss the gradual scene change. Next, we
will develop a new approach to detect gradual scene change.

B. Intensity Statistics Model

The intensity similarity between two frames within a scene
depends on their relative distance. The farther their distance is,
the less correlation is observed. We develop an intensity statis-
tics model based on this assumption. We assume that the cor-
relation (similarity measure) between two frames within a shot
is totally independent if their relative distance is long enough.
We discover that, for any frames near the reference frame, their
dissimilarity measure almost increases exponentially with their
distance. For those who are “far” away from the reference frame,
their difference measures are somehow limited. Since we as-
sumed their independence with each other, the difference mea-
sures are randomly distributed but reaching a vibrated constant
(with a small variation)—see Fig. 3.

We first define a “seed”’ as the beginning frame of a gradual
transition. Here, we find that the dissimilarity increases linearly
with their distance during the transition. After the transition is
over, the difference measures (over a temporal window distance

) are randomly distributed since the frames after transition are
totally different from theseed. We also find that the difference
measure during the transition is definitely nondecreasing, which
is a very crucial property for our detection algorithm. Further-
more, we define the difference measure generated by comparing

(a)

(b)

Fig. 3. (a) Dissimilarity sequences using DC image difference for comparing
a fixed frame with all its successive 49 frames. (b) Dissimilarity sequences for
comparing a seed with all its successive 49 frames.

a frame with itself and its successive frames as the
“ -distance measure”

- (6)

where denotes its frame number, represents the DC image
difference measure.

The -distance measuremodel shown in Fig. 4 is divided
into four segments. In segment 1 (with a constant length),
frames within this segment are correlated to the reference frame

to some degree and their differences increase with their dis-
tances. As the temporal distance increases, the monotonic in-
creasing difference will finally become saturated. In segment
2, since the temporal distance from the frames to the reference
frame is so long that there is almost no correlation between the
frames in segment 2 and reference frame. However, the dif-
ferent measure in segment 3 is linear increasing. In segment 3
(a gradual transition with an unknown length), the temporal
distance from frame and the reference frame is so long
that (difference between and ) is random. The
same scenario occurs for the rest of the framesin segment
3. Therefore, the distance measure of the frames in segment 3
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Fig. 4. Ideal model of theN -distance measure of a frame nears a seed.

has little relation with the reference frame. The difference be-
tween and depends on the dissimilarity measure between
and themselves, which increases with their relative distance.
The statistics property of segment 4 is similar to segment 2.

C. Gradual Scene-Change-Detection Algorithm

The goal of our gradual scene-change detection is to locate
the transitions in which the -distance measurevariations seem
to be linear (or gradual). If we further differentiate the-dis-
tance measure, it will become linear in segment 1 and a constant
in segment 3, respectively. In segments 2 and 4, the difference
distributions after differentiation are still random. To distinguish
these segments, we may compute their “zero crossing rate”. In
segments 2 and 4 (with random characteristic), we may find high
zero crossing rate, whereas in segments 1 and 3, we expect low
zero crossing rate. Our method is illustrated as follows.

1) -distance measure: For any frame,seedor nonseed, we
may perform the -distance measure using (6).

2) Difference operation: Form a difference operation on
to generate as

(7)

3) Zero-crossing rate calculation: Compute the zero
crossing rate of

for

a zero crossing at frameis observed

4) Low-pass filtering: Implement a simple low-pass filter to
keep the low frequency segments and to remove the high-
frequency segments.

For zero crossing at frame and next zero crossing
at frame that
and , where

, and .
Now if the number of zero crossings between frameand

frame is larger than a threshold, then we declare the fragment
from frame to frame is high frequency fragment, else
it is low frequency fragment. Once several continuous low
frequency fragments are identified, the gradual scene-change
segment (consists of fragments) is located.

Here, we use a quantitative measure to differentiate the
low frequency fragments from the high-frequency fragments.
We employ a local “score” record mechanism ,

record mechanism for each frameof the
-distance measure , and a global “track” record

mechanism , , for all frames. The length
of the is that is the total number of frames in the video
sequence . For low frequency fragments, they score
“1”, whereas score “0” is given for high frequency fragments.
For instance, frames within the duration of nondecreasing
have been marked score “1”. We initialize , for

. For a high frequency fragment , we reset
, for , . The seed-searching

step is the fragment length .
Fromourmodeldiscussed inSection III-B, frames insegments

1 and 3 have score “1”. Since gradual scene change does occur in
segment 3 only, we need to ignore the scores in segment 1 due to
correlation behavior of the reference frame and its neighboring
frames. The correlated distance in segment 1 is “,” which is an
important parameter for our proposed model. All local scores for
frames are then stored and accumulated in thetrack record with
proper shifts. The following procedure shows how to accumulate
the record to the record

for

To develop a fast seed-searching process, we select one
from every consecutive frames for -distance measure. The
seed-searching algorithm finds a frame indexof which the

is the maximum accumulated score as: .
Where denotes the distance of-distance measure, indi-
cates the seed-searching step andis the assumed correlated
distance, respectively. Note that the score is the highest score
a frame can possibly achieve. All frames within the gradual
transition should also have the same score. We declare a gradual
transition with the beginning frame and duration , where
frames have the same highest scores
observed in the track record.

To prevent the false alarm of the sub-sequence that illustrates
the similar -distance measurewith the pre-defined model, we
assume:

1) a significant histogram change will be observed between
the two extremes of declared gradual transition—else, we
bypass this seed and look for the next seed;

2) is supposed to be larger than a constant (in our case,
).

