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Chapter 10
Image Segmentation

Segmentation subdivides an 1image 1nto its
constituent regions or objects.

Segmentation based on the discontinuity and
similarity.

Discontinuity: abrupt changes in intensity, such as
edges.

Similarity: partitioned into regions similar according
to a set of predefined criteria, such as thresholding
region growing, region splitting and merging.
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10.1 Detection of Discontinuity

* The response of the mask at any point in the image 1s
given by R=w,z,+w,z,+... twyz,

FIGURE 10.1 A
oeneral 3 X 3

i | ey 1!“.-‘1'
mask. -

i, W W,

w- W Wy
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Processing

10.1 Detection of Discontinuities

» Point detection: detect 1solated point.
* A point is detected if [RI>T

a
—1 —1 -1 b ¢ d
LaplaCIan Operator — FIGURE 10.2
-1 8 —1 (a) Point

detection mask.
(b) X-ray image
-1 -1 -1 of a turbine blade
with a porosity.
(c) Result of point
detection.

(d) Result of
using Eq. (10.1-2).
(Original image
courtesy of
X-TEK Systems
Ltd.)
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10.1 Detection of Discontinuities

Line detection:

FIGURE 10.3 Line
masks. -1 | -1 | - -1 | -1
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10.1 Detection of Discontinuities

a
b c

FIGURE 10.4
[ustration of line
detection.

(a) Binary wire-
bond mask.

(b) Absolute
value of result
after processing
with —45° line
detector.

(¢) Result of
thresholding
image (b).
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10.1 Detection of Discontinuities
-Edge Detection

* An edge 1s modeled as a “meaningful” transitions
in gray-levels.

 Ideal (or Step) edge
 Ramp edge
* Roof edge

 First derivative and second derivative on the edge
profile.

e “Zero-crossing” property 1s used to identify the
location of edge.
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10.1 Detection of Discontinuities
- Edge types

ab

C
FIGURE 3.38
{a) A simple
image. (b) 1-D

horizontal gray-
level profile along [
the center of the . |
image and Y |
including the Y
isolated noise "\I
point. §
(¢) Simplified \
profile (the points \'1 A ‘
are joined by \ I|
dashed lines to \ | |
simplify \ J | f
interpretation). A 3
% ; ﬂt_[solarcd point Fnh*d
30 TN it Step_. ¢
S 4 w_ ,— Ramp !\ Thin ine P~
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Processing

10.1 Detection of Discontinuities

hael €. Goo
Richard €. Woods

Model of an ideal digital edge Model of a ramp digital edge a b

FIGURE 10.5

(a) Model of an
ideal digital edge.
(b) Model of a
ramp edge. The
slope of the ramp
is proportional to
the degree of
blurring in the
edge.
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10.1 Detection of Discontinuities

ab |
FIGURE 10.6

(a) Two regions
separated by a
vertical edge.

(b) Detail near
the edge, showing
a gray-level
profile, and the
first and second
derivatives of the
profile.

Gray-level profile

First
derivative

Second
derivative




Image Comm. Lab EE/NTHU 10

FIGURE 10.7 First column: images and gray-level profiles of a ramp edge corrupted by
random Gaussian noise of mean 0 and « = 0.0,0.1, 1.0, and 10.0. respectively. Second col-
umn: first-derivative images and gray-level profiles. Third column: second-derivative

images and gray-level profiles.

10.1 Detection of
Discontinuities
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10.1 Detection of Discontinuities
-Edge Detection

* Apply gradient operators on an image f(x, y)
at location (x, y) to obtain a 2-D gradient
defined as:

Vi=[G,, G,]=[ot/0x, of/oy]
» The magnitude of this vector 1s

Vi=mag(Vf)=[GZ, G]"
* The direction 1s

a(x, y)=tan'(G/G,)
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10.1 Detection of Discontinuities
-Edge Detection

» Robert cross-gradient operators:
G, =(z9—z5) and G,=(z5—z)

It does not have clear center.

e Prewitt 3x3 operators

Gy: (Z3+26+Z9)_(Z]+Z4+237) 24 145 |46
* Weighted Prewitt 3x3 operators z, |zg |z,

G =(z,+2z¢4trzy )—(z;+2z,+z;) and
Gy: (z3+2z5tz9 )—(z; 1224 235,)
* The gradient1s Vi= |G [HG )

12
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Image
Prgcessinﬂ
a
b ¢ Z L i
g
e _
<4 {5 <h
FIGURE 10.8
A3 X 3region of . . ]
an image (the z's W
are gray-level
w.-'ah_]es} and | 4 0 0 4
various masks
used to compute
the gradient at 0 1 1 0
point labeled zs.
Roberts
-1 -1 -1 —1 0 1
10.1 Detection of R A
Discontinuities
1 1 1 -1 0 1
Prewitt
-1 —2 -1 —1 0 1
0 0 0 —2 0 2
1 2 1 -1 0 1

Sobel
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Processin

10.1 Detection of Discontinuities

0 1 1 -1 -1 0
-1 0 1 -1 0 1
-1 -1 0 0 1 1
Prewitt
0 1 2 -2 -1 0
-1 0 1 —1 0 1
—2 -1 0 0 1 2
ab
B el Sobel

FIGURE 10.9 Prewitt and Sobel masks for detecting diagonal edges.



a b
G

FIGURE 10.10

(a) Original
image. (b) |G
component of the
gradient in the
x-direction.

(C) |G1-|
component in the
y-direction.

(d) Gradient

image,

G| + Gy
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10.1 Detection of Discontinuities




Image Comm. Lab EE/NTHU 16

10.1 Detection of Discontinuities

a b

el

FIGURE 10.11
Same sequence as
in Fig. 10.10. but
with the original
image smoothed
withad X 5
averaging filter.
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10.1 Detection of Discontinuities

ab
FIGURE 10.12

Diagonal edge
detection.

