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Abstract

This paper introduces a multi-Principal-Distribution-Model (PDM) method and Hidden Markov Model (HMM) for gesture recognition.
To track the hand-shape, it uses the PDM model which is built by learning patterns of variability from a training set of correctly annotated
images. However, it can only fit the hand examples that are similar to shapes of the corresponding training set. For gesture recognition, we
need to deal with a large variety of hand-shapes. Therefore, we divide all the training hand shapes into a number of similar groups, with each
group trained for an individual PDM shape model. Finally, we use the HMM to determine model transition among these PDM shape models.
From the model transition sequence, the system can identify the continuous gestures representing one-digit or two-digit numbers.q 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Humans are experts at using gestures for communication.
Hand gestures have been widely used in the deaf community
as the major communication media called sign language.
Gesture input aims to exploit this natural expertise for
human–computer interface. If the machine can understand
the human gesture either static or dynamic effectively, then
it will greatly benefit the human beings. In the last several
years, there has been an increased interest in trying to intro-
duce human–machine interaction through human body
motion which coincides with a growing interest in a closely
related field—virtual reality.

Huang et al. [1] presented a review of the most recent
studies related to hand gesture interface techniques: glove-
based technique, vision-based technique, and analysis of
drawing gesture. The vision-based technique is the most
natural way of constructing a human–computer interface
which has many applications [13–15]. However, it has
difficulties in: (1) segmentation of the moving hands;
(2) tracking and analyzing the hand motion; and (3)
recognition.

The vision-based gesture recognition methods avoid
using expensive wired “dataglove” equipment [2]. In this

paper, we are interested in developing new vision-based
methods. Huang et al. [3] have developed a Chinese sign
language recognition system to recognize 15 different
gestures by using Hausdorff distance measurement and a
3-D neural network. Tamura et al. [4] developed a system
which can recognize 20 Japanese sign gestures based on
matching simple cheremes. Davis et al. [5] proposed a
model-based approach by using a finite state machine to
model four qualitatively distinct phases of a generic gesture.
Hand shapes are described by a list of vectors and then
matched with the stored vector models. Charayaphan et al.
[6] proposed a method to detect the direction of hand motion
by tracking the hand location, and use adaptive clustering of
stop location, simple shape of the trajectory, and matching
of the hand shape at the stop position to analyze 31
American Sign Language (ASL) symbols.

Rehg et al. [7] have designed a system calledDigitEyes
that uses a 3-D cylindrical kinematics model of human hand
with 27 degrees of freedom. Finger tips and links were
chosen as the model matching features and were extracted
from either single or stereoscopic images. Darrell et al. [8]
have proposed another space–time gesture recognition
method. They represented the gestures by using sets of
view models, and then matched the view model with the
stored gesture models using dynamic time warping. Starner
et al. [9] have used a Hidden Markov Model (HMM) for
visual recognition of complex, structured hand gestures
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such as ASL. They applied HMM to recognize “continuous”
ASL of a full sentence and demonstrated the feasibility of
recognizing complex gestures.

Cui et al. [10] have proposed a learning-based hand
gesture recognition framework. It consists of a multi-class
multivariant discriminant analysis to automatically select
the most discriminating feature (MDF), a space partition
tree to achieve a logarithmic time complexity for a data-
base, and a general interpolation scheme to do view
inference. Hunter et al. [11] explored posture estimation
based on the 2-D projective hand silhouettes for vision-
based gesture recognition. Wilson et al. [12] presented a
state-based technique for the representation and recognition
of gesture. States are used to capture both the variability and
repeatability evidenced in a training set for a given gesture.
They developed a method for recognizing gesture from an
unsegmented continuous stream of sensor data. However,
most of the previous studies are limited by (1) simple
background; (2) simple hand figures with only trajectory
analysis; (3) use of special gloves.

This paper presents a multi-PDM-based method for hand
tracking and handshape extraction, and then generates an
ordered sequence of model transitions by using the hidden
Markov Model (HMM). The PDM-based hand shape extrac-
tion is resistant to complex background influence, and the
model transition is invariant to the non-uniform changes in
speed and viewing direction. Our method has the advantage
that the gesture recognition depends on how the system
makes the PDM model transition instead of how exactly it
reaches a certain position in 3-D space. Our goal is to
convert the variances of the gesture in the spatio-temporal
space into a sequence of PDM model transitions as a gesture
symbolical representation.

The gesture recognition technique includes tracking the
object of interest and identifying the non-rigid hand-shape.
The major assumption for a successful tracking algorithm is
that the 2-D shape of the moving hand-shape changes
smoothly between two consecutive frames. The system
has two stages: (1) multi-PDM-based hand-shape tracking
and measurement and (2) HMM-based PDM model transi-
tion determination. First, we find that the PDM (or Active
Shape Model [16]) method can only fit new hand examples

similar to shapes of the corresponding training set. Since
there are so many different hand shapes with lots of vari-
eties, we cannot use the PDM shape model to deal with the
entire sequence of hand gesture. Therefore, we need to
divide all the hand shapes into a number of similar groups,
with each group trained for an individual PDM model.
Second, for each frame, with the observation of the fitness
function, we apply HMM to determine the PDM model
transition. The model transition is required when the current
flexible model is no longer suitable for a large variation of
the hand-shape in the following frames.

