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Abstract. This paper presents a sign language recognition
system which consists of three modules: model-based hand
tracking, feature extraction, and gesture recognition using a
3D Hopfield neural network (HNN). The first one uses the
Hausdorff distance measure to track shape- variant hand mo-
tion, the second one applies the scale and rotation-invariant
Fourier descriptor to characterize hand figures, and the last
one performs a graph matching between the input gesture
model and the stored models by using a 3D modified HNN
to recognize the gesture. Our system tests 15 different hand
gestures. The experimental results show that our system can
achieve above 91% recognition rate, and the recognition pro-
cess time is about 10 s. The major contribution in this paper
is that we propose a 3D modified HNN for gesture recogni-
tion which is more reliable than the conventional methods.

Key words: Gesture recognition – Model-based tracking –
Feature extraction – 3D Hopfield neural network (HNN) –
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1 Introduction

Humans are good at using gesture for human-to-human con-
versation. Gesture (or sign language) has been widely used
in the deaf community. In the foreseeable future, gesture
inputs can be widely applied for human- computer inter-
face. Huang et al. [1] presented a review of the most recent
works related to hand gesture interface techniques: glove-
based technique, vision- based technique, and analysis of
drawing gesture. Vision-based technique is the most natural
way of constructing a human-computer interface which has
many applications [2–4]. However, it has difficulties in (1)
segmentation of moving hands; (2) tracking and analysis of
hand motion; and (3) recognition.

Sign languageconsists of static hand gesture and dy-
namic hand gesture. The former is characterized by the hand
posture determined by a particular finger-thumb-palm con-
figuration, whereas the latter is depicted by hand movements
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that start with a slow initial move from the rest position, con-
tinue with a stroke (the hand shape may change during the
stroke), and end by returning to the rest position. Tamura et
al. [5] developed a system which can recognize 20 Japanese
gestures based on matching simple cheremes. Davis et al. [6]
proposed a model-based approach by using a finite-state ma-
chine to model four qualitatively distinct phases of a generic
gesture. Hand shapes are described by a list of vectors and
then matched with the stored vector models. Charayaphan et
al. [7] proposed an image-processing method to detect the
direction of hand motion by tracking the hand location, and
they also used adaptive clustering of stop location, simple
shape of the trajectory, and matching of the hand shape at
the stop position to analyze 31 American Sign Language
(ASL) signs.

Rehg et al. [8] designed a system calledDigitEyes by
using a 3D cylindrical kinematics model of the human hand
with 27 degrees of freedom. Fingertips and links were cho-
sen as the model-matching features and were extracted from
either single or stereoscopic images. Darrell et al. [9] pro-
posed another space-time gesture recognition. They repre-
sented the gestures by using sets of view models, and then
matched the view model with the stored gesture models us-
ing dynamic time warping. Starner et al. [10] used a Hidden
Markov Model (HMM) for visual recognition of complex,
structured hand gestures such as ASL. They applied HMM to
recognize “continuous” ASL of a full sentence and demon-
strated the feasibility of recognizing complicated series of
gesture.

Cui et al. [11] proposed a learning-based hand gesture
recognition framework. It consists of a multiclass multivari-
ant discriminant analysis to select the most discriminating
feature (MDF), a space partition tree to achieve a logarith-
mic time complexity for a database, and a general interpola-
tion scheme to do view inference. Hunter et al. [12] explored
posture estimation based on the 2D projective hand silhou-
ettes for vision-based gesture recognition. They used Zernike
moments and normalization to separate the rough posture
estimate from spatial specific (translation, rotation, and scal-
ing). Wilson et al. [13] presented a state-based technique for
the representation and recognition of gesture. States are used
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Fig. 1. The flow diagram of sign
language recognition system

to capture both the variability and repeatability evidenced in
a training set of a given gesture.

The major difficulty of the articulated objects (hands)
analysis is the large variation of 2D hand-shape appear-
ance, the fingers’ and arms’ articulartory motion, the view-
point-sensitive 2D hand motion trajectories, the interference
between the meaningful hand gesture and the meaningless
moving background, and the occlusion between the mov-
ing articulated objects. To interpret sign language, we need
to carry out 2D non-rigid shape analysis and the model-
based motion tracking. The major assumption for a success-
ful tracking algorithm is that the 2D shape of a moving hand
changes slowly between two consecutive frames. In this pa-
per, model-based motion tracking and analysis (using the
Hausdorff distance) are developed to analyze the global mo-
tion and characterize the moving objects’ trajectories. Then,
the local motion is described by the shape variation of the
moving objects and the orientation of the hands. Finally, a
3D Hopfield neural network (HNN) [19,20] is applied to
recognize the gestures. The HNN has been used to solve
the graph-matching problems [21–23] by using an appropri-
ate energy function which represents the constraints that the
nodes in the two graphs have to satisfy.

Figure 1 shows the flow diagram of our sign language
recognition system. Our system has three phases: the fea-
ture extraction phase, the training phase, and the recognition
phase. In the first phase, the system (1) tracks the moving
shape-varying hand figures to identify their motion trajec-
tories, (2) applies the corona effect smoothing and border
extraction algorithm to find the border of the hand shape,
(3) uses the Fourier descriptor (FD) to describe the hand
shapes, (4) finds the symmetric axis of the hand shape and
its orientation, (5) applies the shape and motion informa-
tion to select the key frames. In the training phase, given as
many as training samples, for each key frame of different
gestures, the system classifies the motion and shape infor-
mation of the corresponding key frames of different gesture
image sequences into clusters. Then, the mean of every clus-
ter is generated for the stored model. In the recognition pro-
cess, the motion and shape information of the key frames
are required by the 3D HNN to identify the best match be-
tween the input model and the stored models for gesture
identification.

