Chapter 7

Wavelets and Multiresolution Processing

- Wavelet transform vs Fourier transform
- Basis functions are small waves called wavelet with different frequency and limited duration
- Multiresolution theory: representation and analysis of signals/images at more than one resolutions.
- Subband coding
- Quadrature mirror filtering
- Pyramid image processing

7.1 Background

- Small objects or low contrast images are examined at high resolutions; whereas large object and high contrast images are examined in low resolution.
- Images are 2-D array of intensity with locally varying statistics

Digital Image Processing, 2nd ed.

7.1 Background

FIGURE 7.1 A

natural image and its local histogram variations.

7.1 Background

- Image Pyramids
- Base level J with size $2^{J} \times 2^{J}$ or $N \Varangle N$ where $J=\log _{2} N$
- Intermediate level j with size $2^{j} \times 2^{j}$ with $0 \leq j \leq J$
- Most pyramids are truncated to $P+1$ levels where $j=J-P, \ldots J-1, J$
- The total number of pixel elements in a $P+1$ level pyramid is

$$
N^{2}\left(1+\frac{1}{4^{1}}+\frac{1}{4^{1}}+\ldots . .+\frac{1}{4^{P}}\right) \leq \frac{4}{3} N^{2}
$$

7.1 Background

a
b
FIGURE 7.2 (a) A
pyramidal image structure and
(b) system block diagram for creating it.

Gaussian pyramid

Digital Image Processing, 2nd ed.

7.1 Background

7.1 Background-Subband Coding

- In subband coding: an image is decomposed into a set of bandlimited components, called subbands.
- The subbands can be downsampled without loss of information.
- Reconstrunction of the original image is accomplished by upsampling, filtering, and summing the individual subbands

7.1 Background-Subband Coding

a
 b

FIGURE 7.4 (a) A
two-band filter bank for onedimensional subband coding and decoding, and (b) its spectrum splitting properties.

7.1 Background-Subband Coding

- The input is 1-D band-limited discrete time signals $x(n), n=0,1,2, \ldots$
- The output $\hat{x}(n)$ is formed through the decomposition of $x(n)$ into $y_{0}(n)$ and $y_{1}(n)$ via analysis filter $h_{0}(n)$ and $h_{1}(n)$, and subsequent recombination via synthesis filters $g_{0}(n)$ and $g_{1}(n)$.
- The Z-transform of $x(n)$ is $X(z)=\sum_{-\infty}^{\infty} x(n) z^{-n}$
- $x_{\text {down }}(n)=x(2 n) \quad X_{\text {down }}(z)=1 / 2\left[X\left(z^{1 / 2}\right)+X\left(-z^{1 / 2}\right)\right]$
- $x_{u p}(n)=x(n / 2)$ for $n=0,2,4, . . \quad X_{u p}(z)=X\left(z^{2}\right)$

7.1 Background-Subband Coding

- $\hat{x}(n)$ is obtained from the downsampled and upsampled $x(n)$, therefore

$$
\hat{X}(z)=\frac{1}{2}[X(z)+X(-z)]
$$

- $X(-z)$ is the modulated version of $x(n)$
- $Z^{-1}[X(-z)]=(-1)^{n} x(n)$
- The system output is

$$
\begin{aligned}
\hat{X}(z) & =\frac{1}{2} G_{0}(z)\left[H_{0}(z) X(z)+H_{0}(-z) X(-z)\right] \\
& +\frac{1}{2} G_{1}(z)\left[H_{1}(z) X(z)+H_{1}(-z) X(-z)\right]
\end{aligned}
$$

7.1 Background-Subband Coding

- Rearrange $\hat{X}(z)=\frac{1}{2}\left[H_{0}(z) G_{0}(z)+H_{1}(z) G_{1}(z)\right] X(z)$

$$
+\frac{1}{2}\left[H_{0}(-z) G_{0}(z)+H_{1}(-z) G_{1}(z)\right] X(-z)
$$

- The second component contain the $-z$ dependence, represents the aliasing that is introduced by downsampling-upsampling process.
- For error-free reconstruction of the input, $x(n)=\hat{x}(n)$
- The second component is zero.

$$
\begin{aligned}
& H_{0}(-z) G_{0}(z)+H_{1}(-z) G_{1}(z)=0 \\
& H_{0}(z) G_{0}(z)+H_{1}(z) G_{1}(z)=2
\end{aligned}
$$

