Chapter 12 Object Recognition

- Images regions are treated as objects or patterns
- Object recognition \rightarrow pattern recognition
- Pattern recognition:
(a) decision-theoretic: quantitative descriptor, i.e., length, area, texture.
(b) Structural: qualitative descriptor, i.e., relational descriptor.

2.1 Patterns and Pattern Classes

- A pattern is an arrangement of descriptors.
- Feature is used to denote a descriptor.
- A pattern class is a family of patterns that share some common properties.
- Pattern recognition \rightarrow assign patterns to their respective classes.
- Three common pattern arrangements: vectors, strings and trees.
- Pattern vectors are $\mathbf{x}=\left[x_{1}, x_{2}, \ldots x_{n}\right]$ where each component x_{i} represent the i th descriptor and n is the total number of descriptors.

2.1 Patterns and Pattern Classes

The flower is described by two measurement $\boldsymbol{x}=\left[x_{1}, x_{2}\right]$ where x_{1} and x_{2} corresponding to petal length and width

FIGURE 12.1

Three types of iris flowers described by two measurements.

> © Iris virginica
> - Iris versicolor
> - Iris setosa

2.1 Patterns and Pattern Classes

a b
FIGURE 12.2 A noisy object and its corresponding signature.

We represent each object by its signature, and form the pattern vectors by letting $x_{1}=\mathrm{r}\left(\theta_{I}\right) x_{2}=\mathrm{r}\left(\theta_{2}\right), \ldots \ldots x_{n}=\mathrm{r}\left(\theta_{n}\right)$.

2.1 Patterns and Pattern Classes

- Pattern classes are characterized by quantitative Information or structural relationships
- i.e., in fingerprint recognition: interrelationship of print features called minutiae.
- Minutiae and their relative size and location are used as primitive components to describe the ridge property, i.e., ending, branching, and merging,...

2.1 Patterns and Pattern Classes

a b
FIGURE 12.3 (a) Staircase structure. (b) Structure coded in terms of the primitives a and b to yield the string description ...ababab....

2.1 Patterns and Pattern Classes

FIGURE 12.4
Satellite image of a heavily built downtown area (Washington, D.C.) and surrounding residential areas. (Courtesy of NASA.)

2.1 Patterns and Pattern Classes

FIGURE 12.5 A tree description of the image in Fig. 12.4.

12.2 Recognition based on decision-theoretic methods

- Decision-theoretic approaches to recognition are based on the use of decision (or discriminant) function.
- Let $\mathbf{x}=\left[x_{1}, x_{2}, \ldots x_{n}\right]$ represent an n-dimensional pattern vector. For W pattern classes $\omega_{1}, \ldots \omega_{\mathrm{W}}$, find the W decision functions $\mathrm{d}_{1}(\mathbf{x}), \mathrm{d}_{2}(\mathbf{x}), \ldots \mathrm{d}_{\mathrm{W}}(\mathbf{x})$ with the property that, if a pattern \mathbf{x} belongs to class $\omega_{\mathrm{i}}, \ldots$ then

$$
d_{\mathrm{i}}(\mathbf{x})>d_{\mathrm{j}}(\mathbf{x}), \ldots \text { for } j=1,2 \ldots \mathrm{~W} ; j \neq i
$$

- The decision boundary separating class ω_{i} from ω_{j}, is given by values of \mathbf{x} for which $d_{\mathrm{i}}(\mathbf{x})=d_{\mathrm{j}}(\mathbf{x})$.

12.2.1 Matching

- Recognition techniques represent each class by a prototype pattern vector.
- The simple approach is the minimum-distance classifier, which compute the (Euclidean) distance between the unknown and each of the prototype vectors.
- It choose the smallest distance to make a decision

12.2.1 Matching

- Minimum distance classifier
- The prototype of each pattern class to be the mean vector of the patterns of that class:

$$
\mathbf{m}_{j}=\frac{1}{N_{j}} \sum_{x \in \omega_{j}} \mathbf{x}
$$

where N_{j} is the number of patterns from class j.

- Using the Euclidean distance to determine the closeness as the distance measure

$$
D_{\mathrm{j}}(\mathbf{x})=\left\|\mathbf{x}-\mathbf{m}_{\mathrm{j}}\right\| \quad j=1,2, \ldots . W
$$

where $\|\mathbf{a}\|=\left(\mathbf{a}^{\top} \cdot \mathbf{a}\right)^{1 / 2}$ is the Euclidean distance norm.

- We then assign \mathbf{x} to class ω_{i} if $D_{\mathrm{j}}(\mathbf{x})$ is the smallest distance.

12.2.1 Matching

- Selecting the smallest distance is equivalent to evaluating the functions

$$
d_{j}(\mathbf{x})=\mathbf{x}^{T} \mathbf{m}_{j}-\frac{1}{2} \mathbf{m}_{j}^{T} \mathbf{m}_{j}
$$

and assigning \mathbf{x} to class ω_{i} if $d_{\mathrm{j}}(\mathbf{x})$ yields the largest numerical value.