2 Model-based tracking

We propose a model-based tracking method which may ex-
tract a 2D model from the current input image frame and
match to the successive frames in the image sequence. The
model of the moving object is generated dynamically from
the image sequence, rather than being provided a priori. The
main constraint imposed by this method is that the 2D shape
of the moving object does not change a lot between two con-
secutive frames. So, we apply a model-based tracking algo-
rithm to track the moving objects. The model-based match-
ing between the current view model and the next incoming
frame is to find the best match in the next frame and then
update the view model if the matching score is below a
certain threshold. In view-model-based tracking, the shape
difference is measured by the Hausdorff distance [14,15].

2.1 The Hausdorff distance

Hausdorff distance measure is a nonlinear operator. It mea-
sures the extent to which each point of a “model” set lies
near some point of an “image” set and vice versa. Thus, this
distance can be used to determine the degree of resemblance
between two objects that are superimposed on one another.
Hausdorff distance measurement operates on a contour im-
age. Since only edge points are selected, it will significantly
reduce the computation burden. For two point sets A and B,
the Hausdorff distance is defined as

H(A, B) = max(h(A, B), h(B, A)) , (1)

whereh(A, B) = maxa∈A minb∈B ||a − b||, A = {a1, a2, . . .
ap}, B = {b1, b2, . . . bq}, and|| · || is some underlying norm
on the points ofA and B . The functionh(A, B) is called
the directed Hausdorff distance fromA to B.

The Hausdorff distance measures the mismatch between
two sets that are at fixed positions with respect to one an-
other. However, in real application to object matching, we
denoteM as the model. The objects similar toM may be
located in any position in an imageI. Thus, we are primarily
interested in measuring the mismatch between all possible
relative positions of two setsI andM , as given by the Haus-
dorff distance as a function of relative position, that is, we
need to modify Eq. 1 as
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Fig. 2. Two point sets:H(I, M ) = 21/2, HT (I, M ) = 1, I = {•}, M =
{×}

HT (I, M ) = min
t

H(I, M ⊕ t) , (2)

whereM ⊕ t = {m + t|m ∈ M}.
Equation 2 is the minimum Hausdorff distance under

translatingt. We focus primarily on the case where the rel-
ative positions of model with respect to the image is the
group of translations. Without loss of generality, we fix the
set I and allow onlyM to translate. Figure 2 shows two
sets of points, where the setI is denoted by dots and setM
is depicted by crosses.H(I, M ) is large because there are
points ofI that are not near any point ofM , and vice versa.
HT (I, M ) is small, however, because there is a translation
of M . That makes each point ofI nearly coincide with some
points ofM , and vice versa.

2.2 Comparing portions of shapes

The Hausdorff distance measure is very sensitive to the pres-
ence of any outlying points. Besides, it is important to be
able to identify the instances of a model that are only partly
visible (either due to occlusion or to failure of the sensing
device to detect the entire object). Thus, we use a more gen-
eral rank order ‘distance’, which replaces the maximization
operation in Eq. 2 with a rank operation (i.e., selection of the
median value). A median is a more robust measure than the
maximum, as is commonly known in statistics. This ‘partial
distance’ is defined as

hK(M, I) = Kth
m∈M min

i∈I
||m − i|| , (3)

whereKth
m∈Mf (m) denotes theK-th ranked value off (m)

over the setM . That is, if we consider the points inM
to be in sequence ordered by their valuesf (m1) ≤ . . . ≤
(f (mq), the K-th element in this sequence,f (mK), is the
K-th ranked value. For example, theq-th ranked value is the
maximum, and theq/2-th ranked value is the median value.
We assume that the modelM hasq points.

The partial distance,hK(M, I), identifies the subset of
M of size K which has the smallest directed Hausdorff
distance to the setI. Intuitively, hK(M, I) = d, when there
is some subset ofM of size at leastK such that each point
in this subset is within distanced of some point inI. Thus,
this measurement allows for a portion ofM which does not
correspond to anything inI (i.e., occlusion). To compute the
partial directed distancehK(M, I), we specify some fraction
0 ≤ f1 ≤ 1 of the points ofM that are to be considered. For

instance, if we computehK(M, I) with K = bf1qc where
f1 = 0.7 (i.e., using the 70-th percentile distance), then up
to 30% of the points ofM need not be near any points of
I. Here, we choosef1 = 0.7 for moving-hands tracking.

2.3 Tracking using the Hausdorff distance

The tracking process performs two functions: (i) finding the
view model Mt in the next frameIt+1 by comparing the
current view modelMt obtained from the current frame to
the next frame imageIt+1 and (ii) developing a new view
model Mt+1 from the subset ofIt+1 for the next tracking
step. Figure 3 illustrates the initial and updated models by
demonstrating a model, an image, and the translation of the
model that minimizes the partial directed Hausdorff distance
for K = b0.7qc.

