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Three-Dimensional PET Emission Scan
Registration and Transmission Scan Synthesis
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Abstract—The duration of a positron emission tomography directly, because they not only have spatial displacement but
(PET) imaging scan can be reduced if the transmission scan of one glso differ in the body shape.
patient which is used for emission correction can be synthesized Therefore, if we can find a synthesized target transmission

by using the reference transmission scan of another patient. In L . .
this paper, we propose a new intersubjects PET emission scanSCan for the target emission scan correction session, then the

registration method and PET transmission synthesis method by target transmission scan session is not required. By using the
using the boundary information of the body or brain scan of the emission scan alignment from two different subjects, we may
PET emission scans. The PET emission scans have poor imag&ynthesize the target transmission scan using the reference
quality and different intensity statistics so that we preprocess yonsmission scan. Here we assume that the misalignment
the emission scans to have similar histogram and then apply L .. : -
the point distribution model (PDM) [15] to extract the contours ~P€tween the transmission scan and the emission scan imaging
of the emission scan. The extracted boundary contour of every Of the designated subject is adjustable. McCetrdl. [7] have

slice is used to reconstruct the three-dimensional (3-D) surface studied the effect of misalignment between PET emission and
of the reference set and the target set. Our registration is 3-D transmission scans. They studied the translation misalignment

surface-based which uses the normal flow method [17] to find . . .
the correspondence vector field between two 3-D reconstructed (left shift or right shift) of the PET scans of the same

surfaces. Since it is difficult to analyze internal organ using the Subject. In this paper, however, we develop a system to align

PET emission scan imaging without correction, we assume that two precorrected PET emission scans (without attenuation

the deformation of internal organ is homogeneous. With the correction) from two different subjects and then to synthesize

fﬁgﬁ;ﬂ‘;’;ﬁ’i?go‘r’]egégrnf'c‘ff'(t’hge:;‘f’gfe”né';esé"t"owee“l':ﬁ";;nstﬁggisz ea't‘ﬁethe target transmission scan using the reference transmission
transmission scan of the target set. ' scan. Since it is difficult Fo _analyze internal organ using
the precorrected PET emission scan, we assume that the
deformation of internal organ is homogeneous.

o _ Image registration methods can be classified from dif-
OSITRON emission tomography (PET) is a nuclear megerent points of views: intrasubject with the same image
ical imaging technique capable of providing quantitativihodality, intrasubject with multimodality and intersubject

functional information in intact human objects. PET ofteqith multimodality. In the intrasubject registration with the

requires anatomic reference information (i.e., transmissigme modality, the subject can be viewed as a rigid body,
scan obtained on the same object) to perform accurate d the main purpose of these methods is to find changes
tenuation correction of fluoro-deoxy-glucose (FDG) emissigR the patient's condition. Herbirt al. [1] propose a six-
scan images. Therefore, during cardiac FDG PET imagingarameter two-dimensional (2-D) registration model consisting
the patient needs to be remain stationary on the scanning tailey bidirectional translation, a rotation, a magnification, and
for the transmission scan, the FDG injection, the 30-40 miljine transformation of the pixels in one image to match the
wait, and finally the emission scan. The PET imaging systeikels in the other image. Barber [2] proposes a registration
requires that the misalignment between the emission scan gfgyo images of the same organ taken from different radio-
the transmission scan be negligible. Therefore, the patient hgglide tracers to compare the regional uptake of the two
to lie on the scan table without moving for over an houkracers. He uses a coordinate transfer function (CTF) that

Patient discomfort can be reduced if the transmission SCRfAps the pixels in one image to those in the second image.

session is replaceable. However, it is not acceptable to usegod et al [3] propose a registration method for three-

reference transmission scan to correct the target emission sggRensional (3-D) alignment which calculates the ratio of
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and a test data set according to a variation of the iterative
Marquardt—Levenberg scheme.

The intrasubject registration with multimodality is more
difficult. Different imaging modalities have different pixel
sizes, fields of view, slice thickness, and different image char-
acteristics. The main purpose of these methods is to integrate
the information of different image modalities. Pelizzat
al. [6] propose a surface-matching technigue (a hat-and-head
method) to register CT and MRI brain image scans. The model
taken from the scan covering a larger volume of the patient
takes the role of “head.” The “hat” model is represented as
a set of independent points. Then they minimize a nonlinear
function [24] (which is the mean distance between “hat” points
and “head” surface) to find the geometrical transformation.

Different from the “head and hat” method, Evahal. [8]
develop an algorithm to find the optimal transform between
two ensembles of equivalent points, using 3-D image/graphics
analysis package. Equivalent points in two image volumes are
identified, either manually or via an adjustable computerized
volume of interest (VOI) atlas. The MRI data are then re-
sampled along planes parallel the PET planes and the two
volumes overlaid using opacity-weighted composition. Alpert
et al. [9] propose a method to register two sets of image data
by converting the whole brain volume which are translated
and rotated with respect to one another. Their technique is
based on the classical theory of rigid bodies, employing as
its basis, the principal axes transformation. Recently, Van den
Elsenet al. [10] apply the differential operators in scale space
to CT and MR images to produce feature images depicting
“ridgeness,” which are used for registration. Their method is
restricted to match the brain images from the same patient
under rigid transformation.

Intersubject registration with multimodality combines the
tomographic images of different patients. Thurfjetlal. [11]
use the computerized brain atlas to aid the interpolation of
functional images by introducing anatomical information to
serve as a tool in the merging of data from different imaging
modalities and to facilitate the comparisons of data from dif-
ferent individuals by allowing the anatomical standardization
of individual data. Lin [12] uses an elastic image-matching
technique to the automatic registration process based on the
assumption that the topological configuration of the brain is
invariant among normal subjects while the shapes of individual
brain structure differ. Davatzikost al. [13] propose a two-
stage nonlinear registration algorithm: 1) use an active contour
algorithm to establish a length-preserving, one-to-one mapping
between the cortical and the ventricular boundaries of two to-
be-registered images, 2) generate 2-D transformation based
on an elastic body deformation. Ebest al. [14] propose
an automatic interstudy image registration method for PET
and single photon emission computed tomography (SPECT).
Their technique iteratively reslice a misalignment data set until
the sum of the absolute difference from the reference set is
minimized.