- The decision boundary between ω_{i} and ω_{j} for a minimum distance classifier is

$$
d_{i j}(\mathbf{x})=d_{i}(\mathbf{x})-d_{j}(\mathbf{x})=\mathbf{x}^{T}\left(\mathbf{m}_{i}-\mathbf{m}_{j}\right)-\frac{1}{2}\left(\mathbf{m}_{i}-\mathbf{m}_{j}\right)^{T}\left(\mathbf{m}_{i}-\mathbf{m}_{j}\right)
$$

- It is a surface indicating a perpendicular bisector (a line or a surface) of the line segment joining \mathbf{m}_{i} and \mathbf{m}_{j}.

12.2.1 Matching

$$
d_{1}(\mathbf{x})=\mathbf{x}^{T} \mathbf{m}_{1}-\frac{1}{2} \mathbf{m}_{1}^{T} \mathbf{m}_{1}=4.3 x_{1}+1.3 x_{2}-10.1
$$

Equ. of boundary: $d_{12}(\mathbf{x})=d_{1}(\mathbf{x})-d_{2}(\mathbf{x})=2.8 x_{1}+1.0 x_{2}-8.9=0$

12.2.1 Matching

12.2.1 Matching

- Matching by correlation
- The correlation between $f(x, y)$ and $w(x, y)$ is $c(x, y)=\Sigma \Sigma f(s, t) w(x+s, y+t)$ for $x=0,1,2, \ldots \mathrm{M}-1$ and $y=0,1,2, \ldots \mathrm{~N}-1$.
- The correlation $c(x, y)$ is sensitive to the changes in the amplitude of f and w, a normalization is applied on the $c(x, y)$ as

$$
\gamma(x, y)=\frac{\left.\sum_{s} \sum_{t} \mid f(s, t)-\bar{f}(s, t)\right][w(x+s, y+t)-\bar{w}]}{\left\{\sum_{s} \sum_{t}[f(s, t)-\bar{f}(s, t)]^{2}[w(x+s, y+t)-\bar{w}]^{2 / 2}\right\}^{1 / 2}}
$$

12.2.1 Matching

FIGURE 12.8 Arrangement for obtaining the correlation of f and w at point $\left(x_{0}, y_{0}\right)$.

12.2.1 Matching

$f(x, y)$
$w(x, y)$
$\gamma(x, y)$
a b c
FIGURE 12.9
(a) Image.
(b) Subimage.
(c) Correlation coefficient of (a) and (b). Note that the highest (brighter) point in (c) occurs when subimage (b) is coincident with the letter "D" in (a).

12.2.2 Optimal statistical classifier

- Assume the probability that a particular pattern \mathbf{x} comes from class ω_{i} is denoted as $\mathrm{p}\left(\omega_{\mathrm{i}} \mid \mathbf{x}\right)$.
- If the pattern classifier decides that \mathbf{x} came from ω_{j} and when it actually came from ω_{i} and it incur a loss, denoted as $L_{i j}$.
- A pattern \mathbf{x} may be assigned to any class, and the average loss incurred is

$$
r_{j}(\mathbf{x})=\sum_{k=1}^{W} L_{k j} p\left(\omega_{k} \mid \mathbf{x}\right)
$$

12.2.2 Optimal statistical classifier

- Under the Bayesian rule: $\mathrm{p}(\mathrm{A} \mid \mathrm{B})=\mathrm{p}(\mathrm{A}) \mathrm{p}(\mathrm{B} \mid \mathrm{A}) / \mathrm{p}(\mathrm{B})$, we have

$$
r_{j}(\mathbf{x})=\frac{1}{p(\mathbf{x})} \sum_{k=1}^{W} L_{k j} p\left(\mathbf{x} \mid \omega_{k}\right) p\left(\omega_{k}\right)
$$

- Since $p(\mathbf{x})$ is common to all the $r_{j}(\mathbf{x})$, it can be dropped as

$$
r_{j}(\mathbf{x})=\sum_{k=1}^{W} L_{k j} p\left(\mathbf{x} \mid \omega_{k}\right) p\left(\omega_{k}\right)
$$

- The classifier minimizes the total average loss is called the Bayes classifier.

12.2.2 Optimal statistical classifier

- The Bayes classifier assigns a unknown pattern \mathbf{x} to $\underset{W}{\text { class }} \omega_{\mathrm{i}}$ if $r_{i}(\mathbf{x})<r_{j}(\mathbf{x})$ for $j=1,2, \ldots W$, and $j \neq i$

$$
\sum_{k=1}^{W} L_{k i} p\left(\mathbf{x} \mid \omega_{k}\right) p\left(\omega_{k}\right)<\sum_{q=1}^{W} L_{q j} p\left(\mathbf{x} \mid \omega_{q}\right) p\left(\omega_{q}\right)
$$

- Assume the lose function $L_{\mathrm{ij}}=1-\delta_{\mathrm{ij}}$ then we have

$$
r_{j}(\mathbf{x})=\sum_{k=1}^{W}\left(1-\delta_{k j}\right) p\left(\mathbf{x} \mid \omega_{k}\right) p\left(\omega_{k}\right)=p(\mathbf{x})-p\left(\mathbf{x} \mid \omega_{j}\right) p\left(\omega_{j}\right)
$$