2. Hand shape extraction

Here, we modify the Active Shape Model [16] (or Point
Distribution Model (PDM)) method to extract the hand
shapes. For PDM, the average example is calculated and
the deviation of each example from the mean is established.
A principal component analysis of the covariance matrix of
deviations reveals the main mode of variation. Usually only a
small number of model parameters is required to reconstruct
the training examples. Lanitis et al. [17] applied the PDM to
track human face. Heap et al. [18] extended the works of
Ref. [16] by proposing a Cartesian–Polar Hybrid PDM
which allows the angular movement to be modeled directly.

We may generate new examples of the shape, which will
be similar to those in the training set, by varying the para-
meters within certain limits. The mean shape model is
placed in the image, and is allowed to interact dynamically
until it fits to the location of a newly suggested position for
each model point based on the matching of the local inten-
sity model. Different from Refs. [16,17] which deform each
model point individually, we propose another approach: (1)
moving and deforming the entire PDM shape model simul-
taneously by changing the shape parameters and (2) measur-
ing the model-image fitness by using the overall gray-level
fitness measure. Here, we apply the gradient-descent-based
shape parameter estimation that minimizes the overall gray-
level model fitness measure. By varying the shape para-
meters that are consistent with the training set, we can
find the best shape model fitted with the real face in the
image. However, in Refs. [16,17], each model point
moves independently and the movements are not consistent
with the PDM shape model, therefore, they need to adjust
the model points by estimating the PDM shape parameters
and then readjusting the movements which are computation-
intensive operations.

2.1. Point distribution model

To deal with various facial expressions on different
persons, we need to build a model which describes both
shape and variability. We manually locate the feature points
on the training set images by following some rules to ensure
that each point plays an essential role on the boundary of the
images. This will ensure the coherence of points on the
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Fig. 1. The positions of the labeled points are shown around the boundary of
the hand: (a) the labeled points of the fist that grasps firmly; (b) the five
fingers are straight.



different features. We call these points “landmark points”. If
the choice of landmark points is improper, the method may
fail to capture shape variability reliably. We select the land-
mark points (see Fig. 1) based on the following rules:

1. The points mark some parts of the object with particular
application-dependent significance, such as the center of
an eye on the face model or sharp corners of a boundary.

2. The points can be interpolated from the pre-selected
points, for instance, the landmark on the boundary at
equal distances to the other two neighboring landmarks.

2.1.1. Aligning the training set
The PDM-based method analyzes the statistics of the

coordinates of the labeled points over the training set. To
have a concise shape model, we must label (using landmark
points) different features on the images in the training set.
These landmark points on different images have minimal
difference, so that we can align them with different scale,
rotation, and translation before training. By minimizing a
weighted sum of squares of distances between correspond-
ing points on different shapes, we align every shape to the
first shape; calculate the mean shape of theN shapes; and
then align every shape to the mean shape. The detailed
algorithm of the aligned shapes of the training set (see
Fig. 2) can be found in Ref. [16].

2.1.2. Statistical analysis of the aligned shapes
Having generated theN aligned shapes and the mean

shape �x; we may calculate the deviation of the aligned
shapes from the mean shape, dxi as

dxi � xi 2 �x: �1�
Then, we can obtain the 2n × 2n covariance matrixS as

S� 1
N

XN
i�1

dxi dxT
i �2�

Applying the principal component analysis, we can project
the original 2n-dimension shape points vector to another
axis to reduce the dimension. We first calculate the eigen-
vectors of the covariance matrixS (i.e. p1;…;p2n) such that

Spk � lkpk with pT
k pk � 1 �3�

where l k is the kth eigenvalue ofS, with lk $ lk11:

According to the principal component analysis, it is suffi-
cient to use the firstt eigenvectors to describe the shape
variation. Another advantage of this method is that the
models represent the global variation rather than the local
variation of the shape.

To determine how many terms is enough for shape
variation description, we definelT as

lT �
X2n

k�1

lk and lt �
Xt

k�1

lk: �4�

Then, based on the experimental results,lt=lT � 0:8 is
sufficient. We use 51 landmark points�n� 51� and 4 eigen-
vectors �t � 4� which suffice the constraint. Given an
arbitrary shape, we can usex � �x 1 P·b to approximate it,
whereP� �p1;…pt� is the matrix of the firstt eigenvectors,
andb � �b1;…bt�T is a vector of weights which are deter-
mined by the eigenvalues�l1;…; lt�: The shape variations
can be described by the first four principal components
illustrated in Fig. 3.

2.2. The gray-level model

Since the facial contours do not indicate the existence of
strong edges, whereas, some face feature points are so close
to one another that the edge information on one point may
interfere with the edge of the other point. To resolve these
drawbacks, Cootes et al. [16] introduced the gray-level
model. Since every point on the face is on a particular
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Fig. 2. (a) and (b) illustrate the hand shapes with labeled points. (c) shows the result that (b) is aligned with (a). (d) shows the aligned shape of a training set.