7.1 Background-Subband Coding

- Reduce to matrix expression

$$
\left[\begin{array}{ll}
G_{0}(z) & G_{1}(z)
\end{array}\right] \mathbf{H}_{m}(z)=\left[\begin{array}{ll}
2 & 0
\end{array}\right]
$$

- Where

$$
\mathbf{H}_{m}(z)=\left[\begin{array}{cc}
H_{0}(z) & H_{0}(-z) \\
H_{1}(z) & H_{1}(-z)
\end{array}\right]
$$

- Assume that $\boldsymbol{H}_{m}(z)$ is nonsingular then

$$
\left[\begin{array}{c}
G_{0}(z) \\
G_{1}(z)
\end{array}\right]=\frac{2}{\operatorname{det}\left(\mathbf{H}_{m}(z)\right)}\left[\begin{array}{c}
H_{1}(-z) \\
-H_{0}(-z)
\end{array}\right] \text { (7-12) }
$$

- The analysis and synthesis filtered are crossmodulated.

7.1 Background-Subband Coding

- For FIR filters, the determinate of the modulation matrix is a pure delay, i.e.,

$$
\operatorname{det}\left(\boldsymbol{H}_{m}(z)\right)=\alpha z^{-(2 k+1)}
$$

- Ignoring the delay and let $\alpha=2$, by taking inverse Z transform we have

$$
g_{0}(n)=(-1)^{n} h_{1}(n) \text { and } g_{1}(n)=(-1)^{n+1} h_{0}(n)
$$

- If $\alpha=-2$ then
$g_{0}(n)=(-1)^{n+1} h_{1}(n)$ and $g_{1}(n)=(-1)^{n} h_{0}(n)$:

7.1 Background-Subband Coding

- The biorthogonality of the analysis and synthesis filters, let $P(z)$ be the product of he lowpass analysis and synthesis filter from (7.12)

$$
P(\mathrm{z})=G_{0}(\mathrm{z}) H_{0}(\mathrm{z})=2 H_{0}(\mathrm{z}) H_{1}(-\mathrm{z}) / \operatorname{det}\left(\mathbf{H}_{m}(\mathrm{z})\right)
$$

also $\operatorname{det}\left(\mathbf{H}_{m}(\mathrm{z})\right)=-\operatorname{det}\left(\mathbf{H}_{m}(-\mathrm{z})\right)$
and $G_{1}(\mathrm{z}) H_{1}(\mathrm{z})=-2 H_{0}(-\mathrm{z}) H_{1}(\mathrm{z}) / \operatorname{det}\left(\mathbf{H}_{m}(\mathrm{z})\right)=P(-\mathrm{z})$
Thus

$$
G_{1}(\mathrm{z}) H_{1}(\mathrm{z})=P(-\mathrm{z})=G_{0}(-\mathrm{z}) H_{0}(-\mathrm{z})
$$

and

$$
G_{0}(-z) H_{0}(-z)+G_{0}(-z) H_{0}(-z)=2
$$

7.1 Background-Subband Coding

- Inverse z-transform
$\sum g_{0}(k) h_{0}(n-k)+(-1)^{n} \sum g_{0}(k) h_{0}(n-k)=2 \delta(n)$
- Odd index terms cancel, ${ }^{k}$ it is simplified as $\sum g_{0}(k) h_{0}(2 n-k)=\left\langle g_{0}(k), h_{0}(2 n-k)\right\rangle=\delta(n)$
- Express G_{0} and H_{0} as function of G_{1} and H_{1} $\left\langle g_{1}(k), \quad h_{1}(2 n-k)\right\rangle=\delta(n), \quad\left\langle g_{0}(k), \quad h_{1}(2 n-k)\right\rangle=0$ $\left\langle g_{1}(k), \quad h_{0}(2 n-k)\right\rangle=0$

7.1 Background-Subband Coding

- More general expression:

$$
\left\langle g_{j}(k), \quad h_{i}(2 n-k)\right\rangle=\delta(i-j) \delta(n) \quad i, j=\left\{\begin{array}{ll}
0, & 1
\end{array}\right\} \quad \text { (7.21) }
$$

- Filter banks satisfying this condition are biorthogonal
- Quadrature mirror filter(QMF) (Table 7.1)
- Conjugate quadrature filter (CQF) (Table 7.1)
- Orthonormal filter (Table 7.1) for fast wavelet transform, it requires that (7.22)

$$
\left\langle g_{i}(n), \quad g_{i}(n+2 m)\right\rangle=\delta(i-j) \delta(m) \quad i, j=\{0, \quad 1\}
$$

