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Chapter 10
Image Segmentation

• Segmentation subdivides an image into its 
constituent regions or objects.

• Segmentation based on the discontinuity and 
similarity.

• Discontinuity: abrupt changes in intensity, such as 
edges.

• Similarity: partitioned into regions similar according 
to a set of predefined criteria, such as thresholding
region growing, region splitting and merging.
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10.1 Detection of Discontinuity

• The response of the mask at any point in the image is 
given by R=w1z1+w2z2+…+w9z9
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10.1 Detection of Discontinuities

• Point detection: detect isolated point.
• A point is detected if |R|≥T

Laplacian operator
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10.1 Detection of Discontinuities10.1 Detection of Discontinuities

Line detection:
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10.1 Detection of Discontinuities10.1 Detection of Discontinuities
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10.1 Detection of Discontinuities
-Edge Detection

• An edge is modeled as a “meaningful” transitions 
in gray-levels.

• Ideal (or Step) edge
• Ramp edge
• Roof edge
• First derivative and second derivative on the edge 

profile.
• “Zero-crossing” property is used to identify the 

location of edge.
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10.1 Detection of Discontinuities
- Edge types
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10.1 Detection of Discontinuities10.1 Detection of Discontinuities
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10.1 Detection of Discontinuities10.1 Detection of Discontinuities
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10.1 Detection of 
Discontinuities

10.1 Detection of 
Discontinuities
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10.1 Detection of Discontinuities
-Edge Detection

• Apply gradient operators on an image f(x, y)
at location (x, y) to obtain a 2-D gradient 
defined as:

∇f=[Gx, Gy]=[∂f/∂x, ∂f/∂y]
• The magnitude of this vector is

∇f=mag(∇f)= [Gx
2 , Gy

2 ]1/2

• The direction is
α(x, y)=tan-1(Gx/Gy)
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10.1 Detection of Discontinuities
-Edge Detection

• Robert cross-gradient operators:
Gx=(z9 –z5 )  and  Gy=(z8 –z6)

• It does not have clear center.
• Prewitt 3x3 operators

Gx=(z7+z8+z9)–(z1+z2+z3)  and  
Gy= (z3+z6+z9)–(z1+z4+z37) 

• Weighted Prewitt 3x3 operators
Gx=(z7+2z8+z9 )–(z1+2z2+z3)  and  
Gy= (z3+2z6+z9 )–(z1+2z4+z37) 

• The gradient is  ∇f ≅ |Gx|+|Gy|

z1 z2 z3

z4 z5 z6

z7 z8 z9
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10.1 Detection of 
Discontinuities

10.1 Detection of 
Discontinuities
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10.1 Detection of Discontinuities10.1 Detection of Discontinuities
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10.1 Detection of Discontinuities10.1 Detection of Discontinuities
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10.1 Detection of Discontinuities10.1 Detection of Discontinuities
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10.1 Detection of Discontinuities10.1 Detection of Discontinuities
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10.1 Detection of Discontinuities
-Edge Detection

• The Laplacian operator:
∇2f=[∂2f/∂x2, ∂f2/∂y2]

• Digital approximation for 3x3 region is
∇2f = 4z5–(z2+z4+z6+z8)

or ∇2f = 8z5– (z2+z4+z6+z8 +z1+z3+z7+z9)
• The Laplacian is very sensitive to the noise.
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10.1 Detection of Discontinuities10.1 Detection of Discontinuities
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10.1 Detection of Discontinuities 
-Edge Detection

• Laplacian plus Gaussian (smoothing)
Gaussian: h(r)=-e-r2/2σ2 where r2=x2+y2

• Convolving the Gaussian with the image will 
blur the image.

• The Laplacian of h(r) is
• It is called the Lapalcian of a Gaussian (LoG) 

which is also called Mexican hat function
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10.1 Detection of Discontinuities10.1 Detection of Discontinuities
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10.1 Detection of 
Discontinuities

10.1 Detection of 
Discontinuities
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10.2 Edge Linking and Boundary detection10.2 Edge Linking and Boundary detection
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10.2 Edge Linking and Boundary detection-
Global processing via Hough transform

• Given a point (xi, yi) --- many lines pass through this 
point as yi=axi+b with different a and b.