Fig. 3. Illustration of the effects of varying the parameters b1, b2, b3, and b4
of hand model from first row in order.



position, its gray-level appearance for every face in the
training set will be similar. There are several ways to
describe the gray-level appearance. We may use a rectan-
gular window with the centroid located on the feature point
and find the 1-D profile which is normal to the curve passing
through the feature point to record the gray-level appear-
ance. To reduce the error caused by the background lumi-
nance variation, we sample the difference of the gray-level
along the profile and then normalize it.

For every feature point in the training set, we can extract a
profile, gj �j � 1;…;n�; of length np 1 1 pixels, centered
at the point j. If the profile’s samples starts atxstart and
ends atxend with length np 1 1 pixels (see Fig. 4), the
intensity of thekth element of the profile is

gjk � Ij�yk� �5�

whereyk is the location of the point along the profile,

yk � xstart 1
k 2 1

np
�xend 2 xstart� �6�

and I j(yk) is the gray-level at the positionyk. Then, we
calculate the normalized difference ofgj by using the
following equation:

g0j � g00j =
Xnp

k�1

ug00jk u �7�

where g00j � �g00j1;g00j2;…g00j�np11��; g00jk � gjk 2 gj�k21�; k �
1…np 1 1; andgjk is thekth pixel for thejth feature point’s
gray-level profile on the current frame. For convenience, we
will simply substitutegj for g0j : Here, we use principal
component analysis to describe the statistical property of
the gray-level. For each feature point, we calculate a
mean profile�g; then get anp × np covariance matrixSg, an
eigenmatrixPg and a set of eigenvaluelk �k � 1;…np�: For
an arbitrary sampled profileg, we apply the following func-
tion to evaluate how well it can be fitted to a particular

landmark pointj (with positionxj) as

F�xj� �
Xnp

j�1

b2
gj

lj
�8�

where bg � PT
g�g 2 �g� and bg � �bg1;bg2;…; bgnp

�: In the
fitting process (see Fig. 6), we measure theF value to deter-
mine the displacement of a particular point from the initial
position to the best fit position. Along the normal direction
of each model point, we find the smallestF value that indi-
cates the best match between the gray-level profile of the
current position of the test model point and the mean profile
of the corresponding feature point. Suppose the displace-
ment is dbest, then the adjusted displacementudXu �
0:5dbest if dbest , dmax otherwise udXi � 0:5dmax: We set
the dmax value adaptively to reduce the calculation time, it
decreases as the number of iterations increases.

Here, we assume (1) the background does not change
much during the gray-level model generation phase, and
(2) the illumination variation is linear. We may neglect
the influence of the background on the gray-level generation
by applying the differentiation and normalization on gray-
level profile (i.e. Eq. (7)) to reduce the error caused by the
illumination changes.

2.3. Shape model and feature points interaction

This section describes how to use the PDM and the gray-
level model to extract the hand-shape. Suppose the current
shape position isX (with centroidXc) and we need to adjust
the global shape variation (including the translation dXc �
�dXc;dYc�; rotation du , the scale ds) and the local shape
variation db to find the next fitting positionX 1 dX;

X 1 dX � �Xc 1 dXc�1 M ��s1 ds�;
�u 1 du��· �x 1 P·�b 1 db�� �

�9�

whereM �s; u� is a 2× 2 rotation matrix. By finding gray-
level profiles of every pointj on X 1 dX �xj [ X 1 dX� as
gj, we calculate the gray-level profile fitness valueF(xj) and
find the overallF values (i.e.,

P
j F�xj� for xj [ X 1 dX) of

all landmark points. If the
P

j F�xj� is minimized then the
position X 1 dX indicates the best fitted shape. In the
following, we illustrate a modified PDM-based fitting
process.

1. Initial Hand Model Position Estimation.In the hand-
shape extraction process, we may encounter the problem
that if the positions of some fitting points are too far away
from the actual positions, then the adjustment may
require a lot of iterations to pull the landmarks points
to the proper place. Therefore, we apply frame difference
operation to find the moving regions one of which is
supposed to be the moving hand. From these extracted
regions, we can roughly estimate the position of the hand
to place the initial PDM shape model.

2. Shape Adjustment Process.Here, we apply the two-step
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Fig. 4. Illustration of moving the center point of the 15-pixels kernel within
the specific range, and calculate theirbg�new� from the gray-level distribu-
tion.



estimations for the global shape variation parameters (i.e.
the translation dXc, the rotation du , the scale ds) and the
local shape variation parameter (i.e., db). First, we
assume that the current global shape isX, then we can
do the global shape variation for the new global shape as
X 1 dX � M �s1 ds; u 1 du�·�x�1 �Xc 1 dXc�; where
M is a 2× 2 rotation matrix,x represents the aligned
shape, andXc represents the central point of current
shape. Second, we may also deform the current local
shapex, by changing local shape parameter db to gener-
ate the new local shape asx 1 dx � �x 1 P�b 1 db�:

3. Gradient-Descent-Based Shape Parameters Estimation.
To find the best fitted shape, we propose a gradient-
descent-based shape parameters estimation method.
The global and local shape parameters estimation for
the ith iteration is illustrated in the following steps:
1. Find the next shapeX 1 dX by using the new global

shape parameters��Xc 1 dXc�; s1 ds; u 1 du�:
2. Find the gray-level profile (gj) of each landmark pointj

on X 1 dX �xj [ X 1 dX� and calculate the corre-
sponding fitness valueF(xj).