7.1 Background-Subband Coding

Filter	QMF	CQF	Orthonormal
$H_{0}(z)$	$H_{0}^{2}(z)-H_{0}^{2}(-z)=2$	$H_{0}(z) H_{0}\left(z^{-1}\right)+$	
$H_{1}(z)$	$H_{0}(-z)$	$H_{0}^{2}(-z) H_{0}\left(-z^{-1}\right)=2$	$G_{0}\left(z^{-1}\right)$
		$z^{-1} H_{0}\left(-z^{-1}\right)$	$G_{1}\left(z^{-1}\right)$
$G_{0}(z)$	$H_{0}(z)$	$H_{0}\left(z^{-1}\right)$	$G_{0}(z) G_{0}\left(z^{-1}\right)+$
$G_{1}(z)$	$-H_{0}(-z)$	$z H_{0}(-z)$	$G_{0}(-z) G_{0}\left(-z^{-1}\right)=2$

TABLE 7.1
Perfect reconstruction filter families.

7.1 Background-Subband Coding

FIGURE 7.5 A
two-dimensional, four-band filter bank for subband image coding.

7.1 Background-Subband Coding

FIGURE 7.6 The
impulse responses
of four 8-tap
Daubechies
orthonormal
filters

They satisfy perfect

reconstruction and
(7.21) and (7.22)

Digital Image Processing, 2nd ed.

7.1 Background-Subband Coding

FIGURE 7.7 A
four-band split of the vase in Fig. 7.1 using the subband coding system of Fig. 7.5.

7.1 Background-Harr Transform

- The oldest and simplest known orthonormal wavelets
- The Harr transform is both separable and symmetric as T=HFH
where \mathbf{F} is $N \times N$ image matrix and \mathbf{H} is $N \times N$ transform matrix and \mathbf{T} is the resulting $N \times N$ transform.
- For Harr transform, the transformation matrix \mathbf{H} contains the Harr basis function $h_{k}(z)$ defined over the continuous closed interval [0,1] for $\mathrm{k}=0,1, \ldots . \mathrm{N}-1$ where $N=2^{n}$.

7.1 Background-Harr Transform

- To generate \mathbf{H}, we define $k=2^{p}+q-1$ where $0 \leq p \leq n-1, q=0$ or 1 for $p=0$, and $1 \leq q \leq 2^{p}$ for $p \neq 0$
- The Harr basis functions are

$$
h_{0}(\mathrm{z})=h_{00}(\mathrm{z})=1 / N^{1 / 2}, \quad \mathrm{z} \in[0,1]
$$

and

$$
\begin{aligned}
& \text { nd } \\
& h_{k}(z)=h_{p q}(z)=\frac{1}{\sqrt{N}}\left\{\begin{array}{cc}
2^{p / 2} & (q-1) / 2^{p} \leq z<(q-0.5) / 2^{p} \\
-2^{p / 2} & (q-0.5) / 2^{p} \leq z<q / 2^{p} \\
0 & \text { otherwise, } z \in[0,1]
\end{array}\right.
\end{aligned}
$$

7.1 Background-Harr Transform

- The i th row of an $N \times N$ Harr transformation matrix contains the elements of $h_{i}(z), z=0 / N$, 1/N,....(N-1)/N
- If $N=4, k, q$, and p are assumed as the following values:

k	p	q
0	0	0
1	0	1
2	1	1
3	1	2

7.1 Background-Harr Transform

- The 4×4 transformation matrix is

$$
H_{4}=\frac{1}{\sqrt{4}}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & 1 & -1 & -1 \\
\sqrt{2} & -\sqrt{2} & 0 & 0 \\
0 & 0 & \sqrt{2} & -\sqrt{2}
\end{array}\right]
$$

- The 2×2 transformation matrix is

$$
H_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

- The basis functions satisfy the QMF prototype filter in Table 7.1, the $h_{0}(n)$ and $h_{1}(n)$ are the elements of the first and the second rows of \mathbf{H}_{2}.

Digital Image Processing, 2nd ed.

7.1 BackgroundHarr Transform

b c ${ }^{\mathrm{a}} \mathrm{d}$
FIGURE 7.8 (a) A discrete wavelet transform using Haar basis
functions. Its local histogram
variations are also shown;
(b)-(d) Several different approximations $(64 \times 64$.
128×128, and 256×256) that can be obtained from (a).

7.2 Multiresolution Expansions

- Multi-resolution analysis (MRA)
- A scaling function is used to create a series of approximations of a function or image, each different by a factor of 2 from its neighboring approximation
- Additional functions, called wavelet, are used to encode the difference between two adjacent approximation.