(a) Result of using
the mask in

Fig. 10.9(c).

(b) Result of using
the mask in

Fig. 10.9(d). The
input in both cases
was Fig. 10.11(a).
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10.1 Detection of Discontinuities
-Edge Detection

* The Laplacian operator:
V=LA, g°/G7]

* Digital approximation for 3x3 region 1s
Vif=4z, - (z,tz,+z,+zy)

or Vf=8z,~ (z,tz,tz,tzg+z,+z;+z2,1z2))

* The Laplacian is very sensitive to the noise.
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10.1 Detection of Discontinuities

FIGURE 10.13
Laplacian masks 0 | -1 0 -1 | -1 | -1
used to
implement
Egs. (10.1-14) and -1 4 . B f .
(10.1-15).
respectively. 0o | =11 o a1 =1 1 4
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10.1 Detection of Discontinuities
-Edge Detection

Laplacian plus Gaussian (smoothing)

Gaussian: h(r)=-e7%2% where r’=x’+y?

Convolving the Gaussian with the image will

blur the i1mage. S
- . VPh(r)=—| e 2

The Laplacian of A(7) 1s 4

It 1s called the Lapalcian of a Gaussian (L(;G)

which 1s also called Mexican hat function
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10.1 Detection of Discontinuities

ab
wifin

FIGURE 10.14
Laplacian of a
Gaussian (LoG).
(a) 3-D plot.

(b) Image (black
is negative, gray is
the zero plane,
and white 1s
positive).

(c) Cross section
showing zero

VZh Crossings.

3 (d) 5 % 5 mask
approximation to
the shape of (a).




igital Image Comm. Lab EE/NTHU 22

Image
Processing g/

10.1 Detection of
Discontinuities

ab

cd
e fE
FIGURE 10.15 {a) Original image. (b) Sobel gradient {shown for comparison). (c) Spatial Gaussian smooth-
ing function. (d) Laplacian mask. {(e) LoG. (f) Thresholded LoG. {g) Zero crossings. (Original image courtesy
of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical
Center.)
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ERVA 10.2 Edge Linking and Boundary detection

ab

e

FIGURE 10.16

(a) Input image.
(b) G, component
of the gradient.
(¢) G, component
of the gradient.
(d) Result of edge
linking. (Courtesy
of Perceptics
Corporation.)
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"‘L" 10.2 Edge Linking and Boundary detection-
@  Global processing via Hough transform

* Given a point (x; y,) --- many lines pass through this
point as y;=ax+b with different a and b.
* A point (x, y,) In image space 1s mapped to many
points {(a, b)}1n parameter space which are on line
b=-ax+y..
. Thf: collinear point (xj, yj) -many lines pass through this
point as y,=ax+b with different a and b.

* The collinear point (x; y;) in image space 1s mapped to
many points {(a, b)}1n parameter space which are on
line: b=-axty;,.

* These two lines 1n parameter space intersect at (a’, b”)
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Processing A

10.2 Edge Linking and Boundary detection

a b

FIGURE 10.17
(a) xy-plane.
(b) Parameter
space.

Y
X

a’ 1s slope, b’ 1s the intercept of
the line passing through (x, y,) (a’, b)el(a b)}
and (x; )
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10.2 Edge Linking and Boundary detection
Hough Transform

EIGUEE_ I_[LIE1 . Boin 0 Proax )
Subdivision of the min =

parameter plane .
for use 1n the .
Hough transform.

Accumulator Cell A(i ,j):

x, ¥) = (@, b)}

a—a, and b»bq7 o

T x

A(p, ¢)=A(p, 9)+1 I

i

Problem: slope “a” may approach
infinity for detecting a vertical line
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Hough Transform

Given a point (x; ;) — many lines pass through this
point as x; cos 0+y, sin 6=p with different € and p

A pomt (x, y,) in 1image space 1s mapped a set of points
{(6 p)}in parameter space

The point (x;, ;) — many lines pass through this point
as x; cos 0+y; sin 6=p with different 6 and p.

The collinear point (x;, y;) in image space 1s mapped to
another set of points {(9] 0 )’} 1n parameter space.

These two sets in parameter space intersect at (6, p; )
Collinear ponts (x, y;)e {(x, y)} lies on a line:
x cos O+y sin 0. =p;
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Processing

10.2 Edge Linking and Boundary detection

Representing a line as xcos@ + ysin 6=p

.-y Pucin Y min o Ymax . ab
. FIGURE 10.19
"o . (a) Normal
! representation of
a line.
(b) Subdivision of
O eee see the po-plane into
cells.
[ ]
[ ]
[ ]
Pmax
¥ 4

x fal
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Image

zw""’ 10.2 Edge Linking and Boundary detection
Hough Transform

ab NEG THETR @  POS THETA
¢ d

FIGURE 10.20
Ilustration of the
Hough transform.
(Courtesy of Mr.
D. R. Cate, Texas
Instruments, Inc.)
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Processing

10.2 Edge Linking and Boundary detection
Hough Transform

ab

c d

FIGURE 10.21

(a) Infrared
image.

(b) Thresholded
oradient image.
(c) Hough
transform.

(d) Linked pixels.
(Courtesy of Mr.
D. R. Cate, Texas
[nstruments. Inc.)