3. Add theF values for all landmark points onX 1 dX to
see if

P
j F�xj� exceeds the pre-selected thresholdFm. IfP

j F�xj� . Fm then it indicates that the shape model
does not fit to the real face on the image at all. Choose
another initial value ofXc by adding a larger variation
dXc. Determine the dXc by selecting the median one of

all the best dX of the landmark points (see Fig. 5). IfP
j F�xj� . Fm go to step 1, otherwise continue (it indi-

cates a rough shape fitness).
4. Determine the decrement or increment of the global

shape parameters (i.e.,̂ds and^du) by examiningP
j F�xj� (i.e. {�Pj F�xj��i 2 �Pj F�xj��i11} . 0 or

,0).
5. If

P
j F�xj� does not decrease (i.e. {�Pj F�xj��i2

�Pj F�xj��i11} . 0) for all small variations ds and du
then continue else go to step 4.

6. Examine the final
P

j F�xj�. If
P

j F�xj� . Fn (another
pre-select threshold) then go back to step 3 (to avoid
being trapped in the local minimum), otherwise
continue.

7. Change the local shape parameters db for the new local
shapex 1 dx and then find the minimum

P
j F�xj�,

which indicates the best fitness of the PDM shape
model. The decrement or increment of the local
shape parameters db is determined by the value of
overall gray-level profile fitness (i.e. {�Pj F�xj��i 2
�Pj F�xj��i11} . 0 or ,0).

8. Stop if {�Pj F�xj��i 2 �Pj F�xj��i11} . 0 for all varia-
tions of db, otherwise go to step 7.

3. Multi-PDM model transition using hidden Markov
model

The allowable shape domain cannot be enormously large
for a single PDM shape model. If the hand shapes undergo
enormous shape changes in the image sequence (the
variance of the cloud of each corresponding model point
of aligned shapes is very large), then we need to divide
the training set of all the possible hand shapes into several
similar shape groups. The variance of each cloud of aligned
shapes in each group has to be small for tracking the
variable hand shapes. Then each group is treated as an
individual training set and trained as a different PDM
shape model.

If the hand shape extraction by using current PDM shape
model is no longer effective, the specific HMM can be found
to determine when to replace it by another PDM model that
is called PDM model transition (see Fig. 6). In the feature
extraction process, we stop changing the PDM parameters,
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Fig. 5. The movement of the model points from the original shape (solid
lines) to the suggested shape (dash lines) by measuring the similarity
between the current extracted contour and the ones stored in the database.

Fig. 6. Illustration of the process of model transition: (a) shows the fitting ofith image frame using the model gesture-0; (b) when the flexible model meets the
(i 1 1)th frame, the current model can not fit the hand shape exactly; (c) given an initial hand-shape, the model transition occurs; (d)�i 1 1�th frame is fitted
exactly using the newly suggested flexible model.



db, once we find {�Pj F�xj��i 2 �Pj F�xj��i11} . 0: Then,
we examine the {F(xj)} to determine whether the current
PDM mode is appropriate or not. If not, then which PDM
can be chosen for the next feature extraction. The measure-
ments {F(xi)} for certain landmark points are used as an
observation sequence for the system to determine which
HMM has the highest model probability that indicates the
most appropriate PDM model transition. The measurement
{ Fi} at the landmark points is a very important information
(observations) for the system to calculate the model prob-
ability of the probable HMMs, and the highest one normally
indicates the most appropriate PDM model transition.

3.1. Hidden Markov model

A hidden Markov Model (HMM) is Markov chain whose
states cannot be observed directly, but can be observed
through a sequence of observations. There are three key
problems in HMM: evaluation, estimation, and decoding.
The evaluation problem is that given an observation
sequenceO and a model, what is the probability that the
observed sequence is generated by the model,P�Oul�: The
estimation problem concerns how to adjust the modell to
maximize P�Oul� given an observation sequenceO. In
decoding, the goal is to recover the state sequence given
an observation sequence.

Let T be the length of observation sequence,N is the
number of the state in the model,O � �O1;…ON� is the
observation sequence. In this paper, we consider the each
observation Ot as a fitness vector�F�xj�;…F�xk�� for certain
key features pointsxj ;…xk defined by the PDM model. A
HMM is characterized by the initial state probabilities,
pi ; i � 1;…;N; the state transitionaij ; i; j � 1;…N; and the
observation probability densitybj�Ot�; j � 1;…N; t �
1;…T: Let B� { bj�Ot�u j � 1;…N} ; N × N transition prob-
ability matrix A� �aij �; and the initial state probability
vector p � �p1…pN�; we may define the triplel �
�p;A;B� as a HMM. Leta1�i� � pibi�O1�; we may calculate
a t(j) for t � 2;…T and all j asat�j� � �

