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Chapter 12 Object Recognition

• Images regions are treated as objects or 
patterns

• Object recognition → pattern recognition
• Pattern recognition: 

(a) decision-theoretic: quantitative 
descriptor, i.e., length, area, texture.

(b) Structural: qualitative descriptor, i.e., 
relational descriptor.
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2.1 Patterns and Pattern Classes2.1 Patterns and Pattern Classes

• A pattern is an arrangement of descriptors.
• Feature is used to denote a descriptor.
• A pattern class is a family of patterns that share some 

common properties.
• Pattern recognition → assign patterns to their 

respective classes.
• Three common pattern arrangements: vectors, strings

and trees.
• Pattern vectors are x=[x1, x2,…xn] where each 

component xi represent the ith descriptor and n is the 
total number of descriptors.
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2.1 Patterns and Pattern Classes2.1 Patterns and Pattern Classes

The flower is described by 
two measurement x=[x1, x2] 
where  x1 and x2
corresponding to petal length 
and width
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2.1 Patterns and Pattern Classes2.1 Patterns and Pattern Classes

We represent each object by its signature, and form the pattern 
vectors by letting x1=r(θ1) x2=r(θ2) ,……xn=r(θn).
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2.1 Patterns and Pattern Classes

• Pattern classes are characterized by quantitative 
Information or structural relationships

• i.e., in fingerprint recognition: interrelationship 
of print features called minutiae. 

• Minutiae and their relative size and location are 
used as primitive components to describe the 
ridge property, i.e., ending, branching, and 
merging,…
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2.1 Patterns and Pattern Classes2.1 Patterns and Pattern Classes
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2.1 Patterns and Pattern Classes2.1 Patterns and Pattern Classes
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2.1 Patterns and Pattern Classes2.1 Patterns and Pattern Classes
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12.2 Recognition based on decision-theoretic 
methods

12.2 Recognition based on decision-theoretic 
methods

• Decision-theoretic approaches to recognition are 
based on the use of decision (or discriminant) 
function.

• Let x=[x1, x2,…xn] represent an n-dimensional pattern 
vector. For W pattern classes ω1,… ωW, find the W 
decision functions d1(x), d2(x),…dW(x) with the 
property that , if a pattern x belongs to class ωi,…
then

di(x) > dj(x),…for j=1, 2….W;  j≠i
• The decision boundary separating class ωi from ωj, 

is given by values of x for which di(x)= dj(x).
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12.2.1 Matching

• Recognition techniques represent each class by 
a prototype pattern vector.

• The simple approach is the minimum-distance 
classifier, which compute the (Euclidean) 
distance between the unknown and each of the 
prototype vectors.

• It choose the smallest distance to make a 
decision
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12.2.1 Matching

• Minimum distance classifier
• The prototype of each pattern class to be the mean 

vector of the patterns of that class:

where Nj is the number of patterns from class j.
• Using the Euclidean distance to determine the 

closeness as the distance measure
Dj(x)=║x–mj║ j=1, 2,….W

where ║a║=(aT·a)1/2 is the Euclidean distance norm.
• We then assign x to class ωi if Dj(x) is the smallest 

distance.
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12.2.1 Matching

• Selecting the smallest distance is equivalent to 
evaluating the functions

and assigning x to class ωi if dj(x) yields the largest
numerical value.

• The decision boundary between ωi  and ωj for a 
minimum distance classifier is 

• It is a surface indicating a  perpendicular bisector (a line 
or a surface) of the line segment joining mi and mj.
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12.2.1 Matching12.2.1 Matching

The sample 
means are 
m1=(4.3, 1.3)T

m2=(1.5, 0.3)T
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12.2.1 Matching12.2.1 Matching
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12.2.1 Matching

• Matching by correlation
• The correlation between f(x, y) and w(x, y) is

c(x, y)=ΣΣf(s, t)w(x+s, y+t)
for x=0, 1, 2,….M-1 and y=0, 1, 2,…N-1.

• The correlation c(x, y) is sensitive to the changes in the 
amplitude of f and w, a normalization is applied on the 
c(x, y) as
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12.2.1 Matching12.2.1 Matching
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12.2.1 Matching12.2.1 Matching

f(x, y) w(x, y) γ(x, y)
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12.2.2 Optimal statistical classifier

• Assume the probability that a particular pattern x
comes from class ωi is denoted as p(ωi |x).

• If the pattern classifier decides that x came from ωj 
and when it actually came from ωi and  it incur a loss, 
denoted as Lij.