MEG THETA e POS THETA
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10.2 Edge Linking and Boundary detection
Hough Transform

* The Hough transform can be applied to any
function of the form g(v, ¢)=0 where V 1s
the vector of coordinate and C is the vector
of coefficients

* For example to detect a circle:
(x-c;)* + (y-c,)* =¢5°
where V=(x, y), C=(c, ,c,, ¢3)

* Accumulator A(i, j, k)=A(c, ,c,, c3)
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10.2 Edge Linking and Boundary detection
Hough Transform

« Circle detection
1. Let ¥, denote the set of point {V|p(V)+ 0}

2. For each image point p(V), there 1s a set of a set of
circles passing through v. Let C, denote the set of
circles.

3. Find the center (c,, ¢,) and the radius c; of each
member in C, under the constraint thatv eV,

4. For each member of {c|v €V,.} an accumulator at
(c; ¢, ,c;)1n Cspace 1s incremented by 1.
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10.2 Edge Linking and Boundary detection
Graph-theoretic Technique

Representing the edge segments in the form of graph.

Edge detection and linking based on searching the
graph for low cost paths that correspond to the
significant edges.

Graph G=(/, U) with a set of nodes N, and a set U of
unordered pairs of distinct elements of V.

Each pair (n, n;) of U 1s called an arc.

P ]
An arc 1s directed from node 7, to node n;, n, 1S the
parent; n; 1s the successor.

Graph traveling starts with the start(root) node and
ends with the goal node.

A cost c(n,, n;) 1s associated with every arc (n, J)

P ]
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10.2 Edge Linking and Boundary detection
Graph-theoretic Technique

A sequence of node (n,, n,..., n,) iIndicates a
path from n, to n,, .

K
The cost of entire pathis C=) ¢(n._,,n,)

An edge element is boundary between two
pixels p and g.

An edge 1s a sequence of connected edge
elements.



Image Comm. Lab EE/NTHU 35

10.2 Edge Linking and Boundary detection
Graph-theoretic Technigue

FIGURE 10.22 o o o
Edge element
between pixels p

and q. . P e e
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10.2 Edge Linking and Boundary detection
Graph-theoretic Technique

* Each element define by pixels p and ¢g has
an associated cost defined as

c(p, q)=H-[f(p)-/(q)]
where H 1s the highest gray-level value in
the 1mage (i.e., H=7), and f(p) and f(q) 1s the
gray level of pixels p and g.



Image Comm. Lab EE/NTHU 37

10.2 Edge Linking and Boundary detection
Graph-theoretic Technigue

1 2 3

1 o ® ® e l o l . ™ Y ®
[5] [6] [1] (5] (6] (1] [5] [6] [1]

, . ™ ® . l l . - . ®
6] [7] [0] 6] (7] (0] (6] [7] [0]

o

3 . ® » o ml l o P ‘ S .

[7] [1] [3] 7] (1] (3] (7] [1] [3]

abc

FIGURE 10.23 (a) A 3 X 3 image region. (b) Edge segments and their costs. (¢) Edge corresponding to the
lowest-cost path in the graph shown in Fig. 10.24.
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10.2 Edge Linking and Boundary detection
Graph-theoretic Technique

* Let r(n) be an estimate of the cost of a minimum-cost path
from Sto N plus an estimate of the path from n to a goal
node, that is »(n)=g(n)+h(n), where g(n) can be chosen as
the lowest-cost path from Sto n found so far, and A(n) is
obtained by using any desirable heuristic information.

Graph search algorithm :

« Step 1: Mark the start node OPEN and set g(s)=0.

« Step 2: If no node 1s OPEN exit with failure, otherwise
continue.

« Step 3: Mark CLOSED the OPEN node n whose estimate
r(n) 1s the smallest.

« Step 4: If n 1s a goal node, exit with solution path obtained
by tracing back through the pointers; otherwise continue.
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10.2 Edge Linking and Boundary detection
Graph-theoretic Technique

» Step 5: Expand node n, generating all of 1ts successors (if no
successor go to step 2).

* Step 6: If a successor 7, 1s not marked, set g(n,)=g(n)+c(n, n,),
then mark it OPEN, and direct pointer from 1t back to .

* Step 7: If a successor 7, 1s marked CLOSED or OPEN, update
its value by letting

g (n; J=min[g(n; ), gn)+c(n, n; )].
Mark OPEN those CLOSED successors whose g’ values were
thus lowered and redirect to n, the pointers from all nodes
whose g’ values were lowered. Go to step 2.

« This algorithm depends on the use of heuristic function 4(n)
which 1s a lower bound on the cost of the minimal-cost path.

e If h=0 then 1t is reduced to uniform-cost algorithm.
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10.2 Edge Linking and Boundary detection
Graph-theoretic Technigue

FIGURE 10.24
Start Graph for the
image in

Fig. 10.23(a). The
lowest-cost path is
shown dashed.

(1,1)(1.2)

(2,1)(2,2) (2,2)(1,2)

(3.2)(3.3)
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10.2 Edge Linking and Boundary detection
Graph-theoretic Technigue

FIGURE 10.25
[mage of noisy
chromosome
silhouette and
edge boundary
(in white)
determined by
oraph search.
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10.3 Thresholding

» To extract an object form the background is to select
a threshold T that separate the object pixels from
background pixels.

« Any point (x, y) with f(x, y)>T 1s called an object
point; otherwise, the point is called a background
point.

* For multilevel thresholding classifies a point (x, y) as
belongs to one object class if 7T,<f(x, y)<T’,, and to
the other object class if f(x, y)>T,.
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10.3 Thresholding

r

a b

‘||II|I-IIH‘||||II‘|MI -
T, T,

FIGURE 10.26 (a) Giray-level histograms that can be partitioned by (a) a single thresh-

old, and (b) multiple thresholds.
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10.3 Thresholding

 The threshold 7 1s determined as

I=T1x, y, p(x, ), fx, y)]
where p(x, y) denotes some local property of this

point (x, y), i.e., the average level of a neighborhood
centered on (x, y).

A thresholded image is defined as:

g(x, y)=11t fix, y)=T

2(x, y)=0 1f f(x, y)<T

e If T does not depend on p(x, y) then the threshold 1s
called global threshold, otherwise it 1s called local
or adaptive threshold.
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Processing. A

a
b c
de

FIGURE 10.27
{a) Computer
generated
reflectance
[unction.