2.4 Initial model and view model updating

In this paper, we assume that in the early beginning of the
input image sequence, there is no motion and the frame
difference detector (FDD) [25] identifies nothing from the
difference of two consecutive frames. Once the sign lan-
guage speaker starts making gestures, the FDD will identify
the hand shape as the initial modelM0. Here, we have the
speaker wearing dark clothes with long sleeves, so that the
motion of the arm will not be detected. Our algorithm tol-
erates the 2D shape change between the current view model
and the consecutive imageIt+1 . However, we are interested
in finding some subsets of the imageIt+1 that match well
with the transformed view modelg∗(Mt). The subset is de-
fined as

Mt+1 =

{
i ∈ It+1| min

m∈Mt

||g∗(m) − i|| ≤ δ

}
, (4)

which consists of image points that are within distanceδ of
some points ofg∗(Mt). The δ value controls the flexibility
of the tracker which may tolerate the shape variation of the
moving objects. The larger the value ofδ, the larger scale
the view model is updated, it indicates that we may track the
moving objects with larger shape variations. For example,
if δ = 0, then only those pixels ofIt+1 that are directly
superimposed ong∗(Mt) will be included inMt+1, and thus
the method will track only the objects moving without shape
changes.

3 Local motion analysis

The local motion information consists of rotation, shape
deformation and scaling. The fast-moving hand creates a
blurred boundary and a zigzag object border called “corona
effect”. The “jaggedness” of the image is caused by inter-
lacing the CCD camera which can be removed by a corona
effect smoothing process (i.e., Fig. 4). Here, we propose a
process to smooth the zigzag border, and then analyze the
shape and orientation of the moving-hand figures.
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Fig. 3. a Initial view model; b test image;
c updated view model

3.1 Corona effect smoothing and border extraction

Assume the hand shape is described by external boundary
points: V0, V1, . . . Vm, then we may use the corona effect
smoothing and boundary extraction to extract fewer bound-
ary points:V0, V1, . . . Vn with n < m. The corona effect
smoothing and border extraction process is mentioned in
Appendix A. In Fig. 4a, we show an example of the border
extraction algorithm on a digital figure. Figure 4c and e illus-
trate the operation of this algorithm on a binary hand-shape
image. Notice that applying this algorithm can eliminate
small and thin branches of the hand figures. From Fig. 4a,
we can make a brief description of the border extraction al-
gorithm that if it is a region pixel, turn left and take a step;
else turn right and take a step. Pixels (10, 6), (7, 7), (4, 7),
(4, 6) are encountered twice. Hence, they are eliminated.

3.2 Orientation finding

The orientation of the hand shape indicates to which direc-
tion the hand is pointing. Here, we assume that the elongated
objectb(x, y) has an axis of elongation which can be used to
define the orientation of the object. For an elongated object,
we choose the axis of the least second moment ( the axis
of the least inertia) as its orientation. Once the orientation
θ is found, we have to find one of its two directions (180◦
difference) indicating to which direction the axis points. The
directional symmetry axis starts from the centroid and ends
at the fingertips. The 2D image coordinate (i, j) is pointing
downward, with the original (0, 0) located at the top-left
point of the screen. By extending the directional symmetric
axis upwards to intercept thex axis (or i axis), we find the
containing angleα as it real orientation (see Fig. 5).

3.3 Fourier descriptor

The Fourier descriptor (FD) will be invariant to the small
hand-shape and trajectory variations and it is also tolerant to

gesture-speed variation. Let the boundary points be defined
as{(x(m), y(m))| m = 1, 2, . . . N}, which can be described
by Fourier series representation with coefficientsa(n) and
b(n), respectively [16–18]. Then, the boundary representa-
tion of a closed contour can be depicted by a FD vector. The
elements of the FD vector are derived as

S(n) = r(n)/r(1) , (5)

wherer(n) =
√|2 + |b(n)|2. Shridhar et al. [18] suggested

that using FD vectors of dimension 10 for handwritten digit
recognition is sufficient. Here, we assume that the local vari-
ation of hand shape is smooth, so that the high order terms
of its FD are not necessary. In this approach, using 25 har-
monics of the FDs is enough to describe the macroscopic
information of the hand figures. They also mentioned that
their FD vectors are invariant to rotation, translation, and
scaling. These properties are proved in Lemma 1 mentioned
in Appendix B.

Figure 6 shows the original hand shape image and after
being rotated. Figure 6d shows the FD coefficients before
and after rotating with angles of 45◦ and 90◦, respectively.
Figure 6e shows the difference of the FD vectors between
the original and the rotated one. Notice that we do not show
the first term of the FD vector, because its scale is large
compared with the other 24 terms (s(1) = 1). Figure 7 shows
the dilation-invariant properties of the FD vector. Figure 8
shows the difference between two distinct hand shapes. The
distance between two FD vectors is defined as

Dis (Sa, Sb) =

√√√√ 25∑
i=2

|sa(i) − sb(i)|2 , (6)

whereSa = [sa(1), sa(2), . . . sa(25)] andSb = [sb(1), sb(2),
. . . sb(25)] are two FD vectors.

4 Key frame selection

After global/local motion analysis, the hand gesture image
sequence is analyzed for either the stored model generation
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Fig. 4a–e.An example of border extraction algorithm on a digital figure.
Two hand shapes image and their contours obtained from the border ex-
traction algorithm

(in the training phase) or the input model generation (in the
recognition phase). Not every frame in the image sequence
is selected for the training or the recognition. Since the hand
shapes between two consecutive view models are very sim-
ilar to each other, we only need select some key frames for
the stored model generation and the input model generation.
For each unknown hand gesture image sequence, we gen-
erate an input model which is basically a graph consisting
of key frames as the nodes. Each node has a local feature
property (shape and local motion) as well as relational prop-
erties (global motion) with the other nodes. The input model
and stored model are described by graphs which consist of
nodes and links. The nodes describe the local information
of the key frames, whereas the links depict the global mo-

Fig. 5. The directional symmetric axis

tion properties. In the recognition phase, we use the HNN
approach to solve the graph-matching problem between the
input model and the stored model. The activity of each neu-
ron represents matching function between the nodes and the
links of any two models.