- The Bayes classifier assign a pattern to class ω_{i} if

$$
p(\mathbf{x})-p\left(\mathbf{x} \mid \omega_{j}\right) p\left(\omega_{j}\right)>p(\mathbf{x})-p\left(\mathbf{x} \mid \omega_{i}\right) p\left(\omega_{i}\right)
$$

- or

$$
d_{j}(\mathbf{x})=p\left(\mathbf{x} \mid \omega_{j}\right) p\left(\omega_{j}\right)<p\left(\mathbf{x} \mid \omega_{i}\right) p\left(\omega_{i}\right)=d_{i}(\mathbf{x})
$$

12.2.2 Optimal statistical classifier

Bayes classifier for Gaussian classes

- Consider 1-D problem with two classes $\mathrm{W}=2$.

$$
\begin{aligned}
& \text { - The Bayes decision function is } \\
& \qquad d_{j}(x)=p\left(x \mid \omega_{j}\right) p\left(\omega_{j}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{j}} e^{-\frac{\left(x-m_{j}\right)^{2}}{2 \sigma_{j}^{2}}} p\left(\omega_{j}\right)
\end{aligned}
$$

- The boundary between two classes is $x=x_{0}$ such that $d_{1}\left(x_{0}\right)=d_{2}\left(x_{0}\right)$
- For equal-likely case $\mathrm{p}\left(\omega_{1}\right)=\mathrm{p}\left(\omega_{2}\right)=1 / 2$, then $\mathrm{p}\left(x_{0} \mid \omega_{1}\right)=\mathrm{p}\left(x_{0} \mid \omega_{1}\right.$), e.g., boundary (at $x=x_{0}$), is shown in Fig. 12.10.
- For non-equal-likely case $\mathrm{p}\left(\omega_{1}\right) \neq \mathrm{p}\left(\omega_{2}\right)$, if ω_{2} is more likely, then x_{0} move to the right, else it moves to the left

12.2.2 Optimal statistical classifier

FIGURE 12.10
Probability density functions for two 1-D pattern classes.
The point x_{0} shown is the decision boundary if the two classes are equally likely to occur.

12.2.2 Optimal statistical classifier

- In n-dimensional case, the Gaussian density of vector is the j th pattern class has the form as

$$
p\left(\mathbf{x} \mid \omega_{j}\right)=\frac{1}{(2 \pi)^{n / 2}\left|\mathbf{C}_{j}\right|^{1 / 2}} e^{-\frac{1}{2}\left(\mathbf{x}-\mathbf{m}_{j}\right)^{T} \mathbf{C}_{j}^{-1}\left(\mathbf{x}-\mathbf{m}_{j}\right)}
$$

where the mean vector is $\mathbf{m}_{\mathrm{j}}=E_{j}\{\mathbf{x}\}$ and covariance matrix $\mathbf{C}_{\mathrm{j}}=\mathrm{E}_{\mathrm{j}}\left\{\left(\mathbf{x}-\mathbf{m}^{\mathrm{j}}\right)\left(\mathbf{x}-\mathbf{m}^{\mathrm{j}}\right)^{\mathrm{T}}\right\}$

- Approximating the mean by the averaging

$$
\mathbf{m}_{j}=\frac{1}{N_{j}} \sum_{x \in \omega_{j}} \mathbf{x} \quad \text { and } \quad \mathbf{C}_{j}=\frac{1}{N_{j}} \sum_{x \in \omega_{j}} \mathbf{x x}^{T}-\mathbf{m}_{j} \mathbf{m}_{j}^{T}
$$

12.2.2 Optimal statistical classifier

- The decision function can also be written as

$$
d_{j}(\mathbf{x})=\ln \left[p\left(\mathbf{x} \mid \omega_{j}\right) p\left(\omega_{j}\right)\right]=\ln p\left(\mathbf{x} \mid \omega_{j}\right)+\ln p\left(\omega_{j}\right)
$$

- For n-dimensional Gaussian density function, we have

$$
d_{j}(\mathbf{x})=\ln p\left(\omega_{j}\right)-\frac{n}{2}(2 \pi)^{n / 2}-\frac{1}{2} \ln \left|\mathbf{C}_{j}\right|-\frac{1}{2}\left[\left(\mathbf{x}-\mathbf{m}_{j}\right)^{T} \mathbf{C}_{j}^{-1}\left(\mathbf{x}-\mathbf{m}_{j}\right)\right]
$$

- Simplified as $d_{j}(\mathbf{x})=\ln p\left(\omega_{j}\right)-\frac{1}{2} \ln \left|\mathbf{C}_{j}\right|-\frac{1}{2}\left[\left(\mathbf{x}-\mathbf{m}_{j}\right)^{T} \mathbf{C}_{j}^{-1}\left(\mathbf{x}-\mathbf{m}_{j}\right)\right]$
- If all covariance matrix are equal $\mathbf{C}_{\mathrm{j}}=\mathbf{C}$ for all j then

$$
d_{j}(\mathbf{x})=\ln p\left(\omega_{j}\right)+\mathbf{x}^{T} \mathbf{C}_{j}^{-1} \mathbf{m}_{j}-\frac{1}{2}\left(\mathbf{m}_{j}^{T} \mathbf{C}_{j}^{-1} \mathbf{m}_{j}\right)
$$