(b) Histogram ol
reflectance
function.

(¢) Computer
oenerated
illumination
function.

(d) Product of (a
and (c).

(e) Histogram of
product image.

10.3 Thresholding

Histogram
distortion
due to non-
uniform
illumination S—

(.

o [=x] 127 191 255
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10.3 Thresholding -illumination

Rafael €. Gonzalez

S, y)=i(x, y)r(x, y)
z(x, y)=Iniflx, y); =In{i(x, y); Tin{r(x,y);

=i(x, y)+rix, y)
If i’(x, y) and »’(x, y) are independent random variables, the
histogram of z(x, y) is given by the convolution of the histogram
of i’(x, y) and r'(x, ).
If i’(x, y)=constant and i ’(x, y)=constant (its histogram is an
impulse), then the histogram of z(x, y) = »’(x, y) 1s unchanged.

If the i’(x, y) 1s a broader histogram (nonuniform illumination),
the convolution process may smear the histogram of »’(x, y) and
the shape of the histogram of z(x, y) will be quite different from
r(x, y).

The degree of distortion depends on the broadness of the
histogram of i’(x, y).
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10.3 Thresholding -illumination

e If the 1llumination source i(x, y) 1s available,
compensating the non-uniformity by projecting the
illumination on a constant white reflective surface
(i.e., r(x, y)=k) . This yields a new image as

2(x, y)=ki(x, y) where k is a constant
* For any image f(x, y)=i(x, y)r(x, y), we have a
normalized 1image as A(x, y)=£x, v)/g(x, y)=r(x, v)/k

* If (x, y) can be segmented by threshold 7 then A(x,
y) can be segmented by threshold 7/k.
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Image
Processing

10.3 Thresholding - Global Thresholding

a
s i
FIGURE 10.28
(a) Original
image. (b) Image

1. Partition the l&i?taﬂimm
image USing a single global

thresholding with
T midway
between the
maximum angd
minimum gray
levels.

threshold T

2. How to find the
best T ?
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10.3 Thresholding —Global Thresholding

Assume that the background and the object occupy

comparable areas in the 1image, a good initial value of 7 1s
the average gray level of the image.

1. Select an 1nitial estimate for 7.

2. Segment the 1mage into two group of pixels G1 and
G2 using T.

3. Compute the average gray level values of G1 and G2
are ul and p2.

4. Compute a new threshold value as 7, , =(pn1+u2)/2,

5. Compare 1t |7, -T>z, ( predefined thredhold z,) then
T=T,,, and go to step 2, else stop
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10.3 Thresholding — Otsu Thresholding

Minimizing within group variance
Let P(i) denote the probability distribution of the gray
level i=1,...1 of a picture.

Let ¢ be the threshold that separate the image pixels
into two groups, {/,....t} and {t+1,...1}
g ,(t) be the probability for group with values less than

or equal to 7, i.e., —~
q,(t) = ZP(Z)

gq,(t) be the probability for group with values greater
than ¢, i.e., qz(t)=ZP(l)

i=t+1
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10.3 Thresholding — Otsu Thresholding

o Let u,(¢) and u,(¢) be the mean for group 1 and
group 2 as (1) = ZIP(Z)/%U) (1) = ZIP(I)/%U)

i=t+1

* Let g,(¢) and o,(¢) be the variance for group 1 and
group 2 as  o; (f) Z [i = 14, (O] P(i)/ ,(2)
and 0,(1)= Z l—ﬂz(t) “P(i)/ q,(1)
* Let oy be the welghted sum of group variance (or
within group variance) , i.e.,
0, ()= q,(D)o; (1) + ¢, (1) o, (1)
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10.3 Thresholding — Otsu Thresholding

* The relationship between the ¢ and oy,

o’ (t) = Z [i — u] P(i)
:Z [i — 14,(0) + 1,(£) — P P(i) + Z [i = 1,(8) + 14, () = ]’ P(0)

i=t+1
=0,(0)+q,(O[1 ¢, 4(0) — 1, (D] = 0, (1) + o4 (1)
* oy 1s the between group variance
* Minimize 6y = maximize og
e There 1s a relation ship between the value of
computed ¢ and that computed for next #: #+1.

q,(t+1)=q,(t)*P(t+1) and g,(t+1)=¢g,(t) - P(t+1)
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10.3 Thresholding — Otsu Thresholding

e We can obtain the recursive relation

Zt:iP(i) +(t+1)P(t+1)

1 (1 +1) =2 _ (O @O+ (+D)PE+1)

q,(t+1) q,(t+1)

w(t+1)= ¢, -+ DHP(E+1) _ U—q,(Ou)—+DHP(+1)
2 q,(t+1) 1—q,(t+1)
_ H—q,(t+1)p(t+1)
l—g,(t+1)
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AP EheLh b ab

- B

FIGURE 10.29

(a) Original
image. (b) Image
histogram.

(c) Result of
segmentation with
the threshold
estimated by
iteration.
(Original courtesy
of the National
[nstitute of
Standards and
Technology.)

10.3 Thresholding
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10.3 Thresholding- Adaptive threshold

Divide the image into sub-images.
All sub-images containing boundaries,
1ts variances>100, else 1ts variance <75.

Each sub-image with variance > 100 are
segmented with a threshold computed for
that specific sub-image.

All sub-images with variance <100 are
treated as one composite Image which is
segmented with a single threshold.
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10.3 Thresholding

a b

]

FIGURE 10.30
(a) Original
image. (b) Result
of global
thresholding.
(c) Image
subdivided into
individual
subimages.

(d) Result of
adaptive
thresholding.