The closed boundary of hand shape can be described by
an FD vector with the first 25 coefficients. Due to the proper-
ties of rotation, translation, dilation invariant, we may reduce
the database space of the stored models. For example, if a
gesture consists of constant hand shape moving with rota-
tional and translational motion from one position to another,
we select the first frame and the last frame as our key frames.
If the distance between two FD vectors of two different fig-
ures exceeds some threshold, then they must have significant
shape difference. However, it is possible that there may ex-
ist two distinct figures and the distance of their FD vectors
is below θ1. Therefore, we need another criterion for key
frame selection which is based on the variation between the
motion trajectories of the moving object. If the motion tra-
jectory of the object in current frame is not smooth, it can
be selected as another key frame. Here, we define the dif-
ference between two motion vectors as the inner product of
two unit vectors. A threshold valueθ2 is predetermined for
identifying the smoothness of motion. Assume that the cur-
rent frame and its succeeding and preceding key frames are
considered and these three consecutive frames are used to
determine whether the current frame is to be selected as a
key frame. Let the centroid of the hand shape in the three
framesi − 1, i, i + 1 be denoted asCi−1, Ci, Ci+1, then the
motion coherence (MC) measure is defined as

MC = 1 − Ci−1Ci · Ci, Ci+1

|Ci−1Ci||CiCi+1|
. (7)

The smoother the motionCi−1 → Ci → Ci+1 is, the smaller
value MC may be generated with 0≤ MC ≤ 1. The key
frame selection algorithm can be summarized as follows:

(1) Compute the FD vector of the moving object in the cur-
rent frame.

(2) Find the unit motion vector with respect to the preceding
and following frames and then calculate the MC between
their unit motion vectors.

(3) Calculate the shape variance (SV) and orientation vari-
ance (OV) of the moving object between the current
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Fig. 6a–e.Illustrations of rotation-invariant:a original hand shape,b rotated by an angle of 45◦, c rotated by an angle of 90◦, d Fourier descriptor vectors
without the first term;e ‘x’ indicates the difference of Fourier descriptor vectors betweena andb. ‘o’ indicates the difference betweena andc

frame and those of the preceding and following key
frames. Assume the two hand shapes in framesi − 1
and i are described by two Fourier vectorsSi−1 and
Si with orientationsαi−1 and αi, we may haveSV =
Dis

(
Si−1, Si

)
(i.e., Eq. 6) andOV = |αi−1 − αi|.

(4) Select current view model as the key frame if theSV >
θ1, MC > θ2, OV > θ3.

Figure 9 shows gesture ‘conscience’ from frame 0 to
frame 22. Figure 10 shows the images after using the Ostu
thresholding method [24]. Figure 11a illustrates the key
frames obtained from the above algorithm. The selected key
frames are the 0-th, 16-th, 19-th frame, respectively, in this
sequence. Figure 11d shows the difference of FD vectors
with respect to previous key frame.

5 Gesture recognition using the 3D HNN model

The Hopfield neural network (HNN) is characterized by a
network of neuron-like units with symmetric connections
between units, continuous output values, sigmoidal input-
output transfer function, and the appropriate global energy
function. Hopfield [19,20] had shown that the equation of

motion for a fully connected network with symmetry connec-
tion always leads to convergence of stable state with global
minimum energy. The net input to any neuron is the sum of
the current flowing through the set of resistors. The input de-
pends on the unit similarity of each neuron and relationship
similarity between the neuron and its neighboring neurons.

A 3D binary HNN with fully interconnected neurons
is constructed as shown in Fig. 12. Each input model is
matched with the stored gesture models for the best match.
A global match is achieved between two models when the
network settles down to a stable state, usually, at its mini-
mum energy. The number of key frames in the input model
is F , and there areS stored gesture models with differ-
ent number of key frames given asN1, . . . NS . The state
of each neuronViks represents the matches between the two
key frames (nodes)i andk from the input model and thes-th
stored model.Ciks,jls is a compatibility measure (see Eq. 24)
between two neurons withViks andVjls. The compatibility
measure will influence the matches of the two models which
can be described by the following energy function

E = AE1 + BE2 , (8)

where
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Fig. 7a–c.Illustration of dilation-invariant:a resized hand shape from Fig. 6a;b FD vectors
without the first term;c the difference of FD vectors between Figs. 6a and 7a is the distance
= 0.0281

Fig. 8a–c.The difference between Figs. 6a and 8a:a a hand shape image,b FD vectors without the first term,c the distance is 0.2534
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Fig. 9. Original input sequence

Fig. 10. Binary images produced by Ostu thresholding
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Fig. 11a–d.The key frame selection:a key frames obtained from Fig. 10,b FD vectors without the first term,c motion trajectory,d difference of FD
vectors between key frames

E1 = −
S∑

p=1

S∑
q=1

F∑
i=1

Np∑
k=1

F∑
j=1

Nq∑
l=1

Cikp,jlqVikpVjlq ,

E2 =
S∑

p=1


 F∑

i=1


1 −

Np∑
k=1

Vikp




2

+
Np∑
k=1

(
1 −

F∑
i=1

Vikp

)2



+
F∑
i=1

Np∑
k=1


1 −

S∑
p=1

Vikp




2

.