- If $\mathbf{C}=\mathbf{I}$ then

$$
d_{j}(\mathbf{x})=\mathbf{x}^{T} \mathbf{C}^{-1} \mathbf{m}_{j}-\frac{1}{2} \mathbf{m}_{j}^{T} \mathbf{m}_{j}
$$

12.2.2 Optimal statistical classifier

- Example

$$
\mathbf{m}_{1}=\frac{1}{4}\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right] \quad \mathbf{m}_{2}=\frac{1}{4}\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right] \quad \mathbf{C}_{1}=\mathbf{C}_{1}=\frac{1}{16}\left[\begin{array}{ccc}
3 & 1 & 1 \\
1 & 3 & -1 \\
1 & -1 & 3
\end{array}\right]
$$

We assume equal-likely case $\mathrm{p}\left(\omega_{1}\right)=\mathrm{p}\left(\omega_{2}\right)=1 / 2$ then

$$
d_{j}(\mathbf{x})=\mathbf{x}^{T} \mathbf{C}^{-1} \mathbf{m}_{j}-\frac{1}{2} \mathbf{m}_{j}^{T} \mathbf{m}_{j}
$$

$$
\text { where } \mathbf{C}^{-1}=\left[\begin{array}{ccc}
8 & -4 & -4 \\
-4 & 8 & 4 \\
-4 & 4 & 8
\end{array}\right]
$$

The decision functions: $d_{1}(\mathbf{x})=4 x_{1}-15$ and $d_{2}(\mathbf{x})=-4 x_{1}+8 x_{2}+8 x_{3}-5.5$
Decision surface: $d(\mathbf{x})=d_{1}(\mathbf{x})-d_{2}(\mathbf{x})=-4 x_{1}+8 x_{2}+8 x_{3}-5.5$

12.2.2 Optimal statistical classifier

FIGURE 12.11
Two simple pattern classes and their Bayes decision boundary (shown shaded).

12.2.2 Optimal statistical classifier

- Example Multi-spectral scanner response to selected wavelength bands: $0.40 \sim 0.44$ microns (violet), $0.58 \sim 0.62$ microns (green), $0.66 \sim 072$ microns (red), $0.80 \sim 1.00$ microns (infrared). Every point in the ground is represented by 4element pattern vector as $\mathbf{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$

12.2.2 Optimal statistical classifier

FIGURE 12.12
Formation of a pattern vector from registered pixels of four digital images generated by a multispectral scanner.

12.2.2 Optimal statistical classifier

a b

FIGURE 12.13 (a) Multispectral image. (b) Printout of machine classification results using a Bayes classifier. (Courtesy of the Laboratory for Applications of Remote Sensing, Purdue University.)

12.2.3 Neural Networks

- The patterns used to estimate the parameters (mean and covariance of each class) are the training patterns, or training set
- The process by which a training set is used to obtain the decision function is called learning or training.
- The statistical properties of pattern classes in a problem often are unknown or cannot be estimated
- Solution: neural networks

12.2.3 Neural Networks

- Non-linear computing elements organized as a network are believed to be similar to the neurons in the brain called neural network, neurocomputers, parallel distribution model (PDP) etc.
- Interest in neural networks dated back to 1940s
- During 1950~1960, learning machine such as perceptron is proposed by Rosenblatt.
- 1969, Minsky and Papert discouraged the perceptronlike machine.
- 1986, Rumelheart, Hinto and Willams, dealing with the developement of multi-layer perceptrons

12.2.3 Neural Networks

- Perceptron of two pattern classes (Fig. 12.14)
- The response of the basic devise is based on a weighted sum of its inputs as $d(\mathbf{x})=\Sigma_{i} w_{i} x_{\mathrm{i}}+w_{n+l}$.
- It is a linear decision function with respect to a pattern vectors. The coefficient $w_{i} i=1, \ldots n, n+1$, are weights.
- The function that maps the output of summation to the output of the device is called the activation function.
- When $d(\mathbf{x})>0$ the threshold element causes the output of the perceptron to be +1 , indicating \mathbf{x} belonging to ω_{1}. When $d(\mathbf{x})<0$ indicating the other case.
- The decision boundary is $d(\mathbf{x})=\Sigma_{i} w_{i} x_{\mathrm{i}}+w_{n+1}=0$

12.2.3 Neural Networks

a
FIGURE 12.14 Two equivalent representations of the perceptron model for two pattern classes.

12.2.3 Neural Networks

- Another formulation is to augments the pattern vectors by appending an additional $(n+1)$ st element, which is always equal to 1 .
- An argument pattern vector y is created from a pattern vector x by letting $y_{i}=x_{i}$ and $y_{n+1}=1$.
- The decision function becomes

$$
d(\mathbf{y})=\Sigma_{i} w_{i} y_{\mathrm{i}}
$$

where $\mathbf{y}=\left(y_{1}, y_{2} \ldots \ldots y_{n}, l\right)^{T}$ is an argument pattern vector.