• A pattern x may be assigned to any class, and the 
average loss incurred is
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12.2.2 Optimal statistical classifier

• Under the Bayesian rule: p(A|B)=p(A)p(B|A)/p(B), 
we have

• Since p(x) is common to all the rj(x), it can be 
dropped as

• The classifier minimizes the total average loss is 
called the Bayes classifier.
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12.2.2 Optimal statistical classifier

• The Bayes classifier assigns a unknown pattern x to 
class ωi  if ri(x) < rj(x) for j=1, 2,…W, and j≠i

• Assume the lose function Lij=1-δij then we have

• The Bayes classifier assign a pattern to class ωi if

• or
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12.2.2 Optimal statistical classifier

Bayes classifier for Gaussian classes
• Consider 1-D problem with two classes W=2.
• The Bayes decision function is

• The boundary between two classes is x=x0 such that d1(x0)= d2(x0)
• For equal-likely case p(ω1)=p(ω2)=1/2, then p(x0 |ω1 ) = p(x0 |ω1 

), e.g., boundary (at x= x0 ), is shown in Fig. 12.10.
• For non-equal-likely case p(ω1)≠p(ω2), if ω2  is more likely, 

then x0 move to the right, else it moves to the left
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12.2.2 Optimal statistical classifier12.2.2 Optimal statistical classifier
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12.2.2 Optimal statistical classifier

• In n-dimensional case, the Gaussian density of vector is 
the jth pattern class has the form as

where the mean vector is mj=Ej{x} and covariance 
matrix Cj=Ej{(x-mj )(x-mj )T}

• Approximating the mean by the averaging
and
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12.2.2 Optimal statistical classifier

• The decision function can also be written as

• For n-dimensional Gaussian density function, we have

• Simplified as

• If all covariance matrix are equal Cj=C for all j then

• If C=I then 
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12.2.2 Optimal statistical classifier

• Example
m1= m2=              C1=C1=

We assume equal-likely case p(ω1)=p(ω2)=1/2 then

where  C-1 = 

The decision functions:  d1(x)=4x1-15 and d2(x)= -4x1+8x2+8x3-5.5
Decision surface:  d(x) = d1(x)-d2(x) = -4x1+8x2+8x3-5.5
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12.2.2 Optimal statistical classifier12.2.2 Optimal statistical classifier
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12.2.2 Optimal statistical classifier

• Example Multi-spectral scanner response to 
selected wavelength bands: 0.40~0.44 microns 
(violet), 0.58~0.62 microns (green), 0.66~072 
microns (red), 0.80~1.00 microns (infrared). 
Every point in the ground is represented by 4-
element pattern vector as x=[x1, x2, x3, x4]
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12.2.2 Optimal statistical classifier12.2.2 Optimal statistical classifier
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12.2.2 Optimal statistical classifier12.2.2 Optimal statistical classifier
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12.2.3 Neural Networks

• The patterns used to estimate the parameters 
(mean and covariance of each class) are the 
training patterns, or training set

• The process by which a training set is used to 
obtain the decision function is called learning or 
training.

• The statistical properties of pattern classes in a 
problem often are unknown or cannot be 
estimated

• Solution: neural networks
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12.2.3 Neural Networks

• Non-linear computing elements organized as a network 
are believed to be similar to the neurons in the brain 
called neural network, neurocomputers, parallel 
distribution model (PDP) etc.

• Interest in neural networks dated back to 1940s
• During 1950~1960, learning machine such as 

perceptron is proposed by Rosenblatt.
• 1969, Minsky and Papert discouraged the perceptron-

like machine.
• 1986, Rumelheart, Hinto and Willams, dealing with the 

developement of multi-layer perceptrons
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12.2.3 Neural Networks
• Perceptron of two pattern classes (Fig. 12.14)
• The response of the basic devise is based on a weighted 

sum of its inputs as  d(x)=Σi wixi+wn+1.
• It is a linear decision function with respect to a pattern 

vectors. The coefficient wi i=1,…n, n+1, are weights. 
• The function that maps the output of summation to the 

output of the device is called the activation function.
• When d(x)>0 the threshold element causes the output of 

the perceptron to be +1, indicating x belonging to ω1. 
When d(x)<0 indicating the other case. 

• The decision boundary is  d(x)= Σi wixi+wn+1 =0 
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12.2.3 Neural Networks12.2.3 Neural Networks
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12.2.3 Neural Networks

• Another formulation is to augments the pattern 
vectors by appending an additional (n+1)st 
element, which is always equal to 1.