The sub-energyE1 describes the excitatory interaction be-
tween the nodes of the same model, the sub-energyE2 de-
picts inhibitory interaction of the nodes on the same row
or the same column, and the nodes of different models. To
simplify the computation, we only consider the relation be-
tween neuronViks and its 5× 5 × 5 neighboring neurons.
The compatibility measureCiks,jls is only considered when

the two nodesk andl are in the same model. If they are not
in the same model, it becomes absolutely inhibitive.

The equation is equivalent to minimizing the Hopfield-
type energy function [19] as

E = −1
2

S∑
p=1

S∑
q=1

F∑
i=1

Np∑
k=1

M∑
j=1

Nq∑
l=1

Tikp,jlqVikpVjlq

−
S∑

p=1

F∑
i=1

Np∑
k=1

VikpIikp , (9)

whereTikp,jlq denotes the connection between a neuronVikp

and another neuronVjlq. The energy change∆E due to the
a change∆Vikp in the state of neuronikp is given as

∆E = −∆Vikp


 S∑

q=1

F∑
j=1

Nq∑
l=1

Tikp,jlqVjlq + Iikp


 . (10)

Equation 8 can be rewritten as follows
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Fig. 12. 3D Hopfield neural network

E = −
S∑

p=1

F∑
i=1

Nq∑
k=1

6BVikp +
S∑

p=1

S∑
q=1

F∑
i=1

Np∑
k=1

F∑
j=1

Nq∑
l=1(−ACikp,jlq + Bδij

(
2δpq + δkl

))
VikpVjlq (11)

where there areS stored models, each stored modelp has a
number ofNp neurons, and the input model is specified by
F neurons.A andB are two constants which are determined
experimentally asA = 5, B = 1. Comparing the above two
energy functions, it can be shown that

Tikp,jlq = 2ACikp,jlq − 2Bδij

(
2δpq + δkl

)
and Iikp = 6B , (12)

whereδij = 1 if i = j, andδij = 0 otherwise. The input to
the neuronikp is the sum of the current from its neighboring
neuronsVjlq which is described as

Uikp =
S∑

q=1

i+2∑
j=i−2

k+2∑
l=k−2

Tikp,jlqVjlq + Iikp . (13)

The compatibility measure,Cikp,jlq, is determined by the
unit similarity and relationship similarity among the neurons.
The unit similarity is defined in terms of the shape similarity
and trajectory similarity of the nodes (key frames) of the
input model and the stored model. Let the input hand shape
of nodei with orientationαi be described by an FD vector as
Ai = [si(1), si(2), . . . si(25)], and the stored hand shape of
nodek with orientationαk be depicted by another FD vector
Ak = [sk(1), sk(2), . . . sk(25)]. Then the shape similarity is
measured in terms of the distance between the two feature
vectors and orientations, i.e.,||Ai − Ak|| and |αi − αk|.

Now let Gi be a unit motion vector of the moving hand
in the input gesture. The initial states of all neurons are set
to 1 or 0, depending on the degree of matching between
the spatial similarity and temporal similarity between two
feature vectorsAi andAk as follows:{

Vikp = 1 if ||Ai − Ak|| < θ1, Gi · Gk > θ2,
and|αi − αk| < θ3

Vikp = 0 otherwise
, (14)

where||Ai − Ak|| defines the distance between two feature
vectors, andGi·Gk is the inner product between two vectors.

The thresholdsθ1, θ2 and θ3 are given as 0.15, 0.707, and
0.33, respectively, in our experiments. BothGi andGk are
unit vectors. Hence, the range ofGi · Gk is between -1 and
+1. It corresponds to the cosine of the angle between two
motion vectors. For every two neuronsikp andjlq, the unit
similarity is defined as

R (Ai, Ak) = ||Ai − Ak|| ,

R(Gi, Gk) = Gi · Gk ,

R(αi, αk) = |αi − αk| . (15)

The relationship similarity is determined as

R
(
Arij , Arkl

)
= | ||Ai − Aj || − ||Ak − Al|| |

R
(
Grij , Grkl

)
= |Gi · Gj − Gk · Gl| ,

R
(
αrij , αrkl

)
= ||αi − αj | − |αk − αl|| . (16)

Therefore, the compatibility measure is formulated as fol-
lows:

Cikp,jlq =




w1f1 (R (Ai, Ak)) + w1f1
(
R
(
Aj , Al

))
+w2f2 (R (Gi, Gk)) + w2f2

(
R
(
Gj , Gl

))
+w3f3 (R (αi, αk)) + w3f3

(
R
(
αj , αl

))
+w4f4

(
R
(
Arij , Arkl

))
+w5f5

(
R
(
Grij , Grkl

))
+w6f6

(
R
(
αrij , αrkl

))
if p = q

−1 otherwise

(17)

where
∑

i=1,...6 wi = 1. Cikp,jlq is close to 1 for a pair of
corresponding neurons, while for non-corresponding pairs, it
is near−1. In our experiments, the functionsfi are depicted
as follows

if R(•) ≤ θi, thenfi(R(•)) = βi, elsefi(R(•)) = γi , (18)

where i = 1, 2, . . . , 6. The weighting factors are assigned
as: w1 = 0.25, w2 = 0.1, w3 = 0.05, w4 = 0.25, w5 = 0.25,
w6 = 0.1, respectively. Theβi = 0.5, γi = −0.5 for i = 1, 2, 3
and βi = 1, γi = −1 for i = 4, 5, 6. The thresholds are
defined as:θ1 = 0.15, θ2 = 0.96, θ3 = 0.5, andθi = 0.02 for
i = 4, 5, 6. We apply the deterministic relaxation to update
the state of each neuron synchronously. The algorithm is
summarized in the following steps.