• A point (xi, yi) in image space is mapped to many 
points {(a, b)}in parameter space which are on line 

b=-axi+yi.
• The collinear point (xj, yj) -many lines pass through this 

point as yi=axi+b with different a and b.
• The collinear point (xj, yj) in image space is mapped to 

many points {(a, b)}in parameter space which are on 
line:  b=-axj+yj.

• These two lines in parameter space intersect at (a’, b’)
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10.2 Edge Linking and Boundary detection10.2 Edge Linking and Boundary detection

(a’, b’)∈{(a, b)}
a’ is slope, b’ is the intercept of 
the line passing through (xi, yi) 
and (xj, yj) 
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10.2 Edge Linking and Boundary detection
Hough Transform

10.2 Edge Linking and Boundary detection
Hough Transform

Accumulator Cell  A(i ,j):

(xi, yi) → {(a, b)}

a→ap and   b→bq

A(p, q)=A(p, q)+1

Problem: slope “a” may approach 
infinity for detecting a vertical line
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10.2 Edge Linking and Boundary detection
Hough Transform

• Given a point (xi, yi) → many lines pass through this 
point as xi cos θ+yi sin θ=ρ with different θ and ρ

• A point (xi, yi) in image space is mapped a set of points 
{(θ, ρ )}in parameter space 

• The point (xj, yj) → many lines pass through this point 
as xj cos θ+yj sin θ=ρ with different θ and ρ.

• The collinear point (xj, yj) in image space is mapped to 
another set of points {(θ, ρ )’}in parameter space. 

• These two sets in parameter space intersect at (θj, ρi )
• Collinear points (xi, yi)∈{(x, y)} lies on a line: 

x cos θj+y sin θj =ρi
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10.2 Edge Linking and Boundary detection10.2 Edge Linking and Boundary detection

Representing a line as  xcosθ + ysin θ=ρ
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10.2 Edge Linking and Boundary detection
Hough Transform

10.2 Edge Linking and Boundary detection
Hough Transform
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10.2 Edge Linking and Boundary detection
Hough Transform

10.2 Edge Linking and Boundary detection
Hough Transform
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10.2 Edge Linking and Boundary detection
Hough Transform

• The Hough transform can be applied to any 
function of the  form g(v, c)=0 where v is 
the vector of coordinate and c is the vector 
of coefficients

• For example to detect a circle:
(x-c1)2 + (y-c2)2 =c3

2

where v=(x, y), c=(c1 ,c2, c3)
• Accumulator A(i, j, k)=A(c1 ,c2, c3)
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10.2 Edge Linking and Boundary detection
Hough Transform

• Circle detection
1. Let Vp denote the set of point {v|p(v)≠0}
2. For each image point p(v), there is a set of a set of 

circles passing through v. Let Cv denote the set of 
circles.

3. Find the center (c1, c2) and the radius c3 of each 
member in Cv under the constraint that v ∈Vp.

4. For each member of {c|v ∈Vp.} an accumulator at 
(c1, c2 , c3 ) in c space is incremented by 1.
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10.2 Edge Linking and Boundary detection
Graph-theoretic Technique

• Representing the edge segments in the form of graph.
• Edge detection and linking based on searching the 

graph for low cost paths that correspond to the 
significant edges.

• Graph G=(N, U) with a set of nodes N, and a set U of 
unordered pairs of distinct elements of N.

• Each pair (ni, nj) of U is called an arc.
• An arc is directed from node ni to node nj , ni, is the 

parent; nj is the successor.
• Graph traveling starts with the start(root) node and 

ends with the goal node.
• A cost c(ni, nj) is associated with every arc (ni, nj) .
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10.2 Edge Linking and Boundary detection
Graph-theoretic Technique

• A sequence of node (n1, n2…, nk) indicates a 
path from n1 to nk .