The above studies have used brain images of different
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imaging modalities (CT, MRI, PET, etc.), but, here, wé&9-1. The configuration of our system.
consider the PET images scanning between navel and midtifio arms on left and right sides). It is more challenging
(each slice includes three parts: trunk in the middle, andan brain image slices. All PET studies were performed
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Fig. 2. Three examples of the original emission scan images.

on a GEMS-4096 15WB whole body tomography, a eightmage preprocessing algorithms: the histogram modification
ring system (made by Scanditronix, Uppsala, Sweden), whiahd the coarse segmentation which make the PET emission
simultaneously acquires 15 slices with slice separation of G6an images have similar graylevel histograms and signal-to-
mm. Studies were constructed in a 12828 matrix. The noise ratio (SNR). Then, we apply the so-called PDM [15] to
FDG-PET studies were collected for 20 min after a 50-miextract the boundary of the emission scan images.

uptake period after injection of 10-mCi FDG. The data were

reconstructed with a 4.2-mm Hanning filter (cutoff frequenci. Preprocessing

1.5 cyc_le/plxel and_plxel size is 6 mm/pixel). Because of the histogram difference of different precor-
In this paper, given the reference set and target set ¥bted PET emission scan images, the images blurs and low
PET b.OdY scans (the former has bOth. emission scan trast, the contours of the PET images cannot be easily
transmission scan but the Iatter.has emission scan only), idEntified. We also find that the graylevel values of the pixels
Propose a new intersubject registration method to align th%’de the body are a little higher than the graylevel values of
emission scan of the reference set and that of target set pixels outside the body. The purpose of preprocessing is to
then generate a set of correspondence vectors. We only se SBify the histogram and then coarsely segment the images.

Lhe sgmlar FD.G PI.ET p;)recorrect(;d emission scan lmaglng fﬁ;}e’]proces:sing is applied to the precorrected emission scans of
oundary r§g|strat|on ecause_t € Emission scans themse the reference set and the target set with the results shown
may be quite different, reflecting different conditions, (e.gin Figs. 3 and 4

different .d“.Jg’ glucos_e loading, e':]c.). Hov_vevg_rf,f a similar 1) Histogram Modification: Histogram equalization [19] is
FDG emission scan images may have quite different S effective method to enhance the precorrected emission

ﬁg\(jehissi:;)ﬁ;?n;.is![:oirgsrtf;m\?ZnndeeSng ‘gzgg%%esjvethﬁsém:gs(isﬁ%n images, so that they will have similar histograms. The
N ) ' togram equalization for discrete case is described as
distribution model (PDM) [15], [16] to extract the boundary o g q

the body cross section of the PET emission scan images. Third, ko k

we develop an interslice interpolation for 3-D surface recon- s =1T(r) = Z ZJ - Zp”(”) (1)
struction. Fourth, we apply the normal flow method [17] to /=0 /=0

find the correspondence between two sets of intersubject Plgflere0 < v, < 1,k =0,1,---,L — 1,7 is the original gray

emission scan slices and generate a set of 3-D corresponddsgel, s;, is the transformed valuey,.(r;) is the probability
vectors. The registration method is fully 3-D with accuratgensity function, and. is the largest gray level (herd; =
intersubject alignment. Finally, by using the correspondenges). The transformed valug, is in the interval [0, 1], so,
vectors and the transmission scan of the reference set, we g@nuse
synthesize the transmission scan of the target set. The system
flow diagram is illustrated in Fig. 1. gr = 2558k (2)
to rescale gray leved; to the interval [0, 255].

2) Coarse SegmentationAfter histogram equalization,
most of the pixels of the enhanced image will have high

Although similar FDG emission scan images from differerilumination. The boundary of the body still cannot be
patients are selected for registration in our system, the intenssily identified from the enhanced image. By applying the
characteristics of two sets of images from different patients araltithresholdable image segmentation [23] which consists in
still quite different. Therefore, the boundary of the emissiolooking for the bipoint corresponding to the normal of the
scan images are the only reliable information that we camost striking boundaries. We obtain the possible thresholds
apply for registration. Fig. 2 shows the original emission scdy taking the intervals defined by these bipoints. To obtain the
image. It is not easy even for our naked eyes to identifyest threshold$t; andt»), we look for separators which cut
the trunk and two arms accurately. Here, we mention tvtbe intervals the best. In our experiment, we have determined

Il. BOUNDARY EXTRACTION
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Fig. 3. The examples of the original images after histogram equalization.

Fig. 4. The segmentation results of the enhanced images.

the thresholds as, = 170 andt, = 215 which are used for Usually only a small number of model parameters is required
a coarse segmentation process to roughly segment the imageeconstruct the training examples. We may generate new

based on the following pixel grouping: examples of the shape, which will be similar to those in the
) training set, by varying the shape parameters within certain
if g <170, theng, =0 limits.
else if gy, < 215, theng;, = (2/3)gs 1) Training Set ProcessingTo extract the contour of the
elseg; does not change. (3)human body from the PET images, we need to establish

a flexible model which can describe the typical shape and
The process are applicable for most PET emission scan imagesiability from the training sets. To achieve this, we will label
Since most of the first group of pixels are either located outsigeme points at the boundary of the human body, then calculate
the body or found outside the trunk, we may assign zero valtiee mean positions of these points and the parameters which
for these pixels. For some pixels close to the body, we finflay characterize the variations of these points.
their pixel values are between 170 and 215. The second group a) Labeling the training set:The precorrected emission
of pixels are located inside the trunk and close to the boundajyan images are too blurred for human being to identify the
so that they are applicable for the training process. We redys@undary of the trunk. Here, we assume that the mismatch
the pixel intensity values of the second group of pixels so thgétween the emission scan and the transmission scan of the
they can be differentiated from the third group of pixels in thgsference set is negligible, so that we can use the transmission
image. The third group of pixels in the image have graylevelgan as an aid to manually label the points on the emission
larger than 215. Most of the third group of pixels are locategtan There are eight points selected on the contour of each
on the boundary of the body. slice of the arm and 32 points selected on the boundary of

each slice of the trunk as shown in Fig. 5. In the experiments,

B. PDM for Boundary Extraction we have four reference sets and each set has 15 images, for a
The PDM [15], [16] can be generated from a set of trainingtal of 60 images to be labeled as the training set.
examples, each represented By variables. It requires a b) Training shapes alignmentAfter labeling, the la-

set of training images from which the average examples ligled points from different shapes must be aligned with respect
calculated and the deviation of each example from the mearidsa set of axes. They are aligned by scaling, rotation, and
established. A principal component analysis of the covariantanslation so that they correspond as closely as possible. This
matrix of deviations reveals the main mode of variatioralignment method is a modification of the Procrustes method
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Fig. 5. The model of the boundary of a human body with 48 points.