12.2.3 Neural Networks

- Training Algorithms \rightarrow linearly separable case
- For two training sets belonging to pattern classes ω_{1} and ω_{2}. Let $\mathbf{w}(1)$ be the initial weight vector chosen arbitrarily.
- At the k th iterative step, if $\mathbf{y}(\mathrm{k}) \in \omega_{1}$ and $\mathbf{w}^{\mathrm{T}}(\mathrm{k}) \mathbf{y}(\mathrm{k}) \leq 0$, replace $\mathbf{w}(\mathrm{k})$ by $\mathbf{w}(\mathrm{k}+1)=\mathbf{w}(\mathrm{k})+\mathrm{cy}(\mathrm{k})$, where c is a positive correction number.
- Conversely, if $\mathbf{y}(\mathrm{k}) \in \omega_{2}$ and $\mathbf{w}^{\mathbf{T}}(\mathrm{k}) \mathbf{y}(\mathrm{k}) \geq 0$, replace $\mathbf{w}(\mathrm{k})$ by $\mathbf{w}(k+1)=\mathbf{w}(k)-c y(k)$.
- Otherwise leave $\mathbf{w}(\mathrm{k})$ unchanged $\mathbf{w}(\mathrm{k}+1)=\mathbf{w}(\mathrm{k})$
- The algorithm is referred as fixed increment correction rule. It converges if two training pattern sets are linearly separable,

12.2.3 Neural Networks

- Example - Consider two training sets (Fig. 12.15)
- $\{(0,0,1),(0,1,1)\} \in \omega_{1}$, $\{(1,0,1),(1,1,1)\} \in \omega_{2}$
- Let $\mathbf{c}=1$ and $\mathbf{w}(1)=\mathbf{0}$. representing the patterns in the order of sequence as

$$
\begin{aligned}
& \mathbf{w}^{T}(1) \mathbf{y}(1)=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=0 \\
& \mathbf{w}(2)=\mathbf{w}(1)+\mathbf{y}(1)=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& \mathbf{w}^{T}(2) \mathbf{y}(2)=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=1 \\
& \mathbf{w}(3)=\mathbf{w}(2)
\end{aligned}
$$

$$
\mathbf{w}^{T}(3) \mathbf{y}(3)=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=1 \quad \mathbf{w}(4)=\mathbf{w}(3)-\mathbf{y}(3)=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right] \quad \begin{gathered}
\mathbf{w}^{T}(4) \mathbf{y}(4)=\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=-1 \\
\mathbf{w}(5)=\mathbf{w}(4)
\end{gathered}
$$

12.2.3 Neural Networks

- Example (continued)
- A solution is obtained only when the algorithm yields a complete error-free iteration through all training patterns
- Convergence is achieved at $k=14$, yield the solution weight vector $\mathbf{w}(14)=(-2,0,1)^{\mathrm{T}}$.
- The corresponding decision function is

$$
d(\mathbf{y})=-2 y_{1}+1 \text { and } d(\mathbf{x})=-2 x_{1}+1 .
$$

12.2.3 Neural Networks

a b

FIGURE 12.15
(a) Patterns belonging to two classes.
(b) Decision boundary determined by training.

$\bigcirc \epsilon \omega_{1}$
$\bigcirc \epsilon \omega_{2}$

12.2.3 Neural Networks

- Non-separable classes (non-linear case) \rightarrow Least-mean square (LMS) data rule
- Consider iteration function $J(\boldsymbol{w})=1 / 2\left(\mathrm{r}-\mathbf{w}^{\mathrm{T}} \mathbf{y}\right)^{2}$
where r is the desired response (i.e., $\mathrm{r}=+1, \mathbf{y} \in \omega_{2}$, and $\mathrm{r}=-$ $1 \mathbf{y} \in \omega_{1}$)
- The task of LMS data rule is to adjust w incrementally in the direction of negative gradient of $J(\mathbf{w})$ in order to minimize $J(\mathbf{w})$ which occurs when $\mathrm{r}=\mathbf{w}^{\mathrm{T}} \mathbf{y}$
- After the k iteration step, the $\mathbf{w}(k)$ is updated as

$$
\mathbf{w}(k+1)=\mathbf{w}(k)-\alpha\left[\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}\right]_{\mathbf{w}=\mathbf{w}(k)}
$$

12.2.3 Neural Networks

- From $J(w)=1 / 2\left(r-\mathbf{w}^{\mathrm{T}} \mathbf{y}\right)^{2}$ we have

$$
\mathbf{w}(k+1)=\mathbf{w}(k)-\alpha\left[r(k)-\mathbf{w}^{T}(k) \mathbf{y}(k)\right] \mathbf{y}(k)
$$

or $\mathbf{w}(k+1)=\mathbf{w}(k)+\alpha e(k) \mathbf{y}(k)$, and $e(k)=\mathrm{r}(k)-\mathbf{w}^{\mathrm{T}}(k) \mathbf{y}(k)$

- If we change $\mathbf{w}(k)$ to $\mathbf{w}(k+1)$ but leave the pattern the same, the error becomes $\mathrm{e}(k)=\mathrm{r}(k)-\mathbf{w}^{\mathrm{T}}(k+1) \mathbf{y}(k)$.
- So $\Delta e(k)=\left[\mathbf{w}^{\mathrm{T}}(k+1)-\mathbf{w}^{\mathrm{T}}(k)\right] \mathbf{y}(k)$

$$
=-\alpha e(k) \mathbf{y}^{\mathrm{T}}(k) \mathbf{y}(\mathrm{k})=-\alpha e(k)\|\mathbf{y}(\mathrm{k})\|^{2}
$$