• The cost of entire path is 
• An edge element is boundary between two 

pixels p and q.
• An edge is a sequence of connected edge 

elements.
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10.2 Edge Linking and Boundary detection
Graph-theoretic Technique

10.2 Edge Linking and Boundary detection
Graph-theoretic Technique
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10.2 Edge Linking and Boundary detection
Graph-theoretic Technique

• Each element define by pixels p and q has 
an associated cost defined as

c(p, q)=H-[f(p)-f(q)]
where H is the highest gray-level value in 
the image (i.e., H=7), and f(p) and f(q) is the 
gray level of pixels p and q.
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10.2 Edge Linking and Boundary detection
Graph-theoretic Technique

10.2 Edge Linking and Boundary detection
Graph-theoretic Technique
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10.2 Edge Linking and Boundary detection
Graph-theoretic Technique

• Let r(n) be an estimate of the cost of a minimum-cost path 
from s to n plus an estimate of the path from n to a goal
node, that is r(n)=g(n)+h(n), where g(n) can be chosen as 
the lowest-cost path from s to n found so far, and h(n) is 
obtained by using any desirable heuristic information.
Graph search algorithm :

• Step 1: Mark the start node OPEN and set g(s)=0.
• Step 2: If no node is OPEN exit with failure, otherwise 

continue.
• Step 3: Mark CLOSED the OPEN node n whose estimate 

r(n) is the smallest.
• Step 4: If n is a goal node, exit with solution path obtained 

by tracing back through the pointers; otherwise continue.
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10.2 Edge Linking and Boundary detection
Graph-theoretic Technique

• Step 5: Expand node n, generating all of its successors (if no 
successor go to step 2).

• Step 6: If a successor ni is not marked, set g(ni)=g(n)+c(n, ni),
then mark it OPEN, and direct pointer from it back to n.

• Step 7: If a successor ni is marked CLOSED or OPEN, update 
its value by letting 

g’(ni )=min[g(ni ), g(n)+c(n, ni )].
Mark OPEN those CLOSED successors whose g’ values were 
thus lowered and redirect to n, the pointers from all nodes 
whose g’ values were lowered. Go to step 2.

• This algorithm depends on the use of heuristic function h(n) 
which is a lower bound on the cost of the minimal-cost path.

• If h=0 then it is reduced to uniform-cost algorithm. 
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10.2 Edge Linking and Boundary detection
Graph-theoretic Technique

10.2 Edge Linking and Boundary detection
Graph-theoretic Technique
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10.2 Edge Linking and Boundary detection
Graph-theoretic Technique

10.2 Edge Linking and Boundary detection
Graph-theoretic Technique
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10.3 Thresholding

• To extract an object form the background is to select 
a threshold T that separate the object pixels from 
background pixels.

• Any point (x, y) with f(x, y)>T is called an object 
point; otherwise, the point is called a background 
point.

• For multilevel thresholding classifies a point (x, y) as 
belongs to one object class if  T1<f(x, y)≤T2, and to 
the other object class if f(x, y)>T2.
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10.3 Thresholding10.3 Thresholding
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10.3 Thresholding

• The threshold T is determined as
T=T[x, y, p(x, y), f(x, y)]

where p(x, y) denotes some local property of this 
point (x, y), i.e., the average level of a neighborhood 
centered on (x, y).

• A thresholded image is defined as:
g(x, y)=1 if f(x, y)≥T
g(x, y)=0 if f(x, y)<T

• If T does not depend on p(x, y) then the threshold is 
called global threshold, otherwise it is called local 
or adaptive threshold. 
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10.3 Thresholding10.3 Thresholding

Histogram 
distortion 
due to non-
uniform 
illumination
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10.3 Thresholding -illumination

• f(x, y)=i(x, y)r(x, y)
• z(x, y)=ln{f(x, y)}=ln{i(x, y)}+ln{r(x,y)}

=i’(x, y)+r’(x, y)
• If i’(x, y) and r’(x, y) are independent random variables, the 

histogram of z(x, y) is given by the convolution of the histogram 
of i’(x, y) and r’(x, y).

• If i’(x, y)=constant and i’(x, y)=constant (its histogram is an 
impulse), then the histogram of z(x, y) ≈ r’(x, y) is unchanged.

• If the i’(x, y) is a broader histogram (nonuniform illumination), 
the convolution process may smear the histogram of r’(x,  y) and 
the shape of the histogram of z(x, y) will be quite different from 
r’(x, y).