Image
Processing

igital Image Comm. Lab EE/NTHU 57

10.3 Thresholding

b
C
edf

FIGURE 10.31 (a) Properly and improperly segmented subimages from Fig. 10.30. {(b)—(c) Corresponding
histograms. (d) Further subdivision of the improperly segmented subimage. (¢) Histogram of small subim-
age at top. left. (f) Result of adaptively segmenting (d).

da
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10.3 Thresholding
-Optimal Global and Adaptive Thresholding

Suppose an 1image contains only two principal gray-
level regions: objects and background.

Let z denote the gray level, which can be treated as a
random variable.

The histogram of the image may be treated as the
probability density function(PDF) p(z).

There are two PDFs, one for the objects, p,(z), and
one for the background p,(z).

The mixture probability density function describing
the overall gray-level variation in the 1mage as

P(Z)=Pp;(z)+P,p,(z)
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10.3 Thresholding
-Optimal Global and Adaptive Thresholding

FIGURE 10.32 p(z)
Girav-level i
probability

density functions
of two regions in
an image.
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10.3 Thresholding
-Optimal Global and Adaptive Thresholding

* P,and P, are the probability of occurrence of the two
classes of pixels.

P, 1s the probability that the pixel 1s an object pixel
and P, 1s the probability that the pixel 1s a
background pixel, and P,+P, =1.

* The threshold is 7, the pixel with z>T 1s classified as
background pixel, and vise versa.

* The probability of erroneously classifying a
background pixel as an object pixel 1s

E(T)=[ pi(z)dz
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B 10.3 Thresholding
@ -Optimal Global and Adaptive Thresholding

* The probability of erroneously classifying a object
pixel as an background pixel 1s

E\(T)=| p(z)dz
* The overall probability of error 1s
E(T)=P,E, (I)+P,E, (T)
* To find the 7 that minimize £(7) by dE(T)/dT=0, and

we have P p (T)=P,p,(T)
» If P,=P,then we find the T at p (T)=p,(7)

* Assume p,(z)and p,(z) are Gaussian distribution with
the mean and standard variation as (¢, , o ;) and (1, ,
2
o).
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B 10.3 Thresholding
ped -Optimal Global and Adaptive Thresholding

* The threshold 7' 1s found by the following
equation: AT°+BT+C=0

where 4=0-0,

B=2(po; — o7 )
C=o7u, —o,u +20;20, In(o,F,/o,P,)

» If the variances are equal o°=0 ‘=0, then

Tt o ln(ij
2 e A &
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10.3 Thresholding-example

Example: To outlines the boundary of heart ventricles in
cardioangiograms(X-ray image)

After preprocessing

a b

FIGURE 10.33 A
cardioangiogram
before and after
preprocessing,
(Chow and
Kaneko.)
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10.3 Thresholding-example

* Preprocessing:
1. Each pixel 1s mapped with a log function, i.e.,
s=c-log(1+r), where c 1s a constant,

to counter exponential effect of radio
absorption.

2. Image (after radioactive absorption) subtracts
Image (before radioactive absorption).

3. Several angiograms are summed to reduce the
noise.
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10.3 Thresholding -example

¢ Segmentation:

« Image (256x256) 1s subdivided into 49 overlapped regions
(64x64).

 All 49 histograms are computed.

» Test of bimodality and thresholding (Fig. 10.34(a)) 1s found by
fitting the bimodal Gaussian density curve (region A)

* The threshold for the remaining regions (region B) were
obtained by interpolating these thresholds.

* Every point (x, y) in the image will be assigned a threshold 7.
fix, =11t f(x, y)>T,,, otherwise f(x, y)=0
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10.3 Thresholding

a b
- FIGURE 10.34
Histograms {black
" o " dots) of (a) region
ks " " A.and (b) region
) B in Fig. 10.33(b).
. (Chow and
Kaneko.)

Number of points
| ]
Number of points

=— Dark Bright —= ~+— Dark Bright —=
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FIGURE 10.35
Cardioangiogram
showing
superimposed
boundaries.
(Chow and
Kaneko.)

10.3 Thresholding
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10.3 Thresholding - Histogram improvement and
Local thresholding

Good histogram shape —good thresholding

To improve the shape of histograms is to consider only
those pixels that lie on or near the edges between
objects and background.

The histogram will be less dependent on relative size
of the objects and background.

Use gradient to find the pixel on an edge or not

Laplacian can yield information regarding whether a
give pixel lies on the dark or light side of an edge.
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10.3 Thresholding - Histogram improvement and

Local thresholding

Consider only those pixels that lie on or near the
edges between objects and background

Three-level image 0 if Vf<T

For
For

For

pixel
pixel

‘DlXe

s(x,9)=<4+ ifVf2Tand V' f >0
- ifVf>Tand V' f <0
s not on edges, s(x, y)=0

s on dark side of edges, s(x, y)=+
s not on light side of edges, s(x, y)=—

Fig. 10.36 shows a dark object on light background.
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Pro

10.3 Thresholding

Rafael €. Gonzalez
Richard €. Woods
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10.3 Thresholding

For binary image, the transition from the light
background to dark object is characterized by the
occurrence of a “—” followed by a “+”.

The interior of the object 1s characterized as “+” or
CGOQQ.

The transition from the object back to the background
1s characterized by the occurrence of a “+” followed
by a 66_9,.

The vertical or horizontal scan line containing a
section of an object has the following structure:

(....)(= H)(F or0)(+,-)....)

(.....) represents any combination of +, —, and O.
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10.3 Thresholding -example

FIGURE 10.37

(a) Original
image. (b) Image
segmented by
local thresholding.
(Courtesy of IBM
Corporation.)
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10.3 Thresholding-example

FIGURE 10.38 1500
Histogram of
pixels with
oradients greater
than 5. (Courtesy
of IBM
Corporation.)