• An argument pattern vector y is created from a 
pattern vector x by letting yi=xi and yn+1=1.

• The decision function becomes
d(y)=Σi wiyi

where y=(y1, y2……yn, 1)T is an argument pattern 
vector.
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12.2.3 Neural Networks
• Training Algorithms →linearly separable case
• For two training sets belonging to pattern classes ω1

and ω2 . Let w(1) be the initial weight vector chosen 
arbitrarily. 

• At the kth iterative step, if y(k)∈ ω1 and wT(k)y(k)≤0, 
replace w(k) by  w(k+1) = w(k) +cy(k), where c is a 
positive correction number.

• Conversely, if y(k)∈ω2 and wT(k)y(k)≥0, replace w(k) 
by w(k+1) = w(k)–cy(k).

• Otherwise leave w(k) unchanged w(k+1)= w(k) 
• The algorithm is referred as fixed increment 

correction rule. It converges if two training pattern 
sets are linearly separable,
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12.2.3 Neural Networks

• Example - Consider two 
training sets (Fig. 12.15)

• {(0,0,1), (0,1,1)} ∈ω1, 
{(1,0,1), (1,1,1)} ∈ω2

• Let c=1 and w(1)=0. 
representing the patterns in 
the order of sequence as
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12.2.3 Neural Networks

• Example (continued)
• A solution is obtained only when the algorithm 

yields a complete error-free iteration through 
all training patterns

• Convergence is achieved at k=14, yield the 
solution weight vector w(14)=(-2, 0, 1)T.

• The corresponding decision function is 
d(y)=-2y1+1 and d(x)=-2x1+1.
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12.2.3 Neural Networks12.2.3 Neural Networks
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12.2.3 Neural Networks

• Non-separable classes (non-linear case) → Least-mean 
square (LMS) data rule

• Consider iteration function J(w)=½(r–wTy)2

where r is the desired response (i.e., r=+1, y∈ω2, and r=-
1 y∈ω1 )

• The task of LMS data rule is to adjust w incrementally in 
the direction of negative gradient of J(w) in order to 
minimize J(w) which occurs when  r=wTy

• After the k iteration step, the w(k) is updated as
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12.2.3 Neural Networks

• From J(w)=½(r–wTy)2 we have

or  w(k+1)= w(k)+αe(k)y(k), and e(k)=r(k)-wT(k)y(k)
• If we change w(k) to w(k+1) but leave the pattern the 

same, the error becomes e(k) = r(k)-wT(k+1)y(k).
• So ∆e(k)= [wT(k+1)–wT(k)]y(k)

= –αe(k)yT(k)y(k)= –αe(k)║y(k)║2

[ ] )()()()()()1( kkkkrkk T yywww −−=+ α
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12.2.3 Neural Networks

• Multilayer feedforward neural networks (fig. 12.14)
• Each neuron has the same form as the perceptron model 

except that the hard-limiting activation function has been 
replaced by a soft-limiting “sigmoid” function which has 
the necessary differentiability as

where Ij, j=1,2,…NJ, is the input to the activation 
element of each node in layer J, θj is an offset, and θj
control the shape of the sigmoid function.
The sigmoid function is plotted in fig. 12.17.
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12.2.3 Neural Networks12.2.3 Neural Networks
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12.2.3 Neural Networks12.2.3 Neural Networks
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12.2.3 Neural Networks

• From fig. 12,17, the offset θj is analog to the weight 
wi+1 in perceptron.

• In fig. 12.16, the input to node in any layer is the 
weighted sum of the output from previous layer.

• Let layer K preceding layer J gives the input to the 
activation element of each node in layer J, denoted as 
Ij as

where Nj or Nk is the number of nodes in layer J or K
Then output of layer K are Ok=hk(Ik), k=1,…Nk. 
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12.2.3 Neural Networks

• Every node in layer J, but each individual input can be 
weighted differently, as wik and w2k for k=1,2,…Nk are 
the weights on the inputs to the 1st and 2nd nodes

• The main problem in training a multilayer network 
lies in adjusting the weights in the so-called hidden 
layers.
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12.2.3 Neural Networks

• Training by back propagation
• Begin from the output layer, the total square error between the 

desired output rq and actual output Oq of nodes in layer Q is

• Similar to delta rule, the training rule adjust the weights in each 
layer in a way that seeks a minimum of an error function, i.e.,

• Using the chain rule, we have
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12.2.3 Neural Networks

• Therefore, ∆wqp=–α(∂EQ/∂Iq)Op = αδq Op

where δq =–(∂EQ/∂Iq)
• From chain rule, we have δq=– (∂EQ/∂Oq)(∂OQ/∂Iq)

where ∂EQ/∂Oq =– (rq–Oq) 
and  ∂OQ/∂Iq=∂[hq(Iq)]/∂Iq = h’q(Iq). 