[20]. Let x; be a vector describing the points of theith
shape in the training set as

_ T
i = (Ti0, Yi0> Til, Yils***» Tik, Yiks*** s Tin—1, Yin—1)"  (4)

Assume that we have two similar shapesandz;, and we are
going to determine a rotatiofl, a scales, and two translation,
t, andt,, mappingz; onto M(x;) + t;. To minimize the
weighted sum

E = (z; — M(5,0)[z;] — )" W (z; — M(5,0)[z;] —t) (5)
where

M(s,6) |:a:1k} _ <(s cos 0)x;y — (ssin 6)y;x )7

Yik (ssin @)z i + (scos @)y
t=(t,ty, - tuty)

Any points in theallowable shape domaican be presented
by taking the mean and adding a linear combination of the
eigenvectors

T=%+Pb 9)

P = (p, -p,)7" is the matrix of the eigenvectors and
b= (b, ---b,)T is a vector of weights. The above equation
allows us to generate new shapes by varying the parameters
by, within suitable limits, and these new shapes are similar to
those in the training set. Usually, the suitable limits are

~3v/ A < b < 3y )\ (10)

Alternatively, one can choose sets of parame{és- - - b, }
such that the Mahalanobis distanBg, from the mean is less
than the maximum valueD,,.. as

2 _ - b% 2
Drn - Z <)\_k> S Dmax' (ll)
k=1
2) Modeling Graylevel Profile:Attempting to fit to an im-

age object with our models, we need to find the adjustment
which will move each point toward a better position. The

graylevel patterns about the labeled model points of different
images are often similar. Here, we analyze the statistics of the
graylevel profiles normal to curves passing through the points.
Although, in some cases, it is sufficient to assume that the

and W is a diagonal matrix of weights for each points. Theoints lie on the strong edges and it is easy to search them in
replacementz, = scosf,a, = ssinf and a least-squaresthe images. However, this is not always true for PET emission

approach (differential respect to variables; a,,t,,t,) lead

scan images. It is necessary to generate a more general model

to a set of four linear equations, which can be used to soloé the graylevel profile. We extract a profitg of lengthn,,

g, Oy, ty, aNd .

¢) Capturing the statistics of aligned shapethe equi-
valent points of the aligned shapes are scattered in the
tribution regions of the so-calledllowable shape domain

pixels which are centered at the point on the shape boundary
of each training image.

disThe profile is the sample of the derivative of the graylevels
along it which is normalized. This profile is uniform scaling-

We use the PDM to model the variation of the distributiomvariant and unbiased to the graylevel constant. Therefore,

region. Given a set ofV aligned shapes, the mean shapge,
is calculated from

1
so Ly 6
T N;‘” (6)

and the deviation from the meadx; = z; — z. Then, we
calculate the2n x 2n covariance matrixs, as

N
1 T
_ =+ s dat
S_N;ldx dx; @)

The allowable shape domaigan be viewed as an ellipsoid.

The principal axes of the ellipsoid of thallowable shape

domain giving the modes of variation of the points of th
shape, are described lyy, (k = 1,---2n), the eigenvectors

of S
Sp, = \p, with plp, =1 (8)

the mean profilgg and the covariance matrif, can be cal-
culated, and we will have the first and second order statistical
description of the profiles at the point. The variation about
the mean profile is described &, the eigenvectors af,
corresponding to the, (<n,) largest eigenvalues.

In a new example of image the profile of the points can
be written as

Juew = 9 +pgbg(new) (12)

whereb, ..\ IS @ set ofn, parameters describing the profile
model. Theprofile modelis given byg, P, and then, largest
eigenvalue\;, j = 1,-- - n,. We fit the profile modelto image
éarofile g with the central pointg;;, and along the normal
direction of theith shape model point as

by = Pg(g—79) (13)

we will get a set ob,, and then calculate how well thprofile

where ) is the kth eigenvalue ofS and A, > Awi1. The modelfits theimage profileby using the Mahalanobis distance
eigenvectors of the covariance matrix corresponding to tR&

largest eigenvalue describes the longest axes of the ellipsoid, "p bgj

and the most significant modes of variation in the variables M=) = (14)
used to derive the covariance matrix. j=1
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where); is the eigenvalue corresponding to tfth eigenvec-
tor and); > A;41. By moving to different profile central point O O Q
g and do the same model-profile fitting, we may find the o U 9 O ¢ D

best-matched profilé, which corresponds to the minimum
M.

3) Contour Extraction by Computing the Changer ex-
tract the contour of the cross section of the precorrected PET
emission image, we assign an initial shape model which is @
arbitrarily located close to the real contour of the cross section.

)
The initial position of the shape model is given by Q @
X = M(s,0)[z] + X. (15) Y VY V y

whereX . = (X, Y., -- X.,Y.)? and M (s, 6)[] is a rotation

—2\/1/ “— b[ — 2\/11

and a scaling operation, and.,Y.) is the position of the 2V b 5 2V
center of the model in the image. ? 2 2
After searching the best-matched profiles for all model (b)

points in a image of the target set, an adjustment vector

dX = (dXo,dYy,--+,dX,_1,dY,_1)T will be generated.