(1) Initialize the state of neurons by using Eq. (14).
(2) Randomly pick up a nodeikp.
(3) Calculate its input by using Eq. (13).
(4) Decide the new state of each neuron according to the

following rules:

Vikp → 1 if Uikp > 0.5

Vikp → 0 if Uikp < −0.5

Vikp → no change if− 0.5 ≤ Uikp ≤ 0.5 (19)

(5) Count the changes of the states. If there is no change
after a number of iterations, stop and go to step 6, oth-
erwise repeat the process from step 2.

(6) Output the final states of neuronsVikp, which will be
the final matches between the stored gesture models and
the input gesture.

The above algorithm is based on noiseless dynamics of
the HNN model – noiseless in the sense that there is no noise
present in the synaptic transmission of signals. However, ac-
tually, the synaptic transmission in a nervous system is a
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noisy process brought on by random fluctuations from the
release of neurotransmitters, and other probabilistic causes.
According to the original HNN model, to account for the
effects of synaptic noise in a neural network, we may apply
a probabilistic mechanism in the firing of neurons, i.e., to
represent the effects of synaptic noise by thermal fluctua-
tions. Specifically, a neuronikp decides to fire according to
the value of the net potential inputUikp acting on it with
probability of firing being defined byP

(
Uikp

)
. The state

Vikp of neuronikp is defined by the probabilistic rule

Vikp = +1 with probabilityP
(
Uikp

)
,

Vikp = 0 with probability 1− P
(
Uikp

)
. (20)

A standard choice forP
(
Uikp

)
is the sigmoid-shaped func-

tion as

P
(
Uikp

)
=

1

1 + exp
(−2Uikp/T

) , (21)

where T is a pseudo-temperature that is used to control
the noise level. When the input potentialUikp = 0, then
Vikp = ±1, each with probability 1/2. WhenT → 0, which
corresponds to the noiseless limit, the width of the threshold
region shrinks to zero, the probabilistic firing rule is reduced
to deterministic rule.

We may foresee that the proposed approach may find a
single match between the input model and stored model with
all the neurons which have come to their active stable states
are in the same sub-net (all neurons{ikp} with Vikp = 1 are
in the same sub-net,p=constant). The single match is the
best result that we can expect; however, it may happen that
the finally active stable neurons may not be in the same sub-
net (p /=constant). In this case of multiple matches, we may
apply the simulated annealing again or randomize the neu-
rons ignition sequence to ensure the total energy has reached
the real global minimum. The finally stable active neurons
may change to a single match or another multiple matches.
If these active neurons indicate the same multiple matches,
then, we may select the sub-net with the largest number of
active stable neurons as the best matched stored model.

6 Experimental results and discussion

In the experiments, we asked the persons (subjects) to wear
the dark clothes with long sleeves and stand before a dark
curtain under normal lighting. Although the proposed model-
based tracking system can track and identify the moving
objects in front of a complicated background, however, the
identified objects may include partial background informa-
tion. Therefore, by having the persons wear the dark clothes
and stand before a dark curtain, we can avoid the back-
ground information being extracted and treated as the mov-
ing objects. The limitations are necessary for the recognition
process to be more reliable, after all, the gesture-makers are
not required to wear white gloves as usual.

There are fifteen sign gestures illustrated in Fig. 13. Each
consists of a sequence of image frames (30 frames) capturing
a single hand moving in different directions with constant
or time-varying hand shape. Each image sequence is taken
at 30 frames per second, and each gesture takes about 1 s.

The input image sequence is taken at three different time in-
tervals: in the first (begin) period, the sign language speaker
remains silent (no gesture), then in the second (action) pe-
riod, the speaker starts making one simple hand gesture, and
finally, in the last (end) period, the speaker remains silent
again. Normally, the second interval in completed in about
0.5 s. The FDD may easily identify the beginning and the
end of the gesture in the image sequence.

In the experiments, four gestures have constant hand
shape, whereas eleven gestures have time-varying hand
shape. They may have similar or different moving trajec-
tories. They are very simple hand gestures, so that they can
be completed in less than 1 s. We used an Oculus F/64 frame
grabber with 8M Video RAM and a SONY XC-7500 CCD
camera with electronic shutter to capture a fast-moving hand
gesture without causing too much blur effects on the images.
The main bottleneck of the system is the data transfer of the
entire image sequence between the frame gabber and the host
computer. The host computer was equipped with a Pentium
CPU and 16 MB main memory running at 133 MHz.

For each input frame, the tracking process needs to se-
lect the best threshold value for the input image binariza-
tion. Then the contour of the hand shape is extracted for
the tracking process to do the model-based hand tracking.
In the experiments, the image preprocessing and feature
extraction processes take about 5 s, which includes thresh-
olding, model-updating, hand tracking and FD analysis. In
total, the recognition system requires less than 10 s from
image sequence capturing to gesture recognizing. In the
training stage, for each gesture, we have taken many dif-
ferent hand gesture image sequences from many different
subjects, and for each gesture, we have 15 different train-
ing image sequences to generate the corresponding stored
model. The gestures made by different subjects may have
different speeds, which are captured by the image sequences
with different numbers of frames in the second (action) pe-
riod; however, only the key frames are needed for the stored
model and input model. Normally, the number of selected
key frame numbers from different image sequences is the
same.