• The degree of distortion depends on the broadness of the 
histogram of i’(x, y).
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10.3 Thresholding -illumination

• If the illumination source i(x, y) is available, 
compensating the non-uniformity by projecting the 
illumination on a constant white reflective surface
(i.e., r(x, y)=k) . This yields a new image as

g(x, y)=ki(x, y) where k is a constant
• For any image f(x, y)=i(x, y)r(x, y), we have a 

normalized image as h(x, y)=f(x, y)/g(x, y)=r(x, y)/k
• If r(x, y) can be segmented by threshold T then h(x, 

y) can be segmented by threshold T/k.
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10.3 Thresholding - Global Thresholding10.3 Thresholding - Global Thresholding

1. Partition the 
image using a single 
threshold T

2. How to find the 
best T ?
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10.3 Thresholding –Global Thresholding

• Assume that the background and the object occupy 
comparable areas in the image, a good initial value of T is 
the average gray level of the image.
1. Select an initial estimate for T.
2. Segment the image into two group of pixels G1 and 

G2 using T.
3. Compute the average gray level values of G1 and G2 

are μ1 and  μ2.
4. Compute a new threshold value as Tnew=(μ1+μ2)/2,
5.  Compare if |Tnew-T|>z0 ( predefined thredhold z0) then 

T=Tnew and go to step 2, else stop
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10.3 Thresholding – Otsu Thresholding

• Minimizing within group variance
• Let P(i) denote the probability distribution of the gray 

level i=1,…I of a picture.
• Let t be the threshold that separate the image pixels 

into two groups, {1,….t} and {t+1,…I}
• q1(t) be the probability for group with values less than 

or equal to t, i.e.,

• q2(t) be the probability for group with values greater 
than t, i.e., 
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10.3 Thresholding – Otsu Thresholding

• Let μ1(t) and μ2(t) be the mean for group 1 and 
group 2 as

• Let σ1(t) and σ2(t) be the variance for group 1 and 
group 2 as

and

• Let σW be the weighted sum of group variance (or 
within group variance) , i.e.,
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10.3 Thresholding – Otsu Thresholding

• The relationship between the σ and σW

• σB is the between group variance
• Minimize σW = maximize σB

• There is a relation ship between the value of 
computed t and that computed for next t: t+1.

q1(t+1)=q1(t)+P(t+1)  and q2(t+1)=q2(t)–P(t+1)
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10.3 Thresholding – Otsu Thresholding

• We can obtain the recursive relation
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10.3 Thresholding10.3 Thresholding
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10.3 Thresholding- Adaptive threshold

• Divide the image into sub-images.
• All sub-images containing boundaries, 

its variances>100, else its variance <75.
• Each sub-image with variance > 100 are 

segmented with a threshold computed for 
that specific sub-image.

• All sub-images with variance <100 are 
treated as one composite image which is 
segmented with a single threshold.
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10.3 Thresholding10.3 Thresholding



Image Comm. Lab EE/NTHU 57

10.3 Thresholding10.3 Thresholding
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10.3 Thresholding
-Optimal Global and Adaptive Thresholding

• Suppose an image contains only two principal gray-
level regions: objects and background.

• Let z denote the gray level, which can be treated as a 
random variable.

• The histogram of the image may be treated as the 
probability density function(PDF) p(z).

• There are two PDFs, one for the objects, p1(z), and 
one for the background p2(z).

• The mixture probability density function describing 
the overall gray-level variation in the image as

p(z)=P1p1(z)+P2p2(z)
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10.3 Thresholding
-Optimal Global and Adaptive Thresholding

10.3 Thresholding
-Optimal Global and Adaptive Thresholding
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10.3 Thresholding
-Optimal Global and Adaptive Thresholding

• P1and P2 are the probability of occurrence of the two 
classes of pixels. 

• P1 is the probability that the pixel is an object pixel 
and P2 is the probability that the pixel is a 
background pixel, and P1+P2 =1.

• The threshold is T, the pixel with z>T is classified as 
background pixel, and vise versa.