7.2 Multiresolution Expansions

- Series expansion
- A signal $f(x)$ can be represented as a linear combination of expansion functions as

$$
f(x)=\sum_{k} \alpha_{k} \varphi_{k}(x)
$$

- The expressible functions form a function space that is the closed span of the expansion set denoted as

$$
V=\overline{\operatorname{Span}_{k}\left\{\varphi_{k}(x)\right\}}
$$

- $f(x) \in V$ means that $f(x)$ is in the closed span of $\left\{\varphi_{k}(x)\right\}$

7.2 Multiresolution Expansions

- For any function space V and the corresponding expansion set $\left\{\varphi_{k}(x)\right\}$ there is a set of dual functions denoted as $\left\{\tilde{\varphi}_{k}(x)\right\}$ that can be used to compute the α_{k} as

$$
\alpha_{k}=\left\langle\tilde{\varphi}_{k}(x) \quad f(x)\right\rangle=\int \tilde{\varphi}_{k}^{*}(x) f(x) d x
$$

7.2 Multiresolution Expansions

- Case 1: The expansion functions form orthonormal basis for V that $\left\langle\varphi_{j}(x) \quad \varphi_{k}(x)\right\rangle=\delta_{j k}$
- The basis and its dual are equivalent $\varphi_{k}(x)=\tilde{\varphi}_{k}(x)$
- and then $\alpha_{k}=\left\langle\varphi_{k}(x) \quad f(x)\right\rangle$
- Case 2: If the expansion functions are not orthonormal, but orthogonal basis for V then

$$
\left\langle\varphi_{j}(x) \quad \varphi_{k}(x)\right\rangle=0 \quad \text { if } j \neq k
$$

- and the basis functions and their duals are called biorthogonal.
- The biorthogonal basis and their duals are

$$
\left\langle\varphi_{j}(x) \quad \tilde{\varphi}_{k}(x)\right\rangle=\delta_{j k}
$$

7.2 Multiresolution Expansions

- Case 3: If the expansion set is not a basis for V, but support the expansion, then it is a spanning set in which there is more than one set of α_{k} for any $f(x) \in V$
- The expansions and their duals are said to be overcomplete or redundant. They form a frame in which

$$
A\|f(x)\|^{2} \leq \sum_{k}\left|\left\langle\varphi_{k}(x) \quad f(x)\right\rangle\right|^{2} \leq B\|f(x)\|^{2}
$$

- A and B "frame" the normalized inner products of the expansion coefficients and the function.

7.2 Multiresolution Expansions

- If $\mathrm{A}=\mathrm{B}$ the expansion is called a tight frame, and it can shown that

$$
f(x)=\frac{1}{A} \sum_{k}\left\langle\varphi_{k}(x) \quad f(x)\right\rangle \varphi_{k}(x)
$$

7.2 Multiresolution Expansions

- Scaling Functions
- Consider a set of expansion functions composed of integer translations and binary scaling of the real square-integrable function $\varphi(x)$, that is the set $\left\{\varphi_{j, k}(x)\right\}$ where $\varphi_{j, k}(x)=2^{j 2} \varphi\left(2^{j} x-k\right)$
- For all $j, k \in I$ and $\varphi(x) \in L^{2}(R)$
- j determines the position of $\varphi_{j, k}(x)$, and k determines the width of $\varphi_{j, k}(x)$
- $\varphi_{j, k}(x)$ is called the scaling function

7.2 Multiresolution Expansions

- If we restrict j to a specific value $j=j_{0}$ then $\left\{\varphi_{j 0, k}(x)\right\}$ is a subset of $\left\{\varphi_{j, k}(x)\right\}$ and

$$
f(x)=\sum_{k} \alpha_{k} \varphi_{j, k}(x) \quad V_{j}=\overline{\operatorname{Span}\left\{\varphi_{j, k}(x)\right\}}
$$

- Figure 7.9

$$
f(x)=0.5 \varphi_{1,0}(x)+\varphi_{1,1}(x)-0.25 \varphi_{1,4}(x)
$$

- Expansion function can be decomposed as

$$
\varphi_{0, k}(x)=1 / 2^{0.5} \varphi_{1,2 k}(x)+1 / 2^{0.5} \varphi_{1,2 k}(x)
$$

7.2 Multiresolution Expansions

$$
\varphi_{1,0}(x)=\sqrt{2} \varphi(2 x)
$$

$f(x) \in V_{1}$

$\varphi_{1,1}(x)=\sqrt{2} \varphi(2 x-1)$

$\varphi_{0,0}(x) \in V_{1}$

FIGURE 7.9 Haar scaling functions in V_{0} in V_{1}.