The adjustment vector cannot add on the initial model position @ OO Y OO OQO
X directly, because it does not satisfy the shape constraint of

the model. Therefore, we will find the translatiofX,., dY,),

the rotationdé, and a scaling factofl + ds) after best-match

and mapX onto (X + dX). Then, we calculate the residual -2Vs < b - 2VA)
adjustmentsiz which can be satisfied by deforming the shape ©

of the model in the local coordinate frame as

M(s(1 + ds), (6 + d8))[ + da] + (X + dX.) o ‘> O

= (X +dX). (16)
Substituting (15) to (16) we have
M(s(1+ ds), (6 + d6))[z + da] 2VA e by - 2V
= (M(s,0)[z] +dX) - (X.+dX.)  (17) (d)

. _1 L . Fig. 6. Examples of body shapes in the training set, each containing 48
sinceM ™" (s,0)['] = M(s~*, —8)[/] we can obtain points.

dr=M((s(L+ds))™t,—(0+dO))[yl—x  (18)

C. The Experimental Results of Contour Extraction
wherey = M(s,6)[z] + dX — dX. and we need to use the

shape constraint, so from (9), we can fiiisuch that The PET precorrected emission scan model was trained

using a set of 60 examples of PET precorrected emission

z 4 dx ~ Z + P(b + db). (19) images taken from different subjects as the training set. Here,
_ we only select the similar FDG PET emission scan imaging for
Subtracting (9) from (19), we have boundary registration because the emission scans themselves

may be quite different, reflecting different conditions (e.g.,
different drug, glucose loading, etc.), the training images

sinceP” = P, as the columns aP are mutually orthogonal Would be adequately cover the range of morphology seen in
and are unitary vectors. The above equations allow us &G PET emission scans. When building shape models, it is
calculate the changes of the position variables and adjustmefffortant that the points are placed on the training images as
dX., dY., df, and ds, to the shape parameted# required accurately as possible, and the shapes are aligned similarly.
to improve the match between an object model and imad&erefore, for each training emission scan example, we select
evidence. We can update the parameters iterativelXpy= 48 model points that are manually selected based on the
X 4+dX,, Y, =Y. +dY,,0 = 0+df,s = s(1+ds),b = b+db. corresponding transmission scan image of the same subject
The shape is acceptable if the Mahalanobis distallge Which has much higher contrast than the precorrected emission
is less than the maximum valué),,... (11). If the updating scan. In the experiments, we assume that the misalignment
b leads to an implausible shape, i.@,, > D,,.x,b can be between the PET emission scan and the PET transmission scan
rescaled to the proper position by usitig— by (Dmax/Dy), Of the same subject is negligible.
wherek = 1,---n. The searching and updating procedure is In Fig. 6, we illustrate the reconstructed cross-section con-
repeated until no significant change results. tours by varying each of the first four model parametersh,,

dz +P(db) or db+Plde (20)
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®

Fig. 7. The results of the boundary extraction in the reference sets and the target sets. (a) The initial position of the shape model in a prepseassedrem
image of the reference set. (b) The extracted contour after 100 iterations. (c) The extracted contour in the original emission scan imageiald) adigomniin
an preprocessed emission scan image of the target set. () The extracted contour after 100 iterations. (f) The extracted contour in the doigiscdemMisge.

b3, and b, in turn, and keeping the others zero. This methodhereC1 can be viewed as the start contour which is going

has been applied successfully on the extracted contourstmfbe deformed to the end contodr2. Let (z1;,y1;) and

the PET emission images (see Fig. 7). The placement of the;,y2;) be the coordinates of the poinixorresponding to

initial contour was obtained by choosing a set of positiothe start contour and the end contour, ak¥idoe the number

parameters closing to the region of interest and setting all toEpoints of each contourN = 8 for arms and¥ = 32 for

shape parameters zero (mean shape). After 100 iterations,tthek).

model gives a good fit to the data. Each iteration takes aboufirst, we will measure the similarity of every point @1

0.1 s for a Pentium CPU. From Fig. 7(c) and (f), we find thatith the point inC2 and find a corresponding point on some

the correct arm contours are identified for different subjectdine segment ofC2. There are two measurements. The first
measurement is theosition difference measuremenmhich is

[Il. SLICES INTERPOLATION defined as
[ j issi is- . AxB ]
For the intersubject PET precorrgcte_d emission scan regis p(i,5) = | | — |A]sinb 22)
tration, we need to consider the misalignment in thaxis. |B|

Since the contours extracted f_rom two conugyou; sl!ces gv%ere (1)A and B are two vectors defined at = P1(i) —
not change smoothly, to obtain a more precisdirection

P2(j) and B = P2(j + 1) — P2(j), (2) P1(i) and P2(%)

registration, we need to apply the elastic interpolation meth%re the locations corresponding to the points on two curves

[18] to interpolate contours between two continuous sllces.i.e” C1 andC2, (3) 0 is the angle betweer and B. This

equation measures the shortest distance from every point in
C1 to every line segment i€2. By minimizing p(i, j), we
The elastic interpolation is treated as a deformed process find the corresponding line segment for every point
between two similar contours, i.e. in C1. If the position difference measurement cannot find an
_ o p unique line segment for some pointsdfi, then we will use
C1={(sli,yli)ll << N} the directional incompatibility measuremettd choose one

and
Wi, 7) = [E x B| =sino (23)
C2 ={(22;,y2;)|1 <i< N} (21) |E|| B

A. Elastic Interpolation
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P1(i)
P PA(i) DIG),
D1(i,) . -
: - D10 g
.» P2(+1) o pggery P20 P+
P2(j) P2()

C1

D2

o

where « is the angle of the line segments and B in C1 whereG1 and G2 are Gaussian weights defined as
and C2,F is defined asE = P1(: + 1) — P1(:) and B 5 5
is defined in (22). If the two line segments are parallel, the @1; = exp —(z —z1i) 2—(9— yls)
directional incompatibility is zero. It is equal to one when Tk

they are orthogonal. Then, the displacement vectors can be —(z — 21l; — D2,)* — (y — yl; — D2,)?
determined by o2

Fig. 8. Displacement vectors of two contours.

and

G2; = exp

(26)
|A]sin €+ nl12

if 0<|A|cosf < |B]
P2'(j) — P1(2)
if |Ajcos6 > |B| or|A|cosf <0

D1(i,5) = (24)

D2, and D2, are thex andy components o2, andoy, will
gradually decrease after each iteration. The iterative formula
of finding interpolation contours is

CM(i) = C* (i) + DS* M (&, f )