• The probability of erroneously classifying a 
background pixel as an object pixel is

∫ ∞−
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T
dz)z(p)T(E 21
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10.3 Thresholding
-Optimal Global and Adaptive Thresholding

• The probability of erroneously classifying a object 
pixel as an background pixel is

• The overall probability of error is
E(T)=P2E1 (T)+P1E2 (T)

• To find the T that minimize E(T) by dE(T)/dT=0, and 
we have P1p1(T)=P2p2(T)

• If P1=P2 then we find the T at p1(T)=p2(T)
• Assume p1(z)and p2(z) are Gaussian distribution with 

the mean and standard variation as (μ1 , σ 1
2) and (μ2 , 

σ 2
2).
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10.3 Thresholding
-Optimal Global and Adaptive Thresholding

• The threshold T is found by the following 
equation:  AT2+BT+C=0
where

• If the variances are equal σ 2=σ 1
2=σ 2

2 then
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10.3 Thresholding-example10.3 Thresholding-example

Example: To outlines the boundary of heart ventricles in 
cardioangiograms(X-ray image)

A

B

After preprocessing
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10.3 Thresholding-example

• Preprocessing:
1. Each pixel is mapped with a log function, i.e.,

s=c·log(1+r), where c is a constant,
to counter exponential effect of radio 
absorption.

2.   Image (after radioactive absorption) subtracts 
Image (before radioactive absorption).

3.   Several angiograms are summed to reduce the 
noise.



Image Comm. Lab EE/NTHU 65

10.3 Thresholding -example

• Segmentation: 
• Image (256x256) is subdivided into 49 overlapped regions 

(64x64).
• All 49 histograms are computed.
• Test of bimodality and thresholding (Fig. 10.34(a)) is found by 

fitting the bimodal Gaussian density curve (region A)
• The threshold for the remaining regions (region B) were 

obtained by interpolating these thresholds.
• Every point (x, y) in the image will be assigned a threshold Txy. 
• f(x, y)=1 if f(x, y)>Txy, otherwise f(x, y)=0
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10.3 Thresholding10.3 Thresholding
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10.3 Thresholding10.3 Thresholding
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10.3 Thresholding - Histogram improvement and 
Local thresholding

10.3 Thresholding - Histogram improvement and 
Local thresholding

• Good histogram shape →good thresholding
• To improve the shape of histograms is to consider only 

those pixels that lie on or near the edges between 
objects and background.

• The histogram will be less dependent on relative size 
of the objects and background.

• Use gradient to find the pixel on an edge or not 
• Laplacian can yield information regarding whether a 

give pixel lies on the dark or light side of an edge. 
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10.3 Thresholding - Histogram improvement and 
Local thresholding

• Consider only those pixels that lie on or near the 
edges between objects and background

• Three-level image

• For pixels not on edges, s(x, y)=0
• For pixels on dark side of edges, s(x, y)=+
• For pixels not on light side of edges, s(x, y)= –
• Fig. 10.36 shows a dark object on light background.
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10.3 Thresholding10.3 Thresholding
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10.3 Thresholding

• For binary image, the transition from the light 
background to dark object is characterized by the 
occurrence of a  “–” followed by a “+”.

• The interior of the object is characterized as “+” or 
“0”.

• The transition from the object back to the background 
is characterized by the occurrence of a “+” followed 
by a “–”.

• The vertical or horizontal scan line containing a 
section of an object has the following structure:

(…..)(–, +)(+ or 0)(+, –)(….)
• (…..) represents any combination of +, –, and 0.
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10.3 Thresholding -example10.3 Thresholding -example
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10.3 Thresholding-example10.3 Thresholding-example
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10.3 Thresholding- Based on several variables10.3 Thresholding- Based on several variables

• Multi-spectral thresholding for RGB color image
• Finding clusters of points in 3-D space.
• Image segmentation: if the pixel value is close to one cluster,

then assign one value (cluster centroid) to the pixel.
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10.4 Region-based Segmentation

• Segmentation is accomplished by finding the region 
directly.

• Segmentation is to partition the image into sub-
regions: R1, R2…..Rn ,where
(a) Ri is a connected region 
(b) R1∪ R2….. ∪ Rn =R
(c) Ri∩Rj=∅ for i ≠j
(d) P(Ri)=TRUE, all pixel in Ri have the same gray 
level or texture.
(e) P(Ri∪Rj)= FALSE for i ≠j
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10.4 Region-based Segmentation 
–Region groing

• Region growing is a procedure that groups 
pixels or subregions into larger regions 
based on predefined criteria.