7.2 Multiresolution Expansions

- Four requirements for MRA
- MRA requirement 1: The scaling function is orthogonal to its integer translates
- MRA requirement 2: The subspace spanned by the scaling function at low scales are nested within those spanned at higher scales.
- Subspaces containing high resolution function must also contain all lower resolution functions

$$
V_{-\infty} \subset \ldots \ldots \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \ldots . \subset V_{\infty}
$$

- If $f(x) \in V_{j}$ then $f(2 x) \in V_{j+1}$

7.2 Multiresolution Expansions

FIGURE 7.10 The nested function spaces spanned by a scaling function.

7.2 Multiresolution Expansions

- MRA requirement 3: The only function that is common to all V_{j} is $f(x)=0$
- MRA requirement 4: Any function can be represented with arbitrary precision.
- All measureable square-integrable functions can be represented in the limit as $j \rightarrow \infty$ as

$$
\mathrm{V}_{\infty}=\left\{\mathrm{L}^{2}(\mathrm{r})\right\}
$$

- The expansion function of subspace V_{j} can be expressed as a weighted sum of expansion functions in $\mathrm{V}_{\mathrm{j}+1}$ space as

$$
\varphi_{j, k}(x)=\Sigma_{n} \alpha_{n} \varphi_{j+1, n}(x)
$$

7.2 Multiresolution Expansions

- Change α_{n} to $h_{\varphi}(n)$

$$
\varphi_{j, k}(x)=\Sigma_{n} h_{\varphi}(n) 2^{(j+1) / 2} \varphi\left(2^{(j+1) / 2} x-n\right)
$$

- Set $j=k=0$ then $\varphi_{0,0}(x)=\varphi(x)$

$$
\varphi(x)=\Sigma_{n} h_{\varphi}(n) 2^{1 / 2} \varphi(2 x-n)
$$

- It is called the refinement equation, MRA equation, or the dilation equation.
- $h_{\varphi}(n)$ coefficients are called scaling function coefficients.
- h_{φ} is referred as scaling vector
- The scaling function for Harr function are $h_{\varphi}(0)=h_{\varphi}(1)$

$$
\begin{aligned}
=1 / 2^{1 / 2} \text { then } \varphi(x) & =1 / 2^{1 / 2}\left[2^{1 / 2} \varphi(2 x)+2^{1 / 2} \varphi(2 x-1)\right] \\
& =\varphi(2 x)+\varphi(2 x-1)
\end{aligned}
$$

7.2 Multiresolution Expansions

- Wavelet functions
- We define the set $\left\{\psi_{j, k}(x)\right\}$ as

$$
\psi_{j, k}(x)=2^{j / 2} \psi\left(2^{j} x-k\right)
$$

- The W_{j} space is

$$
W_{j}=\overline{\operatorname{Span}\left\{\psi_{j, k}(x)\right\}}
$$

- If $f(x) \in W_{j}$ then $f(x)=\Sigma_{k} \alpha_{k} \psi_{j, k}(x)$

7.2 Multiresolution Expansions

$$
V_{2}=V_{1} \oplus W_{1}=V_{0} \oplus W_{0} \oplus W_{1}
$$

FIGURE 7.11 The relationship between scaling and wavelet function spaces.

7.2 Multiresolution Expansions

- The scaling and wavelet subspaces in Figure 7.11 are related as $V_{j+1}=V_{j} \oplus W_{j}$ where \oplus denotes the unions of spaces.
- The orthogonal complement of V_{j} in V_{j+1} is W_{j} and all members of V_{j} are orthogonal to the member of W_{j}, Thus
- $\left\langle\varphi_{j, k}(x) \psi_{j, k}(x)>=0\right.$ for all appropriate $j, k, l \in Z$
- We can express the space of all measurable squareintegrable functions as
- $L^{2}(\boldsymbol{R})=V_{0} \oplus W_{0} \oplus W_{1} \oplus \ldots$ or $L^{2}(\boldsymbol{R})=V_{1} \oplus W_{1} \oplus W_{2} \oplus \ldots .$.
- Or $L^{2}(\boldsymbol{R})=\ldots \ldots . \oplus W_{-1} \oplus W_{0} \oplus W_{1} \oplus \ldots .$.