P
i at21�i�aij �bj�Ot�

and finally find theP�Oul� � P
i[SF

aT�i�:
Here, we create one HMM for each possible PDM

transition between two consecutive frames. We use the
observations,O � { Fi} ; from current frame, to estimate
the optimum parameters for each HMM, i.e. we obtain the
model parameterlp, for thepth HMM. Given the measure-
mentO � { Fi} of current frame and a HMM, which may
indicate certain unknown model transition, we calculate
P�Oul�: TheP�Oul� can be calculated by summing the prob-
ability over all the possible state sequenceS� �s0; s1;…sT�;
where st [ {1 ;2;…N} � ZN; in a HMM model for the
observation sequence:

P�Oul� �
X
all S

ps0

YT
t�1

ast21st
bst
�Ot� �10�

The objective in maximum likelihood estimation is to
maximize P�Oil� over all parametersl for a given

observation. The above maximum likelihood estimation
can be effectively solved by Baum–Welch algorithm [21].
Here we consider different optimization criterion for
estimating the parameters of HMM. Instead of using the
likelihood function (10), we apply the following function
as the optimization objective (it is called the state-optimized
likelihood):

max
s

P�O;Sul� � max
s

ps0

YT
t�1

ast21st
bst
�Ot� �11�

Then we may apply the segmental K-means algorithm
[20] for estimating the parameters of the HMMs which
involves two fundamental steps: segmentation and optimi-
zation. Starting from an initial modell , the segmentation
step uses the sequential decoding procedure to generate a
state sequence (with maxsP�O;S=l� which can be optimally
performed via a generalized Viterbi algorithm [22]). Given
the state sequenceSand the observationO, the optimization
step finds a new set of model parameterlp so as to maxi-
mize the above state-optimized likelihood, as

lp � argmax
l

P�O;Sul� �12�

We replace the original model by new model and iterate the
above steps until the state-optimized likelihood converges
within a prescribed threshold.P�O;Spul� is called optimal
likelihood function, andSp is the optimal state sequence.

We choose the best HMMup (indicating the appropriate
PDM model transition) by finding the highest model
probability, i.e.

up � argmax1#u#U�Pu� �13�
where Pu � Pu�O;Spulp�; and lp makes maxlP�O;Sp

=l�:
For a givenl , an efficient method to find maxsP�O;S=l�
is the well-known Viterbi algorithm. Viterbi algorithm can
be viewed as a special form of forward and backward algo-
rithm where only the maximum path at each step is taken
instead of all paths. This optimization reduces the computa-
tional load of finding the most likely state sequence. The
steps of the Viterbi algorithm are

1. Initialization. For all statesi;a1�i� � pibi�O1�;ci�i� � 0:
2. Recursion. From t � 2 to T for all state j;at�j� �

max�at21�i�aij �bj�Ot�;ct�j� � argmaxi�at21�i�aij �:
3. Termination.Pr� maxs[SF

�aT�s��; s� argmaxs[SF
�aT�s��:

4. Recovering the state sequence.From t � T 2 1 to 1, st �
ct11�st11�:

3.2. HMM training

Since our decision rule is based on the state-optimized
likelihood function, the estimated parameterl 0 should be
such that Pr�Oul 0� is maximized over the training set. The
training problem is the crucial one for most applications of
HMMs. It allows us to optimally adapt model parameters to
the observed training data, and then create the best models
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for real phenomena. In this paper, we define the observation
sequence in terms of spatial order (for each input frame) as
O � �O1;O2;O3;O4;O5� whereO1 � �F�x5�; F�x6�; F�x7�;
F�x8�; F�x9�; F�x10�; F�x11��; O2 � �F�x14�; F�x15�; F�x16�;
F�x17�; F�x18�; F�x19�; F�x20��; O3 � �F�x22�; F�x23�; F�x24�;
F�x25�; F�x26�; F�x27�; F�x28��; O4 � �F�x30�; F�x31�; F�x32�;
F�x33�; F�x34�; F�x35�; F�x36��; O5 � �F�x38�; F�x39�; F�x40�;
F�x41�; F�x42�; F�x43�; F�x44��: The central feature pointsx8,
x17, x25, x33, x41 are located on the finger-tip of the thumb, the
index finger, the middle finger, the ring finger, and the little
finger, respectively. Each observation vector Ot may be
assigned to one of the three different states: bending (Sb),
half-bending (Sh), and straight (Ss) indicating the status of
each finger.

We start with a training sequence consisting of a number
of repetitions of the gesture frames (made by many gesture-
makers). For each HMM model, we first adjust the model
parametersl so that Pr�Oul� is maximized. Then we use
Viterbi algorithm to find the optimal state sequence asso-
ciated with the given observation sequence. The results are
used to re-estimate the model parameterl 0. The initial
model defines a critical point of the likelihood function, in
which l 0 � l: Baum–Welch algorithm [21] has been
proposed to re-estimate a new modell 0 which is more
likely in a sense that Pr�Oul 0� . Pr�Oul�: The modell 0

indicates that the observation sequence is more likely to
be produced. Instead of finding thelp that minimizes
P�Oul� (i.e. maxlP

P�Oul��; which requires summing all
possible state sequences (see Eq. (10)), we focus on the
most likely state sequence (see Eq. (11)), and apply the
segmental K-means algorithm [20] which had been proved
to have faster convergence and higher flexibility.