12.2.3 Neural Networks

- Multilayer feedforward neural networks (fig. 12.14)
- Each neuron has the same form as the perceptron model except that the hard-limiting activation function has been replaced by a soft-limiting "sigmoid" function which has the necessary differentiability as

$$
h_{j}\left(I_{j}\right)=\frac{1}{1+e^{-\left(I_{j}+\theta_{j}\right) / \theta_{0}}}
$$

where $I_{j}, j=1,2, \ldots N_{J}$, is the input to the activation element of each node in layer J, θ_{j} is an offset, and θ_{j} control the shape of the sigmoid function.
The sigmoid function is plotted in fig. 12.17.

12.2.3 Neural Networks

$$
\text { Weights } w_{b a}
$$

$$
\begin{aligned}
& b=1,2, \ldots, N_{B} \\
& a=1,2, \ldots, N_{A}
\end{aligned}
$$

$$
a=1,2, \ldots, N_{A}
$$

$$
\begin{aligned}
& \text { Weights } w_{j k} \\
& j=1,2, \ldots, N_{J} \\
& k=1,2, \ldots, N_{K}
\end{aligned}
$$

Input

 pattern vector$$
\begin{aligned}
& \text { Weights } w_{a x_{i}} \\
& a=1,2, \ldots, N_{A}
\end{aligned}
$$

FIGURE 12.16 Multilayer feedforward neural network model. The blowup shows the basic structure of each neuron element throughout the network. The offset, θ_{j}, is treated as just another weight.

12.2.3 Neural Networks

FIGURE 12.17 The
sigmoidal
activation function of
Eq. (12.2-47).

12.2.3 Neural Networks

- From fig. 12,17, the offset θ_{j} is analog to the weight w_{i+1} in perceptron.
- In fig. 12.16, the input to node in any layer is the weighted sum of the output from previous layer.
- Let layer K preceding layer J gives the input to the activation element of each node in layer J, denoted as I_{j} as

$$
I_{j}=\sum_{k=1}^{N_{k}} w_{j k} O_{k}
$$

where N_{j} or N_{k} is the number of nodes in layer J or K
Then output of layer K are $O_{k}=h_{k}\left(I_{k}\right), k=1, \ldots N_{k}$.

12.2.3 Neural Networks

- Every node in layer J, but each individual input can be weighted differently, as $w_{i k}$ and $w_{2 k}$ for $k=1,2, \ldots N_{k}$ are the weights on the inputs to the 1 st and 2 nd nodes

$$
h_{j}\left(I_{j}\right)=\frac{1}{1+e^{-\left(\sum_{k=1}^{N_{k}} w_{j k} o_{k}+\theta_{j}\right) / \theta_{0}}}
$$

- The main problem in training a multilayer network lies in adjusting the weights in the so-called hidden layers.

12.2.3 Neural Networks

- Training by back propagation
- Begin from the output layer, the total square error between the desired output r_{q} and actual output O_{q} of nodes in layer Q is

$$
E_{q}=\frac{1}{2} \sum_{q=1}^{N_{Q}}\left(r_{q}-O_{q}\right)^{2}
$$

- Similar to delta rule, the training rule adjust the weights in each layer in a way that seeks a minimum of an error function, i.e.,

$$
\Delta w_{q p}=-\alpha \frac{\partial E_{Q}}{\partial w_{q p}}
$$

- Using the chain rule, we have

$$
\frac{\partial E_{Q}}{\partial w_{q p}}=\frac{\partial E_{Q}}{\partial I_{q}} \frac{\partial I_{q}}{\partial w_{q p}}=\frac{\partial E_{Q}}{\partial I_{q}} O_{p}
$$

12.2.3 Neural Networks

- Therefore, $\Delta w_{q p}=-\alpha\left(\partial E_{Q} \partial I_{q}\right) O_{p}=\alpha \delta_{q} O_{p}$ where $\delta_{q}=-\left(\partial E_{Q} \partial I_{q}\right)$
- From chain rule, we have $\delta_{q}=-\left(\partial E_{Q} \partial O_{q}\right)\left(\partial O_{Q} / \partial I_{q}\right)$
where $\partial E_{Q} \partial O_{q}=-\left(r_{q}-O_{q}\right)$
and $\partial O_{Q} / \partial I_{q}=\partial\left[h_{q}\left(I_{q}\right)\right] / \partial I_{q}=h_{q}^{\prime}\left(I_{q}\right)$.
- Finally, we have $\delta_{q}=\left(\mathrm{r}_{\mathrm{q}}-\mathrm{O}_{\mathrm{q}}\right) h_{q}^{\prime}\left(I_{q}\right)$
- So, $\Delta w_{q p}=\alpha \delta_{q} O_{p}=\alpha\left(\mathrm{r}_{\mathrm{q}}-\mathrm{O}_{\mathrm{q}}\right) h_{q}^{\prime}\left(I_{q}\right) O_{p}$