T

n12 is the unit vector parallel to the shortest distance point to (27)

line segment and’2'(;) may be the poinP’2(j) or P2(j+1)  \yhere the initial contou€® = C1. After each iteration, an in-

whichever is closer td”1(i). Reversing the roles of the Startterpolated contour will be generated. The iteration stops if after

and end contours, the displacement vedi(z, j) is defined ¢ 141, jteration the interpolated contoGr*(i) approaches the

at each pointP2(z) in C2. Fig. 8 shows the displacementyq,| contourc2. The difference between the*(i) and C2
vectors of both directions fron®1 and C2.

is less than certain threshold, i.€2 = C*(¢) + DS*(x;, y;
The minimum displacement vector®1(i,J;) can be 2 0+ (zir01)

. ) . and ¥y, |DS* (i, ;)| <e.
viewed as the force pulling’l to C2 and D2(j,1;) as the
pushing force, they are defined 88.(¢, J;) = min; D1(3, j)
andD2(j,1;) = min; D2(j,¢). The neighboring vectors must
be taken into consideration. So, a Gaussian weight function igHere, we use a synthesized cylindrical vase to verify this
used to smooth the force field and the closer vectors will fieterpolation method. There are 15 slices of the original
given more weight as they have more impact on the pushifgntours, and each contour has 30 selected points. We inter-

force. The smooth displacement field is defined as a functiglate one slice between two continuous slices by using the
of D1 and D2 displacement field)S and then extrapolate one slice after the

15th slice of the original contours by using the displacement

B. The Interpolation Results

N N field DS between the interpolated slide% and the slice 15.
ZGliDl(i,Ji) ZG2j(D2(j7Ij) So, there will be 30 slices after interpolation. Fig. 9 shows
i=1 j=1 the original cylinder and the interpolation result. Next, three

DS(&Z,y): ‘ -

N
> a1,
=1

25
(25) contours of PET image need to be interpolated separately.

The original contours of 15 slices are also interpolated into
30 slices which are shown in Fig. 10. The reconstructed 3-D

N
> a2,
j=1
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© (d

Fig. 9. (a) The original cylinder with grid. (b) The interpolated cylinder with grid. (c) The original cylinder after shading. (d) The interpolated
cylinder after shading.

surfaces of the PET emission scans of the reference set and find two curvesy(u,vo) and r(uo,v), passing through
the target set are used in registration. the point(uo,v), and the corresponding tangent vectors of
the two curves arér/du anddr/0v respectively. So the unit

IV. THREEDIMENSIONAL INTERSUBJECTREGISTRATION normal vector on the surface patch can be defined as

Here, we stack the 2-D contours of these slices and have or Or or Or
two 3-D surfaces for reference set and target set. To solve n= i<3_ X 8_11)/‘8_u 5, (28)

the 3-D elastic boundary registration between the reference

and the target PET emission scans, first, we calculate twberedr/du anddr/dv are evaluated at = ug andv = vo.
normal vector of each surface patch on the boundary surfae choose the positive sign as our general direction. Fig. 11
of PET emission scan. Second, we convert the 3-D norngilows the normal vector of a sphere and the body surface.
vector field into 2-D vector frame which is treated as an 2-D

image intensity frame. The variation of two sets of 3-D norm&@. Dimension Reduction

vector fields can be treated as two dynamic image frames Ofrpq e are no appropriate 3-D methods to register the surface
which the intensity of each pixel represents the normal of th

. . . ) Voxels of two deformed objects. The 3-D registration of two
corresponding surface voxel. Third, the registration betweg ject surfaces can be treated as a correspondence problem
two sets of surface voxels can be solved by using nor

tween two sets of surface voxels, which can be simplified as

flow ”.‘eth"d [17]. Fourth, the 2-D correspondence vectors 7 2) correspondence problem by using the dimension reduction
deprojected to 3-D correspondence vectors of each surf 8 oth the space domain and the attribute domain

voxel. Finally, we can estimate the 3-D correspondence vectorl) Space Domain Reductiorithe 3-D surface generated

field which describes the registration of two objects. from contour points on a sequence of slices can be viewed

) as an elastic web. As mentioned in Section Il, the number
A. Normal Vector Field of selected points on each contour of different PET emission

The normal direction on each surface patch with the ceslices is the same. We can cleave the surface at several points

ter voxel located at(z,yo,20) iS calculated by using the and then stretch it into a 2-D rectangle array. Each cell in
neighboring surface voxels. A surface pattfx, y, ) can be the rectangular array corresponds to the location of one 3-D
described as the parametric representatienv). Assume that surface voxel. The number of cells in each row is equivalent
the surface patcl§(zo, yo, 20) is mapped ta-(uo, vo). SO, we to the number of points on each contour and the number of
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Fig. 10. (a) The 3-D surface stacking from the original 15 slices PET imaging contours. (b) The interpolation result which has 30 slices. (c) dlhe origin
3-D surface after shading. (d) The interpolation result after shading.

(@) (b)

Fig. 11. (a) Normal vector of a sphere. (b) Normal vector of a body surface.

cells in each column is equivalent to the number of slices. TAd&erefore, at time instance the normal vector field can be
rectangular array is called the domain frame and is definddscribed as
asT = {(m,n)(1 <m < M,1 <r < R} whereM is the
number of points on one slice, and there &salices. MV (m,r.t)

2) Attribute Domain ReductionSince the normal vector of ={(0(m,r, t), p(m,r, t))|(m,r) € [',t = nAt} (29)
each surface point is a unit length, there are actually two
degrees of freedom in the 3-D normal vector field. TrangvhereI' is the 2-D domain space and, ¢) is the attribute
formation from Cartesian coordinate to Polar coordinate, i.space. The 3-D normal direction vector fiditlcan be replaced
(nz,ny,n.) — (6,¢,1), and neglecting the unit length, weby the 2-D attribute field\/V" as
can reduce the 3-D coordinate of surface voxels to 2-D
coordinate of pixels, i.e{(x,y,2)} — {(m,r)}, and convert N ={na(x,y,2),ny(x,y,2), (2,4, 2)) }
the normal direction attribute, i.€{(n.,ny,n.)} — {(8,¢)}. — MV (m,r,t) ={0(m,r,t),p(m,r,t))}  (30)
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measure the displacement field’s departure from smoothness as

C, = / (W2, +02) + (2, +02))dmdr  (32)

where u,, = du/Om,u, = Ou/Or,v, = Ov/Om, and

v, = Ou/0r are the partial gradients of the two components
of the displacement velocity. The error of timermal flow
constraintcan be described as