1000

500

Number of pixels

l l
S5told 15to024 25 and above

Gradient value
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2 ;‘hff 10.3 Thresholding- Based on several variables

* Multi-spectral thresholding for RGB color image
* Finding clusters of points in 3-D space.

* Image segmentation: if the pixel value is close to one cluster
then assign one value (cluster centroid) to the pixel.

abc

FIGURE 10.392 (a) Original color image shown as a monochrome picture. (b) Segmentation of pixels with col-
ors close to facial tones. (¢) Segmentation of red components.
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10.4 Region-based Segmentation

Segmentation is accomplished by finding the region
directly.

Segmentation 1s to partition the image into sub-
regions: R, R,.....R_ ,where

(a) R; 1s a connected region

(b) RUR,..... UR_ =R

(¢) RMR=L fori#

(d) P(R,)=TRUE, all pixel in R, have the same gray
level or texture.

() P(R;UR,)= FALSE for i #



Image Comm. Lab EE/NTHU 76

10.4 Region-based Segmentation
—Region groing

* Region growing 1s a procedure that groups
pixels or subregions into larger regions
based on predefined criteria.

* [t starts with a set of”’seed” points and from
these grow regions by appending to each
seed those neighboring pixels that have
properties similar to the seed (such as
specified gray-level or color)
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10.4 Region-based Segmentation

a b

e

FIGURE 10.40

(a) Image
showing defective
welds. (b) Seed
points. (c) Result
of region growing.
(d) Boundaries of
segmented
defective welds
(in black).
(Original image
courtesy of
X-TEK Systems,
Ltd.).
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10.4 Region-based Segmentation

12000 : . - - FIGURE 10.41
Histogram of
Fig. 10.40(a).

10000 -
4000 -
000

4000

0 .|||||=|HH HHH
B3 1

1

ar =] 255




Image Comm. Lab EE/NTHU 79

10.4 Region-based Segmentation-Region
splitting and merging

« Subdivide an image 1nitially into a set of arbitrary
disjointed regions and then merge and/or split the
regions 1n an attempt to satisfy the conditions of regions.

* Two adjacent regions R; and R; are merged only 1f
P(R;UR,)= TRUE.
The split and merge algorithm 1s mentioned as follows:

1. Split into four disjoint quadrants any region R, for
which P(R.)= FALSE

2. Merge any adjacent regions R; and R;, for which
P(R;UR;)= TRUE

3. Stop when no further merging or splitting is possible.
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10.4 Region-based Segmentation
-Region splitting and merging

a b

FIGURE 10.42
(a) Partitioned

image.
(b) Corresponding R, R,
quadtree.

Ry | Ry
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Image
Processing

10.4 Region-Based Segmentation
-Region splitting and merging

1. Define P(R.)=True 1f at least 80% of the pixel in R, have the
property |z-m|<2c, m, 1s the mean, o; is the standard deviation.
2. If P(R,)=True , the value of all pixels in R, are set to m,

The shaded area 1s errorneously removed.

1 b

FIGURE 10.43

(a) Original
image. (b) Result
of split and merge
procedure.

(¢) Result of
thresholding (a).
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10.5 Segmentation by Morphological Watersheds

Segmentation based on (1) detection of
discontinuity (2) thresholding, and (3) region
processing.

Segmentation by Morphological Watersheds
embodies the concepts of the three approaches.

Produce more stable segmentation results, i.e.,
continuous segmentation boundary.

Incorporate knowledge-based based
constraints 1n the segmentation process.
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10.5.1 Segmentation by Morphological
Watersheds- basic

 Visual image in 3-D (coordinate and gray-level) and
consider three types of points:

1) points belong to regional minimum.

2) points at which a drop of water, if placed at the
location of any of these points, would fall with
certainty to a single minimum. A set of such points
is called catchment basin ( & ¥ ) or watershed of that
minimum.

3) points at which water would be equally likely to
fall more than one such minimum. A set of such
points is called divide lines or watershed lines (%~ -k

).
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» Segmentation — to find the watershed lines.

* The entire topography 1s flooded from below by
letting the water rise at a uniform rate.

* The rising water 1n distinct catchment basins is about
to merge, a dam is built to prevent this merging.

s

e The flooding will reach a stage when only the tops of
the dam are visible above the water line.

e

e The dam boundaries correspond to the divide lines of
the watersheds.
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FIGURE 10.44

(a) Original
image.

(b) Topographic
view. (c)—(d) Two
stages of flooding.
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10.5 Segmentation by Morphological Watersheds

e

2 h

FIGURE 10.44
(Continued)

(e) Result of
further flooding.
(1) Beginning of
merging of water
from two
catchment basins
(a short dam was
built between
them). (g) Longer
dams. (h) Final
watershed
(segmentation)
lines. {(Courtesy of
Dr. S. Beucher,
CMM/Ecole des
Mines de Paris.)
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-dam construction

. Use morphological dilation to construct dam.

* Let M, and M, denote the set of coordinates of points in
two regional minima.

 Let the set of coordinates of points in the catchment

basin associated with the two minima at stage n-1 of
flooding be denoted by C,_;(M;) and C,_,(M,).

» Let the union of the two sets be C[n-1].

* The two components merge when the water between the
two catchment basins has merged at the flooding step »

 Let this connected component (Figure 10.45 (b)) be
denoted as g.

* The two components from step n-/ can be extracted
from g by the following AND operation: g"C[n-1].
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igital
Image

"l 10.5 Segmentation by Morphological Watersheds

C[nzi -‘

g
FIGURE 10.45 (a) Two partially flooded catchment basins at stage n — 1 of flooding.
(b} Flooding at stage n,showing that water has spilled between basins {for clarity, water
is shown in white rather than black). (¢} Structuring element used for dilation. (d) Re-

sult of dilation and dam construction.