7.2 Multiresolution Expansions

- If $f(x)$ is an element of V_{1}, but not V_{0}, an expansion of $f(x)$ using V_{0} scaling function; wavelet from W_{0} would encode the difference between the approximation and the actual function. It can be generalized as

$$
L^{2}(\boldsymbol{R})=V_{j 0} \oplus W_{j 0} \oplus W_{j 0+1} \oplus \ldots
$$

where $j 0$ is an arbitrary starting scale

- Any wavelet function can be expressed as a weighted sum of shifted double-resolution scaling functions that is $\psi(x)=\Sigma_{n} h_{\psi}(n) 2^{1 / 2} \varphi(2 x-n)$
- Where $h_{\psi}(n)$ is wavelet function coefficients and h_{ψ} is the wavelet vector.

7.2 Multiresolution Expansions

- $h_{\psi}(n)$ is related to $h_{\varphi}(n)$ as

$$
h_{\psi}(n)=(-1)^{n} h_{\varphi}(1-n)
$$

- The Harr scaling factor illustrated as $h_{\varphi}(0)=h_{\varphi}(1)$

$$
=1 / 2^{1 / 2}
$$

$$
\begin{aligned}
& h_{\psi}(0)=(-1)^{0} h_{\varphi}(1-0)=1 / 2^{1 / 2} \\
& h_{\psi}(1)=(-1)^{1} h_{\varphi}(1-1)=-1 / 2^{1 / 2}
\end{aligned}
$$

- We get $\psi(x)=\varphi(2 x)-\varphi(2 x-1) \quad \begin{cases}1 & 0 \leq x<5\end{cases}$

The Harr wavelet function is $\psi(x)=\left\{\begin{array}{cc}-1 & 0.5 \leq x<1 \\ 0 & \text { elsewhere }\end{array}\right.$

Digital Image Processing, 2nd ed.

7.2

www.imageprocessingbook.com

FIGURE 7.12 Haar wavelet functions in W_{0} and W_{1}.

Multiresolution Expansions

7.2 Multiresolution Expansions

- A function in V_{1} that is not subspace in V_{0} can be expanded using V_{0} and W_{0} as

$$
f(x)=f_{a}(x)+f_{d}(x)
$$

where

$$
\begin{aligned}
& f_{a}(x)=\frac{3 \sqrt{2}}{4} \varphi_{0,0}(x)-\frac{\sqrt{2}}{8} \varphi_{0,2}(x) \\
& f_{d}(x)=\frac{-\sqrt{2}}{4} \psi_{0,0}(x)-\frac{\sqrt{2}}{8} \psi_{0,2}(x)
\end{aligned}
$$

$f_{a}(x)$ is an approximation of $f(x)$ using V_{0} scaling function, whereas $f_{d}(x)$ is the difference $f(x)-f_{a}(x)$ as a sum of W_{0} wavelets
7.3 Wavelets transform in one dimensionthe wavelet series expansion

- Expand $f(x)$ related to wavelet $\psi(x)$ and scaling function $\varphi(x)$ as

$$
f(x)=\sum_{k} c_{0}(k) \varphi_{0, k}(x)+\sum_{i=i j}^{\infty} \sum_{k} d_{j}(k) \psi_{j, k}(x)
$$

- Where $j 0$ is añ arbitrary startiting scale and $c_{j 0}(k)$'s and $d(k)$ are relabeled α. The $c_{j 0}(k)$'s are normally called the approximation or scaling coefficients and the $d_{j}(k)$'s are referred as the detail or wavelet coefficients

$$
\text { - } \begin{aligned}
& c_{0}(k)=\left\langle f(x) \quad \varphi_{0, k}(x)\right\rangle \\
& d_{j}(k)=\left\langle f(x) \quad \psi_{j, k}(x)\right\rangle=\int f(x) \varphi_{0, k}(x) d x \\
& j, k
\end{aligned}
$$

7.3 Wavelets transform in one dimension

FIGURE 7.13 A wavelet series expansion of $y=x^{2}$ using Haar wavelets.
7. 3 Wavelets transform in one dimension- the wavelet series expansion

- Wavelet series expansion

$$
\begin{gathered}
y=\frac{1}{3} \varphi_{00}(x)+\left[-\frac{1}{4} \psi_{00}(x)\right]+\left[-\frac{\sqrt{2}}{32} \psi_{10}(x)-\frac{3 \sqrt{2}}{32} \psi_{11}(x)\right]+\ldots . . \\
\mathrm{V}_{0} \quad \mathrm{~W}_{0}
\end{gathered}
$$