It is shown that the segmental K-means algorithm [20]
converges to the maximized state-optimized likelihood
function for the Gaussian density. We use K-means
algorithm [19] to cluster all the training vectors intoN
clusters, each cluster is chosen as a state and numbered
from 1 to N. The tth vector Ot of a training sequenceO is
assigned to statei, denoted asOt [ i; if its distance to the
statei is smaller than its distance to any other statej, j ± i:
This is the initial step for the complete procedure.

Given a state sequenceS and the observationO, the
optimization step finds a new model parametersl 0 so as
to maximize the above state-optimized likelihood (see
Eq. (12)). Note that the maximization of the state-optimized
likelihood in Eq. (12) may not be straightforward. For each
statei, the generalized iteration algorithm may have to be
employed, depending on the choice of the observation
densities which need to be T-converge [20,22]. We then
replace the original modell by the newl 0 and iterate the
above two steps (the segmentation and optimization steps)
until the state-optimized likelihood converges within a
predefined threshold.

4. System implementation

In this paper we develop a system to interpret the gestures
made only for decimal numbers. Here, we define some
criteria for gesture making so that the gestures can be
identified by our system.

4.1. Gesture making (the segmentation and optimization
steps)

To make a single-digit number gesture, we start the
gesture-making operation from holding our fist, then raise
certain fingers to indicate the specific number (see Fig. 9),
and finally bend those fingers to return to fist-holding state.
If one want to make gesture indicating two-digit number,
then he may repeat the above operation. However, if we
want to make a gesture indicating a single-digit ‘0’, then
we may differentiate the beginning/ending fist-holding
gesture from the gesture indicating digit ‘0’. Therefore,
we use the forward translation motion between the begin-
ning fist-holding gesture and the gesture indicating digit ‘0’
and then use the reverse translation motion between the
gesture indicating digit ‘0’ and the ending fist-holding gesture.
The translation motion is also applicable to the gesture of
the other nine digits so that the system can differentiate the
beginning/ending fist-holding gesture from the gesture-
digit ‘0’.
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Table 1
The possible HMMs related to the current selected HMM

Current PDM model Possible related and tested HMMs

m0 HMM0 HMM01 HMM02 HMM03 HMM04 HMM05 HMM06 HMM07 HMM08 HMM09

m1 HMM1 HMM10 HMM12 HMM13 HMM14 HMM15 HMM16 HMM17 HMM18 HMM19

m2 HMM2 HMM20 HMM21 HMM23 HMM24 HMM25 HMM26 HMM27 HMM28 HMM29

m3 HMM3 HMM30 HMM31 HMM32 HMM34 HMM35 HMM36 HMM37 HMM38 HMM39

m4 HMM4 HMM40 HMM41 HMM42 HMM43 HMM45 HMM46 HMM47 HMM48 HMM49

m5 HMM5 HMM50 HMM51 HMM52 HMM53 HMM54 HMM56 HMM57 HMM58 HMM59

m6 HMM6 HMM60 HMM61 HMM62 HMM63 HMM64 HMM65 HMM67 HMM68 HMM69

m7 HMM7 HMM70 HMM71 HMM72 HMM73 HMM74 HMM75 HMM76 HMM78 HMM89

m8 HMM8 HMM80 HMM81 HMM82 HMM83 HMM84 HMM85 HMM86 HMM87 HMM89

m9 HMM9 HMM90 HMM91 HMM92 HMM93 HMM94 HMM95 HMM96 HMM97 HMM98



4.2. PDM transition sequence generation for gesture
identification

For each frame, we can track the hand gesture by using
the most appropriate PDM models (applied to the previous
frame) to calculate the {F(xi)} as an observation sequence.
Using the observations of current frame, we apply all possi-
ble related HMMs (see Table 1) and find the best HMM with
the highest state-optimized likelihood that indicates the
most appropriate PDM model for the current frame. In our
system, we have trained two different categories of HMMs.
The first one has 10 HMMs (HMMi, i � 0; 1;…9� indicating
no PDM model transition. The second one consists of 45
HMMs (HMM ij) corresponding to a PDM model transition,
from current PDM model mi to the other PDM model mj.
We assume that the measurement statistics {F(xi)} corre-
sponding to HMMij representing the transition from PDM
model mi to PDM model mj and the other HMMji indicating
the transition from PDM model mj to PDM model mi are
trained as the same HMM. Given an observation sequence,

we need to find the optimal HMM which indicates
whether there is an PDM model transition or not. If
there is a PDM model transition, then what kind of
PDM model transition may occur. During the training
process, given as many known input frames as possible, we
train 55 different HMMs individually for our system. The
best trained HMM is the one indicating no PDM model
transition. Since the measurement statistics {F(xi)} of
most of the frames in the image sequence favor the first
category HMM.