• It starts with a set of”seed” points and from 
these grow regions by appending to each 
seed those neighboring pixels that have 
properties similar to the seed (such as 
specified gray-level or color)
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10.4 Region-based Segmentation10.4 Region-based Segmentation
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10.4 Region-based Segmentation10.4 Region-based Segmentation
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10.4 Region-based Segmentation-Region 
splitting and merging

• Subdivide an image initially into a set of arbitrary 
disjointed regions and then merge and/or split the 
regions in an attempt to satisfy the conditions of regions.

• Two adjacent regions Ri and Rj are merged only if 
P(Ri∪Rj)= TRUE.  
The split and merge algorithm is mentioned as follows:
1. Split into four disjoint quadrants any region Ri for 
which P(Ri)= FALSE
2. Merge any adjacent regions Ri and Rj, for which 
P(Ri∪Rj)= TRUE
3. Stop when no further merging or splitting is possible.
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10.4 Region-based Segmentation
-Region splitting and merging

10.4 Region-based Segmentation
-Region splitting and merging
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10.4 Region-Based Segmentation
-Region splitting and merging

10.4 Region-Based Segmentation
-Region splitting and merging

1. Define P(Ri)=True if at least 80% of the pixel in Ri have the 
property |zi-mi|≤2σi, mi is the mean, σi is the standard deviation.
2. If P(Ri)=True , the value of all pixels in Ri are set to mi
The shaded area is errorneously removed.
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10.5 Segmentation by Morphological Watersheds

• Segmentation based on (1) detection of 
discontinuity (2) thresholding, and (3) region 
processing.

• Segmentation by Morphological Watersheds 
embodies the concepts of the three approaches.

• Produce more stable segmentation results, i.e., 
continuous segmentation boundary.

• Incorporate knowledge-based based 
constraints in the segmentation process.
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10.5.1 Segmentation by Morphological 
Watersheds- basic

• Visual image in 3-D (coordinate and gray-level) and 
consider three types of points:
1) points belong to regional minimum.
2) points at which a drop of water, if placed at the 
location of any of these points, would fall with 
certainty to a single minimum.  A set of such points 
is called catchment basin (盆地) or watershed of that 
minimum.
3) points at which water would be equally likely to 
fall more than one such minimum. A set of such 
points is called divide lines or watershed lines (分水
嶺).
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10.5.1 Segmentation by Morphological Watersheds

• Segmentation → to find the watershed lines.
• The entire topography is flooded from below by 

letting the water rise at a uniform rate.
• The rising water in distinct catchment basins is about 

to merge, a dam is built to prevent this merging.
• The flooding will reach a stage when only the tops of 

the dam are visible above the water line.
• The dam boundaries correspond to the divide lines of 

the watersheds.
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10.5 Segmentation by Morphological Watersheds10.5 Segmentation by Morphological Watersheds
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10.5 Segmentation by Morphological Watersheds10.5 Segmentation by Morphological Watersheds
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10.5.2 Segmentation by Morphological Watersheds
-dam construction

• Use morphological dilation to construct dam.
• Let M1 and M2 denote the set of coordinates of points in 

two regional minima.
• Let the set of coordinates of points in the catchment

basin associated with the two minima at stage n-1 of 
flooding be denoted by Cn-1(M1) and Cn-1(M2).

• Let the union of the two sets be C[n-1].
• The two components merge when the water between the 

two catchment basins has merged at the flooding step n
• Let this connected component (Figure 10.45 (b)) be 

denoted as q.
• The two components from step n-1 can be extracted 

from q by the following AND operation: q∩C[n-1].
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10.5 Segmentation by Morphological Watersheds10.5 Segmentation by Morphological Watersheds

dam

C[n-1]

q
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10.5.2 Segmentation by Morphological Watersheds
Dam construction

• Fig. 10.45(a) is dilated by the structure element in fig. 
10.45(c), subject to two conditions:

1) The dilation has to be constrained to q.
2) The  dilation cannot be performed on points that would 

cause sets being dilated to merge.
• During the 1st dilation, cond. (1) is satisfied only.
• During the 2nd dilation, cond. (2) is consider only, it 

results in broken perimeter.
• The only points in q that satisfy the two conditions

under consideration describe the one-pixel-thick 
connected path shown by cross-hatched points.