In our experiments, we found that, if given an unknown
gesture not included in the pre-trained 15 gestures, the net-
work converges to the stable state, indicating the match of
the most similar stored model. For instance, if the gesture
‘seven’ is excluded from the stored model, and is assigned
as an input gesture, then we may find that the most similar
gesture ‘a coin’ will be identified. The key frame number is
different for different gestures. The gesture with only two
selected key frames indicating the constant hand shape mo-
tion. We need not normalize the numbers of key frames from
different gestures. In the 3D HNN, we need 60 neurons for
recognizing 15 different gestures. The initial state of the
HNN is determined by comparing the key frame of the in-
put model with all the key frames of the stored model. The
initial state of each neuron is determined by Eq. 14. Then,
the state of each neuron will be influenced by its 5× 5 × 5
neighboring neurons before reaching a stable state. On the
average, each neuron iterates 3–4 times and the entire neural
network takes 4 s to reach a table state. Since there are not
many neurons in the neural network, we need not use the
probabilistic mechanism (Eqs. 20 and 21) to update the states
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Fig. 13.Five selected frames of every input sequence of 15 different gestures from Taiwanness Sign Language: (1)a coin; (2)cigarette, (3)flower, (4)reluctantly,
(5)row, (6)take, (7)immediately, (8)understand, (9)hate, (10)left, (11)seven, (12)moon, (13)eight, (14)walk, (15)conscience
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Fig. 13. (continued)
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Table 1. The hand gesture recognition rate of input image sequences from
different subjects.

Methods Tested Correct Unique Multiple Recognition
sequence match matches rate

PRM 759 645 61 85%
HNN 759 690 0 91%

of the neurons. Once the number of stored image models is
increased, the neuron number needs to be increased and the
operation time for the HNN to reach a stable state will be
extended.

In the recognition phase, if we use the image sequences
from the same subjects as the ones participating in the train-
ing, most of the input gestures are accurately identified, and
the recognition rate is above 96%. For each gesture, we tried
at least 50 different unknown input hand gesture image se-
quences from different subjects (different from the training
subjects). On the average, the system achieves a 91% recog-
nition rate (see Table 1). The system may not identify the
input gesture because the shape distance between the key
frames is small and their trajectories are also very similar.
To avoid the misrecognition, the outcome of the HNN will
provide a list of possible matches with the corresponding
matching scores. The 3D HNN may reach a stable state
with the active neurons in the different subsets, which indi-
cates multiple matches. The matching score is calculated by
the number of the active neurons for the match between the
input model and the designated stored model.

In the recognition phase, we may use the shape pattern
and trajectory pattern to describe each model and then use
conventional pattern matching [26] to find the resemblance
between the input model and the stored model. However,
there may be more than one match (i.e., matching score
above a certain threshold). Sometimes, the best match is not
necessarily the correct match. This situation may occur when
the key frames of the input model A are similar to part of
the key frames of the stored model B, and their trajecto-
ries are also very similar. In such a case, the conventional
pattern matching method may provide more than one best
match. A probabilistic relaxation method (PRM) [27] was
also implemented and tested on the input image sequences
for comparison with the HNN. The PRM is implemented as
follows:

1. Let Piks represent the degree of match between thei-th
key frame of an input model and thek-th key frame of the
s-th stored model. The initial value ofPiks is determined
by Eq. 14.

2. EachPiks is iteratively updated according to the fol-
lowing rule: P r+1

iks = 1
F

∑F
j=1 max1≤l≤Ns

Ciks,jlsP
r
jls,

whereCiks,jls is the compatibility measure between two
matched pairs (i, k) and (j, l) defined in Eq. 17.

3. After several iterations,Piks → 1, then we may find the
best matched pairs.

4. If the input model is matched with thes-th stored model,
then for eachi-th key frame, there is only one maximum
Piks → 1 in each row and each column, whereas the
othersPijs → 0 for j /= k or Pjks → 0 for j /= i.

The PRM has shown comparable results with that of the
HNN results only for recognizing simple distinctive ges-
tures. For some ambiguous gestures, we may have multiple
matches by using PRM. The experimental results of using
the PRM are given in Table 1.

To avoid multiple matches, we apply the HNN with em-
bedded inhibitory connections among different models. The
advantage of HNN over PRM is that the matching constraints
can easily be incorporated explicitly in the energy function.
Therefore, by using the HNN approach, we find that the in-
hibitive force between the neurons of different models will
make neurons of the network stabilize on the same sub-
net which indicates only one best correct match. Since the
extracted features in the input image sequence cannot be re-
liable, we need to apply the HNN model, which imposes
global constraints on the solution by allowing only a one-
to-one match between the input model and stored models.
Another advantage of the HNN architecture is that it can be
implemented in hardware and operated in parallel during the
gesture recognition process. With the parallelism processing
mechanism, the HNN model can provide fast and accurate
matching.