To recognize the hand gesture, we need to convert an
image sequence to a sequence of PDM model transitions.
Our system can identify the gesture by interpreting the
ordered sequence of PDM model transitions. In this study,
we let the PDM model m0 play two different roles in the
transition sequence as: (1) a conjunctive PDM model repre-
senting the initial, intermediate, or final PDM models and
(2) a sign PDM model representing the digit ‘0’. Each
gesture can be described by a PDM model transition
sequence that starts from the initial PDM m0, and ends
with the final PDM model m0.

Here, we assume that the PDM model transition can
also be determined if the hand movement is tracked by
measuring the displacement of the centroid of the
extracted hand shapes in two consecutive frames. There-
fore, to make a gesture indicating digit ‘0’ is made, we
apply a hand translation motion to indicate the PDM
model transition from the initial conjunctive model m0

to the sign model m0. A input image sequence of a
gesture indicating a single-digit number ‘n’, will be
processed and described by three consecutive PDM models
m0, mn, and m0. Hence, the PDM model m0 plays two
different roles: (1) m0 is a conjunctive PDM model, if
some sort of translation motion is detected and the hand
has moved away from the original position. (2) m0 is a sign
PDM model, if no translation motion is found for a small
time interval and then the hand has returned to the original
position.

To give a more specific illustration of how to interpret the
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Fig. 7. Illustration of the gesture recognition with the model transition
having a global motion. The level 1 represents the initial model, the levels
2 and 4 represent the active model, the level 3 is the intermediate model,
and the level 5 represents the final model.

Fig. 8. Illustration the gesture recognition without intermediate state of continuous gesture model transition. The level 1 represents the initialmodel, the level 2
and 3 represent the active model, and the level 4 represents the final model.



gesture through the PDM model transition sequence, we
illustrate the following examples:

• Example one:As illustrated in Fig. 7, to make a gesture
indicating two-digit number ‘jk’, we can use a so-called
the gesture with translation motion. This gesture can be
described successfully by four PDM model transitions as:
m0 ! mj ! m0 ! mk ! m0:

• Example two:As shown in Fig. 8, to make another
gesture indicate the same two-digit number ‘jk’, we can

use a so-calledthe gesture without translation motion.
This gesture can also be depicted by another PDM
model transition sequence as: m0 ! mj ! mk ! m0:

Here, the hand translation motion is unnecessary to
imply the PDM model transition from mj to mk.

• Example three:If we want to recognize a gesture of a
double-digit number ‘nn’, then we may find the inter-
mediate conjunctive PDM model m0 between two sign
PDM models mn. The corresponding PDM model
transition sequence is represented as m0 ! mn ! m0 !
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Fig. 9. The image sequence tracking of the single-digit gestures from “1” to “9”, the PDM model transition starts from m0 to mi, and finally returns m0.



mn ! m0: There is only one kind of gesture, “the gesture
with translation motion”, that can be used to indicate a
double-digit number.

• Example four:However, we can only use one type of
gesture (the gesture with translation motion) to represent
the same number ‘n0’. We may find the intermediate
model m0 between two sign models mn and m0, since
there is noticeable hand movement between the sign
model m0 and the intermediate (or end) model m0. This
example can be represented by the PDM model transition
sequence as m0 ! mn ! m0 ! m0 ! m0; in which the
second PDM model m0 acts as an intermediate model.

From the above examples, we may find that we can use
two kinds of gestures (with/without motion) to indicate the
one-digit or two-digit numbers. However, for the double-
digit number ‘nn’ or the number with digit ‘0’, we can only
apply the gestures with translation motionto avoid the
misunderstanding between the sign model m0 and the

conjunctive model m0. The rules can also be applied to
other gestures indicating multi-digit numbers.

5. Experimental results

We have developed a system to recognize a gesture repre-
senting any one-digit or two-digit number. First, we take 30
typical frames for training each HMM which indicates a
specific PDM transition. There are five vectors�T � 5� in
each observation sequence indicating current information of
the five fingers and three different states�N � 3� for each
model indicating the bending, half-bending and straight
status of each finger. In the training process, we take average
of all training sequences of each class to get an average
sequence for each class. To train the model, we use the K-
means algorithm [19] to cluster all the observation vectors
into N cluster.

In the experiments, we present each gesture with an
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Fig. 9. (continued)



ordered model sequence ended always with model m0.
From the identified PDM model transition, we can do
the gesture recognition effectively. In the experiments,
we take the gesture sequences from the 12 volunteers,
each one demonstrates different hand gestures. We take
10 image sequences for every volunteer, and overall, we
take 120 image sequences. There are 15 pictures in an
image sequence, and the size of the picture is 256×
256: The camera used in our experiment is a SONY
XC7500. For each gesture, an image sequence of 30
frames is taken at 30 frames/s and stored in DRAM
on an Oculus-F/64 frame grabber which is transferred to
the host computer (a PC with Pentium CPU) for further
processing. Here, we present several experimental results

of hand gesture tracking. The PDM-based hand-shape track-
ing of image sequence of the single (or two) digit gesture
has to deal with the following problems: (1) The initial hand
shape is not the standard shape as described by PDM model
m0. (2) The hand shape is occluded by face, neck, or upper
arm.