7.3 Wavelets transform in one dimension- the discrete wavelet transform

- For discrete case, the series expansion becomes

$$
\begin{gathered}
W_{\varphi}(j 0, k)=\frac{1}{\sqrt{M}} \sum_{x} f(x) \varphi_{j 0, k}(x) \\
\text { for } \mathrm{j} \geq \mathrm{j} 0 \quad W_{\psi}(j, k)=\frac{1}{\sqrt{M}} \sum_{x} f(x) \psi_{j, k}(x) \\
f(x)=\frac{1}{\sqrt{M}} \sum_{x} W_{\varphi}(j 0, k) \varphi_{j 0, k}(x)+\frac{1}{\sqrt{M}} \sum_{j=j 0}^{\infty} \sum_{x} W_{\psi}(j, k) \psi_{j 0, k}(x)
\end{gathered}
$$

- Here $f(x), \varphi_{j 0, k}(x), \psi_{i, k}(x)$ are functions of the discrete variable $x=0,1,2, \ldots M-1$
- For example $f(x)=f\left(x_{0}+x \Delta x\right)$ for some $x_{0}, \Delta x$, and $x=0,1,2, \ldots M-1$.
- Normally, we select $M=2^{J}, j=0,1,2, \ldots J-1, k=0,1, \ldots . .2^{j}-1$
7.3 Wavelets transform in one dimension- the discrete wavelet transform
- Example 7.8
- $f(0)=1, f(1)=4, f(2)=-3, f(3)=0, M=4, J=2$, and with $j 0=0$, the summation is performed over $x=0,1,2,3, j=0,1$, and $k=0$ for $j=0$ or $k=0,1$ for $j=1$.
- Using Harr scaling and wavelet functions (the rows of \mathbf{H}_{4})and assume that four samples of $f(x)$ are distributed over the support of basis functions.

$$
\begin{aligned}
& W_{\varphi}(0,0)=\frac{1}{2} \sum_{x} f(x) \varphi_{0,0}(x)=\frac{1}{2}[1 \times 1+4 \times 1-3 \times 1+0 \times 1]=1 \\
& W_{\psi}(0,0)=\frac{1}{2} \sum_{x} f(x) \psi_{0,0}(x)=\frac{1}{2}[1 \times 1+4 \times 1-3 \times(-1)+0 \times(-1)]=4
\end{aligned}
$$

7. 3 Wavelets transform in one dimension- the discrete wavelet transform

$$
\begin{aligned}
& W_{\psi}(1,0)=\frac{1}{2} \sum_{x} f(x) \psi_{1,0}(x)=-1.5 \sqrt{2} \\
& W_{\psi}(1,1)=\frac{1}{2} \sum_{x} f(x) \psi_{1,1}(x)=-1.5 \sqrt{2} \\
& f(x)=\frac{1}{2} W_{\varphi}(0,0) \varphi_{0,0}(x)+W_{\psi}(0,1) \psi_{0,1}(x) \\
& \quad+W_{\psi}(1,0) \psi_{1,0}(x)+W_{\psi}(1,1) \psi_{1,1}(x)
\end{aligned}
$$

7.3 Wavelets transform in one dimensionthe continuous wavelet transform

- CWT: transform a continuous function into a highly redundant function of two continuous variables - translation and scale
where

$$
\begin{gathered}
W_{\psi}(s, \tau)=\int_{-\infty}^{\infty} f(x) \psi_{s, \tau}(x) d x \\
\psi_{s, \tau}(x)=\frac{1}{\sqrt{s}} \psi\left(\frac{x-\tau}{s}\right)
\end{gathered}
$$

s and τ are called the scale and translation parameters.

7.3 Wavelets transform in one dimension- the continuous wavelet transform

- ICWT

$$
f(x)=\frac{1}{C_{\psi}} \int_{0}^{\infty} \int_{-\infty}^{\infty} W_{\psi}(s, \tau) \frac{\psi_{s, \tau}(x)}{s^{2}} d \tau d s
$$

where

$$
C_{\psi}=\int_{-\infty}^{\infty} \frac{|\Psi(u)|^{2}}{u} d u
$$

7.3 Wavelets transform in one dimension- the continuous wavelet transform

- The Mexican hat wavelet

$$
\psi(x)=\left(\left(2 / 3^{1 / 2}\right) \pi^{1 / 4}\right)\left(1-x^{2}\right) e^{-x^{2} / 2}
$$

Figure 7.14(a) $f(x)=\psi_{1,10}(x)+\psi_{6,80}(x)$
Figure 7.14(c) shows a portion ($1 \leq s \leq 10$ and $\tau \leq 100$) of the CWT of Figure 7.14(a)

- Continuous translation τ
- Continuous scaling s
- The set of transformation coefficients $\left\{W_{\psi}(s, \tau)\right\}$ and basis functions $\left\{\psi_{s, \tau}(x)\right\}$ are infinite.