12.2.3 Neural Networks

- Now considering layer P , preceeding in the same manner as above as $\Delta w_{p j}=\alpha \delta_{q} O_{j}=\alpha\left(\mathrm{r}_{\mathrm{p}}-\mathrm{O}_{\mathrm{p}}\right) h_{q}^{\prime}\left(I_{q}\right) O_{j}$
- We have similar error terms, i.e.,

$$
\begin{aligned}
& \delta_{p}=-\left(\partial E_{p} / \partial I_{p}\right)=-\left(\partial E_{p} / \partial O_{p}\right)\left(\partial O_{p} / \partial I_{p}\right) \\
& \quad=-\left(\partial E_{p} / \partial O_{p}\right) h_{\mathrm{p}}^{\prime}\left(I_{p}\right)
\end{aligned}
$$

- The term $\left(\partial E_{p} \partial O_{p}\right)$ does not produce r_{p}, but is expressed as $-\frac{\partial E_{p}}{\partial O_{p}}=-\sum_{q=1}^{N_{q}} \frac{\partial E_{p}}{\partial I_{q}} \frac{\partial I_{q}}{\partial O_{p}}=\sum_{q=1}^{N_{q}}\left(-\frac{\partial E_{p}}{\partial I_{q}}\right) w_{p q}=\sum_{q=1}^{N_{q}} \delta_{q} w_{p q}$ \rightarrow Layer J \rightarrow Layer P \rightarrow Layer Q

12.2.3 Neural Networks

- The parameter δ_{p} is $\delta_{p}=h_{\mathrm{p}}^{\prime}\left(I_{p}\right) \Sigma_{\mathrm{q}} \delta_{p} w_{q p}$
- After the error term and weights have been computed for layer P, these quantities can be used to compute the error and weights for the layer preceding layer P.
Summary: for any layers K and J, where K precedes J.

1. Computer the weights $w_{j k}$, which modify the connections between these two layers, by $\Delta w_{j k}=\alpha \delta_{j} O_{k}$.
2. If J is the output layer, $\delta_{j}=\left(r_{j}-O_{j}\right) h_{j}^{\prime}\left(I_{j}\right)$
3. If J is the internal layer $\delta_{j}=h_{\mathrm{j}}^{\prime}\left(I_{j}\right) \Sigma_{p} \delta_{p} w_{j p}$ for $j=1,2, \ldots N_{j}$.

12.2.3 Neural Networks

a

FIGURE 12.18
(a) Reference shapes and
(b) typical noisy shapes used in training the neural network of Fig. 12.19.
(Courtesy of Dr.
Lalit Gupta, ECE Department,
Southern Illinois University.)

Shape 3

Shape 3

Shape 4

Shape 4

12.2.3 Neural Networks

FIGURE 12.19
Three-layer neural network used to recognize the shapes in Fig. 12.18.
(Courtesy of Dr. Lalit Gupta, ECE Department,
Southern Illinois
University.)

12.2.3 Neural Networks

FIGURE 12.20
Performance of the neural network as a function of noise level. (Courtesy of Dr. Lalit Gupta,
ECE Department, Southern Illinois University.)

12.2.3 Neural Networks

FIGURE 12.21
Improvement in performance for $R_{t}=0.4$ by increasing the number of training patterns (the curve for $R_{t}=0.3$ is shown for reference).
(Courtesy of Dr.
Lalit Gupta, ECE
Department,
Southern Illinois University.)

12.2.3 Neural Networks

a b c
FIGURE 12.22 (a) A two-input, two-layer, feedforward neural network. (b) and (c) Examples of decision boundaries that can be implemented with this network.

12.2.3 Neural Networks

Network structure	Type of decision region	Solution to exclusive-OR problem	Classes with meshed regions	Most general decision surface shapes
Single layer	Single hyperplane			
Two layers	Open or closed convex regions			
Three layers	Arbitrary (complexity limited by the number of nodes)			

FIGURE 12.23
Types of decision regions that can be formed by single- and multilayer feed-forward networks with one and two layers of hidden units and two inputs. (Lippman)

12.3 Structural Methods

- Structural relationships inherent in a pattern's shape.
- 12.3.1 Matching Shape Numbers
- 12.3.2 String Matching
- 12.3.3 Syntactic Recognition of Strings

12.3.1 Matching Shape numbers

- Refer to 11.2.2, the degree of similarity, k, between two region boundaries (shapes) is defined as the largest order for which their shape numbers still coincide.
- For example, let a and b denote shape numbers of closed boundaries represented by 4 -directional chain codes. These two shapes have a degree of similarity k if

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{j}}(a)=\mathrm{s}_{\mathrm{j}}(b) \text { for } j=4,6,8, \ldots k . \\
& \mathrm{s}_{\mathrm{j}}(a) \neq \mathrm{s}_{\mathrm{j}}(b) \text { for } j=k+2, k+4, \ldots .
\end{aligned}
$$

where s indicates shape number and the subscript indicates order.