In our experiments, the size of each image frame is 256×
256; its frame rate is 30 frames/s, and the number of frames
of each gesture is less than 30. Fig. 9 shows the hand track-
ing of single-digit-number gestures before three different
complex backgrounds. These gestures represent numbers
1, 2, 3, 4, 5, 6, 7, 8 and 9, respectively. Fig. 10 demonstrates
the tracking process of the hand shape in the first image
frame which is not similar to the standard initial shape.
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Fig. 10. The image sequence tracking single-digit gesture “3”, but its first hand shape is not well described by model m0: (a) shows the initial hand shape located
near the real hand in the first frame; (b)–(f) present the model transition from m0 to model m3, and finally return to model m0.

Fig. 11. The image sequence tracking of two-digit gesture “12”: (a) shows the initial hand-shape located near the real hand in the first frame; (b)–(f) present the
PDM model transition from model m0 to m1, then return to model m0, finally transition to model m2.



Figs. 11–14 show the continuous hand tracking of two-digit
gestures having model m0 as an intermediate conjunctive
model. These gestures represent numbers ‘12’, ‘13’, ‘27’,
and ‘38’, respectively. Figs. 15 and 16 show the continuous
hand tracking of two-digit number gestures without having
PDM model m0 as an intermediate conjunctive model (i.e.
model transition without referring to the hand translation
motion). These gestures represent numbers ‘12’, and ‘24’,
respectively.

In the above sequence, most of the model transitions
detected by HMM are accurate. The incorrect PDM model
transitions are identified when (1) the observation vector
(provided by the PDM-based hand-shape extraction
process) is not accurate, (2) the movements of the raising

or bending fingers are not coherent. For instance, the gesture
of number ‘2’, normally, requires both the index finger and
the middle finger raised up-right almost at the same time. If
the middle finger is raised faster by one frame or two,
then the selected HMM may not indicate the correct
PDM model transition. The error will influence the selection
of all possible HMMs tested for the succeeding frames. If
the current selected HMM is not correct, then the correct
HMM for the next frame is normally not in the set of possi-
ble HMMs. The recognition rate of using HMM in the
experiments to test the 120 image sequences (30 frames/
sequence) is illustrated in Table 2.

We have tested four image sequences for each gesture.
Most of the input gesture can be identified accurately. We
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Fig. 12. The image sequence tracking of two-digit gesture “13”: (a) shows the initial hand shape located near the real hand in the first frame,; (b)–(f) present the
training set transition from m0 to m1, then return to m0, finally transition to model m3.

Fig. 13. The entire image sequence tracking of two-digit gesture “27”: (a) shows the initial hand shape located near the real hand in the first frame; (b)–(f)
present the training set transition from model m0 to model m2, then return to model m0, finally transition to model m7.



have made the gestures, including the single-digit gestures,
two-digit gestures with/without hand translation motion.
These gestures are made in front of three different complex
backgrounds (i.e. Fig. 9). The feature extraction results for
the gestures of single-digit number (see Fig. 9) are very
accurate that makes the corresponding recognition rate the
highest. Since there are fewer model transitions in the tran-
sition sequence, the selected HMMs have better chance to
indicate the correct PDM model transitions, and the new
PDM models can be used to extract the features more
precisely.

The results for the gestures of two-digit number without

translation (see Figs. 11–14), and the two-digit number with
translation (see Figs. 15 and 16) are not as good as the
single-digit ones (see Table 2). However, they are accept-
able. On the average, the identification rate of our gesture
recognition system is about 85%. The translation inform-
ation provides the system a very important additional
information of determining the correct PDM model transi-
tion. Therefore, the recognition rate of the one-digit (or two-
digit) gestures without translation is lower than the one-digit
(or two-digit) gestures with translation. The reasons for
mis-identification are: (1) the pre-trained gray-level profiles
stored in the database are not sufficient for coping with
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Fig. 14. The image sequence tracking of the two-digit gesture “38”: (a) shows the initial hand shape located near the real hand in the first frame; (b)–(f) present
the PDM model transition from model m0 to model m3, then return to model m0, finally transition to model m8.

Fig. 15. The image sequence tracking of two-digit gesture “12”. It is different from Fig. 11 that the model transition does not be return to m0 and the middle
finger is straightened directly which can be described by m2: (a) shows the initial hand shape located near the real hand in the first frame; (b)–(f) present the
state transition from model m0 to model m1, then transition to model m2.



every new input gesture; (2) the number of principal compo-
nents taken from the gray-level profile are not sufficient for
all the unknown input gestures.

6. Conclusions

We have developed a recognition system to extract the
shape feature and recognizes the gestures. Since the varia-
tion of the hands is usually large, it is necessary to have a
transition between training sets for effective hand tracking
and shape extraction. In the experiments, we have proved
that our method is more reliable than the previous methods
when dealing with the problems of recognizing gestures
before non-stationary backgrounds, complex backgrounds,
and similar-intensity occlusion. We may easily extend our
system to recognize the gestures indicating more-than-two-
digit numbers.

6. Uncited References

Author, these references are not cited in the text. Please
add or delete from reference list. [16].
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