IV. EXPERIMENTAL RESULTS

Here, we evaluate the performance of our proposed method.
Abrupt and gradual scene changes are separately evaluated be-
cause of their different performance measures. The success of
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TABLE II
VIDEO SEQUENCESTYPESUSED IN THE EXPERIMENTS

gradual scene-change detection involves the precision of the du-
ration detected. Various types of video streams are tested in
the experiments, which are summarized in Table II. About 500
abrupt scene changes and 120 gradual scene changes in total are
tested in the experiments and the results are verified manually
by human observation. We apply the performance measurement
[7], and then we compute the statistics of the experimental re-
sults of the testing video streams. Finally, some individual cases
are selected and discussed.

A. Performance Parameters

The performance of a scene-change-detection algorithm is
usually expressed in terms of recall and precision. The recall
parameter defines the percentage of true detection (performed
by the detection algorithm) with respect to the overall events
(scene changes) in the video streams. Similarly, the precision is
the percentage of correct detection with respect to the overall
declared event. The recall and precision are defined as

and

(8)

where
number of correct detection;

number of miss;

number of false detection;

number of the existing events;

number of overall declaration.

In case of dissolves, these two parameters do not indicate the
precision of the detected duration. The detected dissolve does
not always coincide with the real dissolve, sometimes it is in-
cluded in the real dissolve. Sometimes it ends a few frames later.
To consider such “partial” error, two new parameters have been
defined:cover recallandcover precision. The cover recall is
defined as the percentage of covered length of correct detected
dissolve with respect to the length of the real dissolve; whereas,
the cover precision can be defined similarly as

and (9)

where is the length of the real dissolve,is the length of the
declared dissolve andis the length of the real dissolve covered
by the declared dissolve.

TABLE III
SCENE-CHANGE STATISTICS I OF OUR SYSTEM

TABLE IV
SCENE-CHANGE STATISTICS II OF OUR SYSTEM

B. The Statistics of the Results

Various types of video streams are tested in the experiments,
their contents are summarized in Table II. We give the statistics
of our experimental results in Tables III and IV.

1) Abrupt Changes:For abrupt scene-change detection, the
reported recall is about 97.7%. Most of the misses are due to the
outcome of the second phase detection when video transition
Type D is found, and cross-validation indicates dynamic-to-dy-
namic scene transition. Some misses occurred because the ratio
between the first peak and the second peak are even smaller than
the lower threshold that makes the first phase detector fail. In
other words, they suffer great variations in scene contents before
or after the scene change. False detections are dominantly de-
cided by the first detector (pixel-based) only, and the results are
not effectively cross-validated by the histogram measure (i.e.,
the ratio between the first peak and the second is larger than the
higher threshold). In general, they manifest themselves as the
local peaks, but are small from global point of view. If we apply
the self and cross validation to both genuine scene change and
ambiguous scene change, the precision increases dramatically
to almost 98%.

2) Gradual Change:We show two examples of gradual
scene change detected by our algorithm. We demonstrate the plot
of the track of a long dissolve (about 2 s) and the plot of the track
of four dissolves (obtained from an MTV video) in Figs. 5 and
6, respectively. In both cases, , , and .
From Table III, we find that the proposed gradual scene-change
detection method is prone to false alarm than miss. Since our
statistical model is based on segmenting the linear behavior
of frame dissimilarity, once the characteristics of frames are
linear it will be declared gradual scene change. However,
sometimes, false alarms may happen. We give two false alarm
examples. In Fig. 7, duration from frame 338 to 368, there is
a slow panning sequence. Since the camera panning motion
generates a long sequence with and linear
increasing accumulated score is identified, a gradual scene
change is declared. In Fig. 8, from frames 1316 to 1365, there
are a linear increasing difference, however, the presence of two
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Fig. 5. Track plot of a long dissolve segment—frame 45 to 104.

Fig. 6. Track plot of four dissolves detected in an MTV video.

(a)

(b)

Fig. 7. False alarm due to the statistical similarity: (a) 100-distance measure
of frame 300 (NBA basketball sequence) and (b) local score distribution.

(a)

(b)

Fig. 8. False alarm due to the statistical similarity: (a) 50-distance measure of
frame 1316 and (b) local score distribution. Note two peaks in (a) are due to
flashlight.

peaks of difference (due to sudden flashlight) are interpreted as
an uncorrelated difference segment (segment 2). The original
segment with monotonic increasing difference is divided into
three segments, and the last segment is declared as the gradual
scene-change segment.

Currently, we use a fixed (i.e., correlation distance) in our
system. For frames with correlation distance larger than this
predefined constant, we cannot ignore the scores outside this
fixed segment but to mistakenly identify the scores indicating
the existence of a seed. This is the main reason why lots of false
alarms are declared. To overcome this problem, we modify our
algorithm as follows. If the th difference value (comparing to
the first reference image frame) is less than a threshold, which
means that the scene content does not change significantly in the
duration , then we ignore all scores reported for this reference
frame by redefining . Otherwise, predefined con-
stant. Therefore, the false alarms can be reduced, however, we
can still improve our algorithm by determiningadaptively.

V. CONCLUSION

We have illustrated the advantages of our method over the
conventional threshold problem in avoiding the false alarms by
using the validation mechanism. Experimental results show that
a very high detection rate is achieved while the false alarm rate is
comparatively low. It also proves that the statistical model-based
approach is reliable for gradual scene-change detection.
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