• The path constitutes the desired separation dam at 
stage n of flooding. (n : 水位)
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10.5.3 Segmentation by Morphological Watersheds
Watershed Segmentation Algorithm

• Let M1, M2 ….MR be sets denoting the coordinates of 
the points in the regional minima of an image g(x, y).

• Let C(Mi) be a set denoting the coordinates of the points
in the catchment basin associated with regional 
minimum Mi .

• Let T[n] represent the set of coordinates (s, t) for which
g(s, t)<n. i.e., T[n]={(g, s)|g(s, t)<n}

• The topology will be flooded in integer flood 
increments from n=min+1 to n=max +1 where min and 
max are the minimum and maximum value of g(x, y).
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10.5.3 Segmentation by Morphological Watersheds
Watershed Segmentation Algorithm

• Let Cn(Mi) denote the set of coordinates of 
points in the catchment basin associated with 
minimum Mi that are flooded at stage n.

• Cn(Mi) can be viewed as a binary image given 
by Cn(Mi) = C(Mi)∩T[n]

• Cn(Mi)=1 at location (x, y) if (x, y)∈C(Mi) AND 
(x, y)∈T[n], otherwise Cn(Mi)=0

• Let C[n] denote the union of the flooded 
catchment basins portion at stage n as:
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10.5.3 Segmentation by Morphological Watersheds
Watershed Segmentation Algorithm

• Then C[max+1] is the union of all catchment
basins as:

• C[n-1] is subset of C[n].
• C[n] is a subset of  T[n].
• The algorithm for finding the watershed lines 

is initialized with C[min+1]=T[min+1].
• The algorithm proceeds recursively assuming 

that at step n, C[n-1] has been constructed.
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10.5.3 Segmentation by Morphological 
Watersheds

• Obtain C[n] from C[n-1] as follows:
• Let Q denote the set of connected components in T[n].
• For each connected component q ∈Q[n]: q∩C[n-1] may be

(a) empty : when a new minimum is encountered, in which case 
connected component q is incorporated into C[n-1] to form C[n]
(b) one connected component: when q lies within the catchment
basin of some regional minimum in which case q is incorporated 
into C[n-1] to form C[n]
(c) more than one component: when all or part of a ridge 
separating two or more catchment basins is encountered. Further 
flooding would cause water level in these catchment basin to 
merge, therefore, a dam must built within q to prevent overflow 
between the catchment basins
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10.5 Segmentation by Morphological Watersheds10.5 Segmentation by Morphological Watersheds
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10.5 Segmentation by Morphological Watersheds
The use of markers

• Over-segmentation due to noise or other 
irregularities of the gradient - use the 
markers

• A marker is a connected component 
belonging to an image.

• Internal markers: object of interests.
• External markers: background.
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10.5.4 Segmentation by Morphological Watersheds
The use of markers

• Marker selection:
1) Preprocessing: Use smooth filtering to remove small spatial 

detail.
2) A set of criteria that markers must satisfy

1)A region that is surrounded by points of higher “altitude”
2)The points in the regions form a connected component.
3)All the points in the connected region have the same gray-

level value.
4)After image is smoothed, the internal markers are shown 

as light gray, blob like region
5)Watershed algorithm is applied and the resulting water shed 

lines are defined as the external markers (Figure 10.48(a)).



Image Comm. Lab EE/NTHU 97

10.5 Segmentation by Morphological Watersheds10.5 Segmentation by Morphological Watersheds
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10.5 Segmentation by Morphological Watersheds
The use of markers

10.5 Segmentation by Morphological Watersheds
The use of markers
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10.5 Segmentation by Morphological Watersheds 
The use of markers

• In Fig. 10.48, the image is partitioned into regions, 
each containing a singer internal marker and part of 
the background.

• Simplify the problem as partition each region into a 
single object and its background.

• Marker selection can be based on gray-level value 
and connectivity, and more complex description 
involving size, shape, location, texture content, and 
so on.