@ ®) Cup = / (Bt + 6,0 + 6,)2 dm dr- (33)

These two constraints are described by two measurements

which are combined as the energy functithy = C, +

Ao Ceg, Where )y is a weighting factor for the attribute frame

{68(m,r,t)}. The energy function is to be minimized to obtain

the correspondence vector field between two attribute frames

at two time instance. However, there is another attribute frame

{¢(m,r,t)}. Similarly, we need to consider the second energy

term W, = Cy + A3Cep Where Coy, = [ [ (P + v +

¢+)? dm dr. The total energy function needs to be minimized in
() (d) the linear combination oy and¥,,. Minimizing an integral

Fig. 12. (a) The original 3-D surface. (b) The reference surface which @f the form [ F'(u, v, tm, t, Um, 1) dm dr is a problem of

will deform to. (c) The 2-D displacement vectors of each cell. (d) Thehe calculus of variation. We can approximate the minimization

deprojected 3-D displacement vector. problem with a finite difference scheme to obtain the solution

[21].

where {(8(m,r,t), p(m,r,t))} are the attribute frames of

the surface. To register two different object surfaces c@n 3-D Correspondence Vector Deprojection

be described as a correspondence problem between two a

tribute frames ag(6(m,r,t), p(m,r,t))} and {(8(m,r,t +

At), ¢p(m, 7, t + At))}.

tI=he generated 2-D correspondence vector field (i.e.,
{MV'}) cannot be applied to find the correspondence between
two sets of 3-D surface voxels. Here, we need to deproject the
2-D correspondence vector field to the 3-D vector field (i.e.,
{MV}) which indicates the surface deformation between two
Since PET images are scanned with all patients in a simigéts of PET emission scan data. Given a 2-D correspondence
position and the reconstructed surfaces of the 3-D emissigctor, MV’ (= (u,v)) (located on a small grid), we need to
scan from different patients resemble each other, we cfind the 3-D correspondence vectefV (= (x, v, z)) on the 3-
assume that the normal vector fields of these surfaces chamgsurface.P1’, P2/, P3', and P4’ are the corner points of the
smoothly. Here, we treat the normal vector fields of thg-D grid (i.e., located afui,vy), (u2,v2), (u3,v3), (14, v4)),
reference set and the target set as two sets of two attriuteand the corresponding points of these corner points on the
and¢, evaluated at andt + At, respectively. Therefore, the3-D surface patches ar®1, P2, P3, and P4 (i.e., located
registration problem can be treated as the surface deformatigi(x, v, 21), (2, %2, 22), (%3, Y3, 23), (x4, Y4, z4)) Which are
By using thenormal flow constrainf17] we can estimate the not on the same plane. Assume that these corner points are
2-D correspondence vector field. close enough, so we can develop a method to find the 3-D
There are two constraints in the normal flow metho@orrespondence vector.
The first one isnormal flow constraintwhich states that For eachA/ V' (pointing to(u,v) on the 2-D plane, there is
the variations of the two attribute frameg@(m,r,t)} and a corresponding/V pointing to(z,y, z) on the 3-D surface
{¢(m,r,t)} are constant for a small time intervéd which which can be derived as,
can be described as

Opu+0v+0, =0 and ou+odv+¢d =0 (31)

Then, usingRv, the coordinates of poind and B can be
where 0, = 90/0m,0, = 00/0r,0, = 00/0t, ¢ = determined as
Ap/Om, ¢ = 0¢/Or, ¢, = d¢/0t, and the correspondence
vectors arex = dm/dt andv = dr/dt. The time derivative (4,94, 24)
is estimated by the variation of the attribute frames of two = (x1,y1,21) + Rv - ((x4,ya,24) — (21,91, 721))
subjects. Since there are two equations and we can determine (35)
the correspondence vectaisand v uniquely from the above
equation. However, we have to consider another constraint, the
smoothness constrajntvhich dictates that the displacement = (z2,y2,22) + Rv - ((#3,y3,23) — (¥2, Y2, 22)).
field changes smoothly in most parts of the frame. Here, we (36)

C. Estimate 2-D Correspondence Vector

Rv=v—v; and Ru=1u—u. (34)

(zB,YB,%B)
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(© (d)

Fig. 13. (a) The original cylinder. (b) The reference cylinder whose cross-section area is larger than (a). (c) The 3-D displacement vectorsfateach su
point. (d) The top-view of the 3-D displacement vectors.

Finally, the 3-D correspondence vector is approximated by The top-view of the correspondence field of one slice is
shown in Fig. 13(d).

Finally, we use the real 3-D surfaces extracted from the
(@9, 2) = (24,94, 24) + Ru PET emission scan imaging to test the correspondence vector
-((zB,yB,2B) — (a4,y4,24)).  (37) estimation method. Fig. 14(a) shows the 3-D surfaces gener-
ated from the target set and Fig. 14(b) shows those generated
from the reference set. The 3-D residual displacement vectors

of each surface point are shown in Fig. 14(c). The global
In the first test, we used two synthesis spheres. The ty@nslation vectors of each surface are eliminated from the
spheres with their center located at the origin and treated @siimated 3-D correspondence vectors. Fig. 14(d) shows the
one sphere deformed at two time instances. Fig. 12(a) shogvp surfaces reconstructed by using the 3-D correspondence

the first sphere which has 28 circular slices and then it y@ctors. Comparing Fig. 14(b) and (d), we find that they
deformed as the second sphere which has 30 circular sliceg@sely resemble each other.

shown in Fig. 12(b). Fig. 12(c) shows the 2-D correspondence
vectors of each cell. From these figures, we find that most
correspondence vectors are upward especially on the upper
columns. This is correct as we compare the original two Using the correspondence vectors at each surface point, we
surfaces. Fig. 12(d) shows the deprojected 3-D correspondentsy synthesize the PET transmission scan of the reference
vector of each surface point. These correspondence vectorssate Here, we modify the 2-D interpolation method [22]
moving upward and outward at the upper surface points. for our 3-D application. There are two procedures: 1) The
In the second test, we use two synthesized solids-aferrespondence vector interpolatiarses the correspondence
revolution with different cross section as the deformed objeetctors on boundary contours of two slices to generate the
at two time instance. The smaller one is shown in Fig. 13(ajorrespondence vector field for the interior part of the cross-
and the larger one is demonstrated in Fig. 13(b). The smalsmction area in each slice. 2) Thgaylevel interpolation
one is deformed and becomes the larger one. From thgplies the correspondence relation between two emission
estimated 3-D correspondence vectors [shown in Fig. 13(c3kans and uses the transmission scan of the reference set to
we find that the correspondence vectors are moving outwasgnthesize the transmission scan of the target set.