7 Conclusion

Although we have demonstrated a successful simulation sys-
tem to interpret simple hand gestures, there are still some
problems for further studies to (1) increase tracking process
speed; (2) enlarge the library of stored models; (3) normal-
ize the input image sequence for slow and fast gesture; (4)
extract the moving hands from complex backgrounds; (5)
implement a real-time recognition system, (6) minimize the
number of thresholding parameters which are experimentally
determined. Besides the above problems, the toughest prob-
lem in sign language recognition is how to translate the “con-
tinuous” sign language sentence. Since each sign language
sentence consists of several cheremes. Each chereme whose
meaning can be a verb, a noun, or an adjective is encoded in
a sequence of image frames. How to separate the entire im-
age sequence representing a sign language sentence into sev-
eral sub-sequences representing several cheremes is a very
difficult problem. Currently, we only consider a chereme-
based image sequence as the basic input to our system for
recognition.
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Appendix A

Corona effect smoothing and border extraction algorithm

(1) SetN to 0 ( boundary points counter); and pointerx = 0,
y = 0;

(2) Scan the image, using pointerx andy, from top to bot-
tom (y = y + 1), left to right (x = x + 1) until a region
pixel p(x, y) /= 0 is encountered;

(3) Push the location (x, y) of starting point (i.e.,p(x, y) = 1,
the first boundary point encountered) into top of stack

(TOS=(x, y)) and save (x, y) asPx = x, Py = y, then
decrease pointery by y = y − 1;

(4) Increase counterN by N = N + 1;
(5) do

if y − Py = −1 andx − Px = 0, then
if p(x, y) = 1, thenPx = x; Py = y;

insert boundarypoint(y, x, &N );
x = x − 1;

else
Px = x; Py = y;
x = x + 1;

else if y − Py = 1 andx − Px = 0, then
if p(x, y) = 1, thenPx = x; Py = y;

insert boundarypoint(y, x, &N );
x = x + 1;

else
Px = x; Py = y;
x = x − 1;

else if y − Py = 0 andx − Px = 1, then
if p(x, y) = 1, thenPx = x; Py = y;

insert boundarypoint(y, x, &N );
y = y − 1;

else
Px = x; Py = y;
y = y + 1;

else if y − Py = 0 andx − Px = 1, then
if p(x, y) = 1, thenPx = x; Py = y;

insert boundarypoint(y, x, &N );
y = y + 1;

else
Px = x; Py = y;
y = y − 1;

} while((x, y) is not starting point orN is equal to 0);

(6) Procedure: insertboundarypoint(y, x, &N )

{ if (x, y) is not equal to TOS
push (x, y) into TOS;
N = N + 1;

else
pop TOS;
N = N − 1;

}

Appendix B

Lemma 1. Let {(x(m), y(m))|m = 1, 2, . . . N} describe the
boundary of a closed shape and the Fourier coefficients be
described as{a(n), b(n)}. Now, if the boundary points are
rotated by an angleθ, then ther2(n) = |a(n)|2 + |b(n)|2 is
invariant to this rotation.

Proof. Let the boundary of contour points be rotated by the
following

xθ(m) = cos(θ)x(m) − sin(θ)y(m) ,

yθ(m) = sin(θ)x(m) + cos(θ)y(m) (B.1)

aθ(n), andbθ(n) are the Fourier coefficients after rotation

aθ(n) =
N∑

m=1

xθ(m)e−j2πmn/N
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bθ(n) =
N∑

m=1

yθ(m)e−j2πmn/N

(B.2)

By substituting (B.1) into (B.2), we have

aθ(n) =
N∑

m=1

(cos(θ)x(m) − sin(θ)y(m))e−j2πmn/N ,

bθ(n) =
N∑

m=1

(sin(θ)x(m) + cos(θ)y(m))e−j2πmn/N , (B.3)

which can be rewritten as

aθ(n) =
N∑

m=1

(cos(θ)x(m))e−j2πnmn/N

−
N∑

m=1

(sin(θ)y(m))e−j2πnmn/N

bθ(n) =
N∑

m=1

(sin(θ)x(m))e−j2πnmn/N

+
N∑

m=1

(cos(θ)y(m))e−j2πnmn/N (B.4)

The rotated coefficientsaθ(n) andbθ(n) can also be assumed
to be rotated version of the coefficientsa(n) andb(n) as

aθ(n) = cos(θ)a(n) − sin(θ)b(n) ,

bθ(n) = sin(θ)a(n) + cos(θ)b(n) (B.5)

Now we take the square of magnitude of the two coefficients
aθ(n) andbθ(n)

|aθ(m)|2 = [cos(θ)Re(a(n)) − sin(θ)Re(b(n))]2

+ [cos(θ)Im(a(n)) − sin(θ)Im(b(n))]2

|bθ(m)|2 = [sin(θ)Re(a(n)) + cos(θ)Re(b(n))]2

+ [sin(θ)Im(a(n)) + cos(θ)Im(b(n))]2

The r2(n) (Eq. 12) can be proved to be rotation invariant as

|aθ(n)|2 + |bθ(n)|2 = cos2(θ)Re2(a(n)) + sin2(θ)Re2(b(n))

+ cos2(θ)Im2(a(n)) + sin2(θ)Im2(b(n))

+ sin2(θ)Re2(a(n)) + cos2(θ)Re2(b(n))

+ sin2(θ)Im2(a(n)) + cos2(θ)Im2(b(n))

= Re2(a(n))(cos2(θ) + sin2(θ))

+Re2(b(n))(cos2(θ) + sin2(θ))

+Im2(a(n))(cos2(θ) + sin2(θ))

+Im2(b(n))(cos2(θ) + sin2(θ))

= Re2(a(n)) + Re2(b(n)) + Im2(a(n))

+Im2(b(n))

= |a(n)|2 + |b(n)|2
Therefore, the boundary representation using Fourier De-
scriptor vectors is invariant to rotation. Q.E.D.
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