• Finally, we have δq= (rq–Oq) h’q(Iq)
• So, ∆wqp= αδqOp=α (rq–Oq) h’q(Iq) Op
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12.2.3 Neural Networks

• Now considering layer P, preceeding in the same manner 
as above as ∆wpj= αδqOj=α (rp–Op) h’q(Iq) Oj

• We have similar error terms, i.e., 
δp =–(∂Ep/∂Ip) =– (∂Ep/∂Op)(∂Op/∂Ip) 

=– (∂Ep/∂Op)h’p(Ip)
• The term (∂Ep/∂Op) does not produce rp, but is expressed 

as ∑∑∑
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12.2.3 Neural Networks

• The parameter δp is δp = h’p(Ip) Σq δp wqp

• After the error term and weights have been computed 
for layer P, these quantities can be used to compute the 
error and weights for the layer preceding layer P.

Summary: for any layers K and J, where K precedes J.
1. Computer the weights wjk, which modify the 

connections between these two layers, by ∆wjk =αδjOk.
2. If J is the output layer, δj = (rj–Oj) h’j(Ij)
3. If J is the internal layer δj = h’j(Ij) Σp δp wjp for

j=1,2,…Nj. Layer K Layer J Layer P
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12.2.3 Neural Networks12.2.3 Neural Networks
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12.2.3 Neural Networks12.2.3 Neural Networks
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12.2.3 Neural Networks12.2.3 Neural Networks
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12.2.3 Neural Networks12.2.3 Neural Networks
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12.2.3 Neural Networks12.2.3 Neural Networks
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12.2.3 Neural Networks12.2.3 Neural Networks
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12.3 Structural Methods12.3 Structural Methods

• Structural relationships inherent in a pattern’s 
shape.

• 12.3.1 Matching Shape Numbers
• 12.3.2 String Matching
• 12.3.3 Syntactic Recognition of Strings
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12.3.1 Matching Shape numbers

• Refer to 11.2.2, the degree of similarity, k, between two region 
boundaries (shapes) is defined as the largest order for which 
their shape numbers still coincide.

• For example, let a and b denote shape numbers of closed 
boundaries represented by 4-directional chain codes. These 
two shapes have a degree of similarity k if  

sj(a)=sj(b) for j=4, 6, 8,…k.
sj(a)≠sj(b) for j=k+2, k+4, ….

where s indicates shape number and the subscript indicates 
order.

• The distance between two shapes a and b is defined as the 
inverse of their degree of similarity, i.e., D(a, b)=1/k
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12.3.1 Matching Shape numbers

• The distance satisfy the following properties:
– D(a, b)≥0
– D(a, b)=0 if a=b
– D(a, b)≤max[D(a, b), D(b, c)]

• Example. Find the closest match between the 
give shape f and the other five shapes (a~e) as 
shown in Fig. 12.24
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12.3.1 Matching Shape numbers12.3.1 Matching Shape numbers
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12.3.2 String Matching

• Suppose two regions a and b are coded into two strings as 
a1a2,…an, and b1b2,…bm , respectively.

• Let α represent the number of matches between the two strings, 
the number of symbols that do not match is 

β= max(|a|, |b|)–α
• where |a|, is the length of symbol a, β=0 if a and b are identical.
• The measurement of similarity between a and b is the ratio 

R=α/β
• Because matching is done symbol by symbol, the starting point on

each boundary is important.
• Example 12.25(a) and (b) show sample boundaries of two objects, 

12.25(c) and (d) show the polygonal approximations. Strings are 
formed from the polygon by computing the interior angleθ
between segments as each polygon was traversed clockwise.
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12.3.2 String Matching12.3.2 String Matching

Angels are coded into 
one of eight possible 
symbols corresponding 
to 45o increments.
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12.3.3 Syntactic Recognition of Strings

• Syntactic pattern recognition: (1) a set of pattern 
primitives; (2) a set of rules (grammar) that governs 
their interconnection; (3) recognizer (automaton) 
whose structure is determined by the set of rules in 
the grammar.

• String Grammar is defined as 4-tuple:
G=(N, Σ, P, S)
where
N is a finite set of variable called non-terminals.
Σ is a finite set of constants called terminals
P is a set of rewritting rules called productions
S in N is callled starting symbol
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