E. The Registration Results

V. TRANSMISSION SCAN SYNTHESIS
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Fig. 14. (a) The 3-D surface of body shape generated from the target set. (b) The 3-D surface of the reference set. (c) The estimated 3-D displacement
vectors of each surface point. (d) The deformed 3-D surface which is similar to the reference one.

A. 3-D Correspondence Vector Interpolation image pairs. If one contour is very distorted compared to

Each grid point on the boundary of the target set has a %€ other, we will use a larger value gfto interpolate the
D correspondence vector which can be viewed as a mapp resp_onderpe vector field. The interpolated correspondence
between the point in the emission scan of the reference gggt_or field will be. closer to the global correspondence vector.
and the corresponding point in the emission scan of the tarG{t if the contour is close to the real boundary of the body, we
set. The correspondence vector field is represented as a gld§4juse a smaller value of to generate the correspondence
correspondence vector and a local residual vector field. ~ VECtor concering a local area. _ _

The residual 3-D correspondence vector at the surface point Fi9- 15, each slice is separated into four sections: three

is described as contour sections and one background section. The correspon-
dence vectors of the points inside each contour section are
MYV; = (2; — Tmean, ¥i — Ymean, % — Zmean)- (38) interpolated from the correspondence vectors on the boundary

where (z ” p ) is the correspondence vector Ofcontour of the same contour section, but Fhe correspondence
the cen t:reag‘f’ tﬁ:a&’)r’]?&j‘; Then the correspondence vecto r\/e&:tors of the points in the background section are extrapolated
each grid point inside th.e interior part of the CI’OSS-SeCtiJr m the corr.espon(_jence vec tors on the boundary contours of
region of each slice (i.ez component is a constant) can begh three sections. Fig. 15(a) illustrates thandy components
interpolated as e of the.3—D corrgspondence vector; of the boundary points on
one slice and Fig. 15(b) shows the interpolated correspondence
N ’ vectors inside the interior part of the three contour sections.
GV (z,5,2) = 3 WiMV; / Swe (@9)
=1 =1
where B. Graylevel Interpolation
9 211/2 The 3-D correspondence vectors indicate the mappings from
M —2)® + (= ) one emission scan to another emission scan. However, these
p mappings do not map integer points to integer points. We can
is a weighting factor similar to the Gaussian function basewt use these mappings to synthesize the target transmission
on the distance between the grid point and the surface pasgan from the reference transmission scan. The intensity value
on the same slice. The value @fis chosen manually and of each point on the target transmission scan is mapped to
it depends on the amount of deformation between the twaononinteger point on the reference transmission scan which

Wi(z,y) = exp
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Fig. 15. (a) The displacement vectors on the three contours. (b) The interpolated displacement vectors inside the contours.
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Fig. 16. (a) The synthesized transmission scan of the target set. (b) The original transmission scan of the reference set. The intensity ofjére noninte
point R(x,y,z) is interpolated by the neighboring integer points R1-R8.

must be interpolated by the neighboring integer points. Theference set (Fig. 17) and the emission scan of the target set
graylevel of this noninteger point can be determined hyFig. 18). These registration parameters are then applied to
its eight neighboring points. Here, we use a 3-D Gaussiadjust the transmission scan for intersubject transmission scan

weighting function to interpolate the graylevel as substitution. However, by comparing the adjusted transmission
3 8 scan and the original genuine transmission scan, we find that
T(x,y,2) = ZWsz/ZWZ (40) their difference (Fig. 22) is much worse than the difference
i=1 = between the synthesized transmission scan and the original
where transmission scan (Fig. 23).
) ) 211/2 From Figs. 22 and 23, we find that the difference on the
W; = exp —[(z —2)" + (Y —wa)” + (2 = z)7] neighborhood of the boundary of body is trivial by using our
g method. However, the difference inside the body is obvious.
and{R;|i =1,---, 8} are the intensities of the eight neighborThis is because the tissue inside the body of one subject

ing integer points of the noninteger point located(aty, z) is different from the other's. Here, we only use boundary
with intensity R(x,y, z). T(z,y,z) is the intensity of the information to synthesize the transmission scan, so that the
integer point on the slicer of the synthesized transmissiongraylevel inside the body cannot be determined efficiently
scan, wherel'(z,y,2) = R(z,y,%). The shorter distance py this method. If we can get the information inside the
to its neighbors is found, the larger weightingj; will be Dbody, this problem will be improved and the difference inside
generated, it indicates a greater influence of its neighbor @& body will be reduced. To verify our results, we use the
the interpolation. Fig. 16 illustrates that the noninteger poighme method to register two original transmission scan images
R(z,y,z) is interpolated by the neighboring eight integefrigs. 19 and 20) instead of two emission scan images. The
points. estimated 3-D correspondence vectors and the interpolation
results should have been more accurate. However, we find
VI. EXPERIMENT RESULTS AND DISCUSSION that the improvement is limited since the difference inside the

We have successfully developed a registration method Rgdy can not be reduced effectively. The difference images
register two different PET emission scan images (see Figs. ae illustrated in Fig. 24.
and 18). The results of this intersubject registration are ap-Table I shows the signal-to-noise ratio (SNR) and mean-
plied on the transmission scan synthesis. By using the 3sguare error (MSE) of the experimental results. In the body
correspondence vector and graylevel interpolation on the tragsan images, the first experiment illustrates the difference
mission scan scans of the reference set, we can synthesizebihausing the correlation-based centroid registration on the
transmission scans of the target set. Figs. 19 and 21 showp emission scans of the reference set and the target set.
the original transmission scan and the synthesized one. If Wee average SNR of this case is about 11.3 dB. The next
apply the conventional correlation-based method to registxperiment shows the difference by utilizing the emission
the centroid [5] for each slice of the emission scan of thecans registration, and the average SNR of the difference
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(@) (b)
(c) (d)

Fig. 17. The (a) first, (b) fourth, (c) seventh, and (d) tenth slices of the PET emission scan of the target set.