- The distance between two shapes a and b is defined as the inverse of their degree of similarity, i.e., $\mathrm{D}(a, b)=1 / k$

12.3.1 Matching Shape numbers

- The distance satisfy the following properties:
- $D(a, b) \geq 0$
- $D(a, b)=0$ if $a=b$
- $D(a, b) \leq \max [D(a, b), D(b, c)]$
- Example. Find the closest match between the give shape f and the other five shapes $(a \sim e)$ as shown in Fig. 12.24

12.3.1 Matchìng Shape numbers

θ

b c

FIGURE 12.24
(a) Shapes.
(b) Hypothetical similarity tree. (c) Similarity matrix. (Bribiesca and Guzman.)

12.3.2 String Matching

- Suppose two regions a and b are coded into two strings as $a_{1} a_{2}, \ldots a_{n}$, and $b_{1} b_{2}, \ldots b_{m}$, respectively.
- Let α represent the number of matches between the two strings, the number of symbols that do not match is

$$
\beta=\max (|a|,|b|)-\alpha
$$

- where $|a|$, is the length of symbol $a, \beta=0$ if a and b are identical.
- The measurement of similarity between a and b is the ratio $R=\alpha / \beta$
- Because matching is done symbol by symbol, the starting point on each boundary is important.
- Example 12.25(a) and (b) show sample boundaries of two objects, 12.25 (c) and (d) show the polygonal approximations. Strings are formed from the polygon by computing the interior angle θ between segments as each polygon was traversed clockwise.

12.3.2 String Matching

Angels are coded into one of eight possible symbols corresponding to 45° increments.

R	1.a	1.b	1.c	1.d	1.e	1.f
2.a	1.24	1.50	1.32	1.47	1.55	1.48
2.b	1.18	1.43	1.32	1.47	1.55	1.48
2.c	1.02	1.18	1.19	1.32	1.39	1.48
2.d	1.02	1.18	1.19	1.32	1.29	1.40
2.e	0.93	1.07	1.08	1.19	1.24	1.25
2.f	0.89	1.02	1.02	1.24	1.22	1.18

12.3.3 Syntactic Recognition of Strings

- Syntactic pattern recognition: (1) a set of pattern primitives; (2) a set of rules (grammar) that governs their interconnection; (3) recognizer (automaton) whose structure is determined by the set of rules in the grammar.
- String Grammar is defined as 4-tuple:
$\mathrm{G}=(N, \Sigma, P, S)$
where
N is a finite set of variable called non-terminals.
Σ is a finite set of constants called terminals
P is a set of rewritting rules called productions
S in N is callled starting symbol

12.3.3 Syntactic Recognition of strings

FIGURE 12.26
(a) Object represented by its (pruned)
skeleton.
(b) Primitives
(c) Structure generated by using a regular string grammar.

12.3.3 Syntactic Recognition of strings

TABLE 12.1

Example of semantic information attached to production rules

$$
\begin{aligned}
& \text { Production } \\
& \text { Semantic Information } \\
& S \rightarrow a A \quad \text { Connections to } a \text { are made only at the dot. The direction of } a, \\
& \text { denoted } \theta \text {, is given by the direction of the perpendicular } \\
& \text { bisector of the line joining the end points of the two undotted } \\
& \text { segments. The line segments are } 3 \mathrm{~cm} \text { each. } \\
& A \rightarrow b A \quad \text { Connections to } b \text { are made only at the dots. No multiple } \\
& \text { connections are allowed. The direction of } b \text { must be the same } \\
& \text { as the direction of } a \text {. The length of } b \text { is } 0.25 \mathrm{~cm} \text {. This production } \\
& \text { cannot be applied more than } 10 \text { times. } \\
& A \rightarrow b B \quad \text { The direction of } a \text { and } b \text { must be the same. Connections must be } \\
& \text { simple and made only at the dots. } \\
& B \rightarrow c \quad \text { The direction of } c \text { and } a \text { must be the same. Connections must be } \\
& \text { simple and made only at the dots. }
\end{aligned}
$$

12.3.3 Syntactic Recognition of strings

Chapter 12 Object Recognition

(a) An object and (b) primitives used for representing the skeleton by means of a tree grammar.

Chapter 12 Object Recognition

\section*{| a | b |
| :--- | :--- |
| c | d |}

FIGURE 12.29
Processing stages of a frontier-to-
root tree
automaton:
(a) Input tree.
(b) State assignment to frontier nodes. (c) State assignment to intermediate nodes. (d) State assignment to root node.

Chapter 12 Object Recognition

FIGURE 12.30 A
bubble chamber photograph. (Fu and Bhargava.)

Chapter 12 Object Recognition

Chapter 12 Object Recognition

FIGURE 12.32
State diagram for the finite automaton inferred from the sample set $R^{+}=\{a, a b$, $a b b\}$.

Chapter 12 Object Recognition

FIGURE 12.33

Relationship
between $L\left[A_{f}\left(R^{+}, k\right)\right]$ and k. The value of k_{m} is such that $k_{m} \geq$ (length of the longest string in R^{+}).

Chapter 12 Object Recognition

FIGURE 12.34 State diagram for the automaton $A_{f}\left(R^{+}, 1\right)$ inferred from the sample set $R^{+}=\{c a a a b, b b a a b, c a a b, b b a b, c a b, b b b, c b\}$.