H
1
1

[] First dilation

. Second dilation

E Dam points
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"7'}"‘%’ 10.5.2 Segmentation by Morphological Watersheds

i A Dam construction

Fig. 10.45(a) 1s dilated by the structure element 1n fig.
10.45(c¢), subject to two conditions:

1) The dilation has to be constrained to q.

2) The dilation cannot be performed on points that would
cause sets being dilated to merge.

*  During the Ist dilation, cond. (1) is satisfied only.

«  During the 2" dilation, cond. (2) is consider only, it
results 1n broken perimeter.

« The only points in ¢ that satisfy the two conditions
under consideration describe the one-pixel-thick
connected path shown by cross-hatched points.

* The path constitutes the desired separation dam at
stage n of flooding. (n : K i)
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Watershed Segmentation Algorithm

 Let M, M, ....Mj, be sets denoting the coordinates of
the points in the regional minima of an 1mage g(x, y).

» Let C(M,) be a set denoting the coordinates of the points
in the catchment basin associated with regional
minimum M. .

* Let 7Tn] represent the set of coordinates (s, ¢) for which
g(s, )<n.ie., In]=1(g s)Ig(s, )<nj

* The topology will be flooded 1n integer flood

increments from n=min-+1 to n=max +1 where min and
max are the minimum and maximum value of g(x, y).
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Watershed Segmentation Algorithm

* Let C (M) denote the set of coordinates of
points in the catchment basin associated with
minimum M, that are flooded at stage n.

* C (M, can be viewed as a binary image given
by C,(M) = C(M)TTn]

* C (M)=1 atlocation (x, y) if (x, y)e C(M;) AND
(x, y)e1|n], otherwise C (M,)=0

* Let C[n] denote the union of the flooded
catchment basins portion at stage n as: ,

:ch(Mi)
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Watershed Segmentation Algorithm

 Then C[max+1] 1s the union of all catchment

basins as:

¢« C
e (|
e T

1S

Clmax +1] =§'C(Ml.)

i=1
n-1] 1s subset of C[n].
n] 1s a subset of T[n].

ne algorithm for finding the watershed lines
mitialized with Clmin+1]=1Tmin+1].

e The algorithm proceeds recursively assuming
that at step n, C[n-1] has been constructed.
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10.5.3 Segmentation by Morphological
Watersheds

Obtain C[n] from C[n-1] as follows:

Let QO denote the set of connected components 1n 7]n].
For each connected component g e O[n]: g"C[n-1] may be

(a) empty : when a new minimum is encountered, in which case
connected component ¢ is incorporated into C[n-1] to form C[n]

(b) one connected component: when ¢ lies within the catchment
basin of some regional minimum in which case g is incorporated
into C[n-1] to form C[n]

(c) more than one component: when all or part of a ridge
separating two or more catchment basins 1s encountered. Further
flooding would cause water level in these catchment basin to
merge, therefore, a dam must built within ¢g to prevent overflow
between the catchment basins
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10.5 Segmentation by Morphological Watersheds

= h
¢ d

FIGURE 10.46
(a) Image of
blobs. (b) Image
gradient.

(c) Watershed
lines.

(d) Watershed
lines
superimposed on
original image.
(Courtesy of Dr.
S. Beucher,
CMM/Ecole des
Mines de Paris.)
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10.5 Segmentation by Morphological Watersheds
The use of markers

Over-segmentation due to noise or other
irregularities of the gradient - use the
markers

A marker 1s a connected component
belonging to an 1mage.

Internal markers: object of interests.
External markers: background.
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10.5.4 Segmentation by Morphological Watersheds
& The use of markers

Rafael €. Gonzalez

Marker selection:

1) Preprocessing: Use smooth filtering to remove small spatial
detail.

2) A set of criteria that markers must satisfy
1)A region that is surrounded by points of higher “altitude™
2)The points 1n the regions form a connected component.

3)All the points 1n the connected region have the same gray-
level value.

4)After image 1s smoothed, the internal markers are shown
as light gray, blob like region

5)Watershed algorithm 1s applied and the resulting water shed
lines are defined as the external markers (Figure 10.48(a)).
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10.5 Segmentation by Morphological Watersheds

ab

FIGURE 10.47

(a) Electrophoresis
image. (b) Result
of applying the
watershed
segmentation
algorithm to the
eradient image.
Oversegmentation
1s evident.
(Courtesy of Dr.
S. Beucher,
CMM/Ecole des
Mines de Paris.)
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10.5 Segmentation by Morphological Watersheds
The use of markers

ab

FIGURE 10.48

(a) Image showing
internal markers
(light gray regions)
and external
markers
(watershed lines).
(b) Result of
segmentation. Note
the improvement
over Fig. 10.47(b).
(Courtesy of Dr. S.
Beucher,
CMM/Ecole des
Mines de Paris.)
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10.5 Segmentation by Morphological Watersheds
The use of markers

In Fig. 10.48, the image 1s partitioned into regions,
each containing a singer internal marker and part of
the background.

Simplify the problem as partition each region into a
single object and its background.

Marker selection can be based on gray-level value
and connectivity, and more complex description
involving size, shape, location, texture content, and
SO on.

Apply the watershed segmentation on each region
with internal marker,
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10.6 Use of Motion in Segmentation
-spatial domain

» Spatial Domain Technique
1) Detect changes between two 1mage frames f(x, y, t,) and
J(x, y, t) taken at time ¢, and ¢,
2) Form a difference image d;;(x, y) defined as
dij(x’y): 1 ljf‘f(xayati)_f(xayatj)‘>T
0 otherwise
3) Accumulate differences: consider a sequence of image
frame f(x, y, ¢,)... f(x, y, t,) and f(x, y, ¢,) 1s the reference

image, an accumulative difference image (ADI) is formed
by compare this reference with every subsequence image.