.
@) (b)
© (d)

Fig. 18. The (a) first, (b) fourth, (c) seventh, and (d) tenth slices of the PET emission scan of the reference set.

between the synthesized transmission scan and the real ongcans registration and the transmission synthesis that we have
about 14.8 dB. The third experiment indicates the differenpeoposed do decrease the difference between the real trans-
by applying the registration algorithm to two transmissiomission scan and the corresponding synthesis one. Comparing
scans, and the average SNR is about 15.9 dB. So, the emissienfirst and second experiments, we find that our algorithm
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Fig. 19. The (a) first, (b) fourth, (c) seventh, and (d) tenth slices of the original transmission scan of the target set.

(@) (b)
() (d)

Fig. 20. The (a) first, (b) fourth, (c) seventh, and (d) tenth slices of the transmission scan of the reference set.
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Fig. 21. The (a) first, (b) fourth, (c) seventh, and (d) tenth slices of the synthesized transmission scan of the target set.
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Fig. 22. The (a) first, (b) fourth, (c) seventh, and (d) tenth slices of the original transmission scans of the target set and the reference det (i.e., wit
centroid registration).



HUANG et al: 3-D PET SCAN REGISTRATION AND TRANSMISSION SCAN SYNTHESIS 559

@) (b)

© (d)

Fig. 23. The (a) first, (b) fourth, (c) seventh, and (d) tenth difference slices of the synthesized transmission scan and the original transmafstha sca
target set. The registration is applied on the two corresponding precorrected PET emission scan image.

@ (b)

(© (d)

Fig. 24. The (a) first, (b) fourth, (c) seventh, and (d) tenth difference slices of the synthesized result and the original transmission scarirafioa regis
is applied on the two original transmission scan images.
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Fig. 25. The first, fourth, seventh, and tenth slices of the emission scan data: a) the first row is the emission scan images without attenuaiion correcti
(AC), b) the second row is the emission scan images with AC using the original transmission data, c) the third row is the emission scan images with AC
using the synthesized transmission data, d) the fourth row is the emission scan images with AC using the contour information only.

TABLE |
THE EXPERIMENT RESULTS OF THE DIFFERENCE BETWEEN TWO SETS OF THE TRANSMISSION SCAN IMAGES

Methods Controid Registration Registration using Emission| Registration using Transmission
(Fig. 22) Scans (Fig. 23) Scans (Fig. 24)
Average SNR(dB) MSE SNR(dB) MSE SNR(dB) MSE
Difference 11.27 307.20 14.76 137.58 15.86 106.71

does improve the SNR by 3.5 dB. The results of the secondrrection projections, 2) measure the emission projection
experiment are very close to the third experiment with onlysing PET scanner, 3) do the emission attenuation correction of
1.1 dB less. the emission scan projection using these attenuation correction
To illustrate that our synthesized transmission data providesjections, and 4) reconstruct the 2-D emission scan images.
an acceptable attenuation correction information for the targgten, to justify our new approach by comparing the different
emission scan, we do the following operations: 1) project tlatenuation data for attenuation correction of the same emis-
synthesized transmission image to generate the attenuas@n scan, we propose the following three methods: a) using the
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original transmission scan for attenuation correction, b) usingg] D. C. Barber, “Registration of low resolution medical imageBHys.
the synthesized transmission scan for attenuation correctioB] Med, Biol, vol. 37, no. 7, pp. 1485-1498, 1992.

d . h v f . R. P. Woods, S. R. Cherry, and J. C. Mazziotta, “Rapid automatic
an C) using the outer contour only for attenuation correc- algorithm for aligning and reslicing PET images]’ Comput. Assist.

tion (provided by the Scandritronix). The contour method Tomogr, vol. 14, no. 4, pp. 620-633, 1992. _
provided by Scanditronix assumes uniform attenuation insid@l S- L. Bacharach, M. A. Douglas, R. E. Carson, P. F. Kalkowski, N.

h In thi . h . ffici Freedman, P. Perrone-Filardi, and R. O. Bonow, “Three-dimensional
the contours. In this experiments, the attenuation coefficient registration of cardiac PET attenuation scank,Nucl. Med, vol. 34,

is assigned as 0.096 1/cm for the reconstruction software. no. 2, pp. 311-321, Feb. 1993. _ .
The results of the attenuation corrected emission scan dafd P- Thevenaz, U. E. Ruttimann, and M. Unser, “Iterative multi-scale

. . . . ) . registration without landmarks/EEE Workshop Biomed. Image Anal.
are illustrated in Fig. 25 from which we can find that using 19995 pp. 228-231. ‘ P ge A

our method [i.e., method b)] to do the attenuation correctiof] C. A. Pelizzari, G. T. Y. Chen, D. R. Speloring, R. R. Weichselbaum,

may have |mage quallty Of the Corrected emlSSlon scan Very and C. T. Chen, “Accurate three-dimension registration of CT, PET,
and/or MR images of the brainJ. Comput. Assist. Tomogwol. 13,

close to the results of method a) and better than the results of |~ pp. 20-26, 1989.

method c). Especially in the lower slices (from first to fourth[7] M. E. McCord, S. L. Bacharach, R. O. Bonow, V. Dilsizian, A.

slices), we find very little distortion generated because there Cuocolo, and N. Freedman, “Misalignment between PET transmission

. . and emission scans: Its effect on myocardinal imagidgNucl. Med,
are less nonhomogeneous internal organs (i.e., no heart and no 33, pp. 1209-1214, 1992.

lungs are seen in these slices). [8] A.C.Evans, S.Marrett, L. Collins, and T. M. Peters, “Automatical func-
From the experimental resu“:S, we may find that our method tional correlative analysis of the human brain using three dimensional
imaging systems,” inProc. SPIE Conf. Medical Imaging lll: Image

can provide an effective synthesized attenuation correction Processing 1989, vol. 1092, pp. 264-274.
data for the PET emission scans attenuation correction. Thel N. M. Alpert, J. F.Bradshaw, D. Kennedy, and J. A. Correia, “The
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