• Apply the watershed segmentation on each region 
with internal marker.
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10.6 Use of Motion in Segmentation
-spatial domain

• Spatial Domain Technique
1) Detect changes between two image frames f(x, y, ti) and 

f(x, y, tj) taken at time ti and tj

2) Form a difference image dij(x, y) defined as

3) Accumulate differences: consider a sequence of image 
frame f(x, y, t1)… f(x, y, tn) and f(x, y, t1) is the reference 
image, an accumulative difference image (ADI) is formed 
by compare this reference with every subsequence image.

4) A counter for each pixel location is increased every time a 
difference occurs at that location.
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10.6 Use of Motion in Segmentation

• Three ADIs: absolute, positive and negative.
• Let R(x, y)= f(x, y, t1) and f(x, y, k)=f(x, y, tk), then 

for any k>1 three ADIs are counters defined as 
follows: 
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10.6 Use of Motion in Segmentation- example10.6 Use of Motion in Segmentation- example

(1) The non-zero area of the positive ADI equals to the size of moving 
object. (2) The positive ADI stops increasing when the moving object 
displaced complete away from the same object in the reference image.



Image Comm. Lab EE/NTHU 103

10.6 Use of Motion in Segmentation
- spatial domain

• To generate a reference frame with only stationary 
elements is as follows:
1. Consider the first image as the reference image
2.When a non-stationary component move completely 
out of its position in the reference frame, the 
corresponding background can be duplicated in the 
location originally occupied by the object.
3. Similar process can be done for other moving objects
4. Object displacement can be established by 
monitoring the changes in the positive ADI.
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10.6 Use of Motion in Segmentation - example10.6 Use of Motion in Segmentation - example

To remove the principal moving objects (the car at the intersection 
moving from left to right) in the reference image to create a static 
image. By monitoring the changes in the positive ADI, we may find 
the position of a moving object.
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10.6 Use of Motion in Segmentation 
- Frequency domain

• A video sequence (frame size MxN) can be represented 
as a space time function f(x, y, t), t=0, 1, 2,…K-1. 

• All frames have homogeneous background of zero 
intensity.

• The image plane is projected onto the x-axis yields a 
1-D array with M entry that are 0, except at the location 
where the object is projected.

• Multiply the components of the array by exp[j2πa1xΔt], 
x=0,1,…M-1, with the object located at (x’, y’), it 
produces a sum equal to exp[j2πa1x’Δt]
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10.6 Use of Motion in Segmentation 
- Frequency domain

• If the object moves one-pixel per frame, then 
at any instance of time t, we have 
exp[j2πa1(x’+t)Δt]

• This procedure yields a complex sinusoid with 
frequency a1.

• If the object moves with v1 pixels between 
frames then the sinusoid would have frequency
v1a1.

• The Fourier transform of complex sinusoid has 
two peaks, one at v1a1 and the other at K-v1a1.
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10.6.2 Frequency domain Technique 

• For a sequence of K digital images of size MxN, the 
sum of weighted projections onto the x axis and y axis 
at any integer instance of time are

where t =1, 2,…K-1.

• The 1-D Fourier transform of gx(t, a1) and gy(t, a2) are
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10.6.2 Frequency domain Technique 

• The frequency-velocity relationship is
u1=v1a1 and  u2=v2a2.

Example:
v1=10 pixels in K frames, K=30,  frame rate=2 
image/sec, the distance between pixel=0.5m

Actual speed is
v1=(10pixels)(0.5m/pixel)(2frame/secs)/(30frames)

=1/3 m/sec
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10.6.2 Frequency domain Technique

• The sign of  x-component of the velocity is 
obtained by computing

• gx is sinusoidal, if v1 is positive then S1x and S2x
have the same sign, otherwise, they have 
opposite signs.
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10.6.2 Frequency domain Technique 10.6.2 Frequency domain Technique 

Vx=0.5 pixel/frame

Vy=1 pixel/frame

a1=6  and  a2=4

u1=3, v1=0.5, v2=1.0
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10.6.2 Frequency domain Technique 10.6.2 Frequency domain Technique 
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10.6.2 Frequency domain Technique 10.6.2 Frequency domain Technique 

a1=6  and  a2=15

u1=15, 17

v1=1.0
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10.6.2 Frequency domain Technique 10.6.2 Frequency domain Technique 
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