4) A counter for each pixel location 1s increased every time a
difference occurs at that location.
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10.6 Use of Motion in Segmentation

» Three ADIs: absolute, positive and negative.

* Let R(x, y)=f(x, y, t;) and f(x, y, k)=f(x, y, 1), then
for any k> 1 three ADIs are counters defined as

follows:

Ao <rAk_1 (x,y)+1 if‘R(x, ¥) _f(X,y,k)‘ ST

| A (x,y) otherwise

(P (6 ) +1 if RO, p) = f(x,0,k) > T
- Bi(x,p) otherwise

(N (600 +1 if R(x, p) = f(x,3,k) <-T
- N(x,p) otherwise

B.(x,y) =

Nk(xay):<
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(1) The non-zero area of the positive ADI equals to the size of moving
object. (2) The positive ADI stops increasing when the moving object
displaced complete away from the same object in the reference image.

a b c

FIGURE 10.49 ADIs of a rectangular object moving in a southeasterly direction. (a) Absolute ADI. (b) Posi-
tive ADL (c) Negative ADI.
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10.6 Use of Motion in Segmentation
- spatial domain

* To generate a reference frame with only stationary
elements 1s as follows:

1. Consider the first image as the reference image

2.When a non-stationary component move completely
out of its position 1n the reference frame, the
corresponding background can be duplicated 1n the
location originally occupied by the object.

3. Similar process can be done for other moving objects

4. Object displacement can be established by
monitoring the changes in the positive ADI.
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10.6 Use of Motion in Segmentation - example

To remove the principal moving objects (the car at the intersection
moving from left to right) in the reference image to create a static
image. By monitoring the changes in the positive ADI, we may find
the position of a moving object.

abc

FIGURE 10.50 Building a static reference image. (a) and (b) Two frames in a sequence.
(¢) Eastbound automaobile subtracted from (a) and the background restored from the
corresponding area in (b). (Jain and Jain. )
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10.6 Use of Motion in Segmentation
- Frequency domain

A video sequence (frame size MxN) can be represented
as a space time function fix, y, 1), t=0, 1, 2,...K-1.

All frames have homogeneous background of zero
intensity.

The 1image plane is projected onto the x-axisyields a

1-D array with M entry that are 0, except at the location
where the object 1s projected.

Multiply the components of the array by exp[j27a xAf],
x=0,1,...M-1, with the object located at (x’, y"), 1t
produces a sum equal to exp[j2ma ;x’At]
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10.6 Use of Motion in Segmentation
- Frequency domain

 If the object moves one-pixel per frame, then
at any 1nstance of time #, we have
exp|j2 ma (x '+1)Af]

* This procedure yields a complex sinusoid with
frequency a,.

* If the object moves with v, pixels between
frames then the sinusoid would have frequency
V,a;.

e The Fourier transform of complex sinusoid has
two peaks, one at v,a, and the other at K-v,a,.
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10.6.2 Frequency domain Technique

» For a sequence of K digital images of size MxN, the
sum of weighted projections onto the x axis and y axis
at any integer instance of time are

M-1| N-1
gx(taa ) — f(xa yat) .ej27ra1xAt
1 ;_; i where t =1, 2,...K-1.

N-1[ M-l 1 t
gy(t’az)zz Zf(xayat) 'ejzmzyA
y=0 L x=0 |

* The 1-D Fourier transform of g,(¢, a;) and g (¢, a,) are
1 K-1

G (u,,a,)= o e S (t,a)e ™"y =0]1,.K-1

t=0

1 K-1 .
G, (1, a) == 2 g, (ha)e ™ uy =0 K -1
t=0
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10.6.2 Frequency domain Technique

* The frequency-velocity relationship is
u,=v,a; and u,=v,a,.
Example:

v,=10 pixels in K frames, K=30, frame rate=2
image/sec, the distance between pixel=0.5m

Actual speed is
v,=(10pixels)(0.5m/pixel)(2frame/secs)/(30frames)
=1/3 m/sec
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10.6.2 Frequency domain Technique

* The sign of x-component of the velocity 1s
obtained by computing

d’Relg,(t,a,)}
Slx — dtz ‘t:n

d*Im{g, (1,a)]
S2x — dt2 ‘ t=n
» g 1s sinusoidal, if v, 1s positive then §, and S,
have the same sign, otherwise, they have
opposite signs.
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Image
Processing

10.6.2 Frequency domain Technique

FIGURE 10.51
LANDSAT
frame. (Cowart,
Snyder, and
Ruedger.)

Vx=0.5 pixel/frame
Vy=1 pixel/frame
al=6 and a2=4
ul=3, vi=0.5, v2=1.0
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10.6.2 Frequency domain Technique

FIGURE 10.52
[ntensity plot of
the image in

Fig. 10.51, with
the target circled.
(Rajala, Riddle,
and Snyder.)
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Processing

10.6.2 Frequency domain Technique

6440
560+

480+

al=6 and a2=1% .,

ul=1517 ==
vI=1.0 =
1604

NN AN
16 20 24 28

0 4 8 12

32 36 40
Frequency

FIGURE 10.53 Spectrum of Eq. (10.6-8) showing a peak at u, = 3. (Rajala, Riddle, and
Snyder.)
1 K-1 /
. —j2mut/ K .
Gx(ul,al)—f g (t,a)e’ "™ u, =0,1,..K -1

t=0
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Processing _

10.6.2 Frequency domain Technique

FIGURE 10.54 100
Spectrum of
Eq. (10.6-9)
showing a peak at 80+
i, = 4. (Rajala, <
Riddle, and ™
. : 6 -
Snyder.) x
E  10-
2¥]
=
20+
B | — | |
0 4 8 12 16 20 24 28 32 36 40

Frequency

M-1N-1

g, (t,a,) =Y > f(x,y,1)e"* >

x=0 y=0
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