7.3 Wavelets transform in one dimension

a b
 c d

FIGURE 7.14 The continuous wavelet transform (c and d) and Fourier spectrum (b) of a continuous onedimensional function (a).

7.4 Fast Wavelet Transform (FWT)

- FWT exploits a surprising but fortunate relationship between the coefficients of the DWT at adjacent scales (known as Herringbone algorithm)
- Consider the multi-resolution refinement equation: $\varphi(x)=\Sigma_{n} h_{\varphi}(n) 2^{1 / 2} \varphi(2 x-n)$
- Scaling x by 2, translating by k, and letting $m=2 k+n$ then

$$
\begin{aligned}
\varphi\left(2^{j} X-k\right) & =\Sigma_{n} h_{\varphi}(n) 2^{1 / 2} \varphi\left(2\left(2^{j} X-k\right)-n\right) \\
& =\Sigma_{n} h_{\varphi}(m-2 k) 2^{1 / 2} \varphi\left(2^{j+1} X-m\right)
\end{aligned}
$$

- h_{φ} can be thought of as the "weights" used to expand $\varphi\left(2^{j} x-k\right)$ as sum of the scale $j+1$ scaling function.

7.4 Fast Wavelet Transform (FWT)

Similarly, for $\psi\left(2^{j_{X}}-k\right)$ we have

$$
\psi\left(2^{j} x-k\right)=\Sigma_{n} h_{\psi}(m-2 k) 2^{1 / 2} \psi\left(2^{j+1} x-m\right)
$$

For DWT,

$$
W_{\psi}(j, k)=\frac{1}{\sqrt{M}} \sum_{x} f(x) 2^{j / 2} \psi\left(2^{j} x-k\right)
$$

Replacing $\psi\left(2^{j} x-k\right)$, we have

$$
\begin{gathered}
W_{\psi}(j, k)=\frac{1}{\sqrt{M}} \sum_{x} f(x) 2^{j / 2}\left[\sum_{m} h_{\psi}(m-2 k) \sqrt{2} \varphi\left(2^{j+1} x-m\right)\right] \\
\text { or } \\
W_{\psi}(j, k)=\sum_{m} h_{\psi}(m-2 k)\left[\frac{1}{\sqrt{M}} \sum_{x} f(x) 2^{(j+1) / 2} \sqrt{2} \varphi\left(2^{j+1} x-m\right)\right]
\end{gathered}
$$

7.4 Fast Wavelet Transform (FWT)

- where the bracketed quantity is identical to the DWT transform pair with $j 0=j+1$, so

$$
W_{\psi}(j, k)=\sum h_{\psi}(m-2 k) W_{\varphi}(j+1, m)
$$

- The DWT detail coefficients at scale j are a function of the DWT approximation coefficients at scale $j+1$.
- Similarly, we have

$$
W_{\varphi}(j, k)=\sum_{m} h_{\varphi}(m-2 k) W_{\psi}(j+1, m)
$$

7.4 Fast Wavelet Transform

FIGURE 7.15 An
FWT analysis bank.

It is identical to the analysis portion of the two-band subband system of
Figure 7.4 with $h_{0}(n)=h_{\varphi}(-n)$ and

$$
\begin{aligned}
& h_{1}(n)=h_{\psi}(-n) \\
& W_{\psi}(j, k)=\left.h_{\psi}(-n) \otimes W_{\psi}(j+1, n)\right|_{n=2 k, k \geq 0} \\
& W_{\varphi}(j, k)=\left.h_{\varphi}(-n) \otimes W_{\psi}(j+1, n)\right|_{n=2 k, k \geq 0}
\end{aligned}
$$

7.4 Fast Wavelet Transform

- Figure 7.16 shows a two-stage filterbank for generating the coefficients at two highest scales of the transform.
- The highest level is $W_{\varphi}(J, n)=f(n)$, where J is the highest scale.
- $W_{\varphi}(J-1, n)$ is the low-pass approximation component, and $W_{\psi}(J-1, n)$ is the high-pass detail component
- The second filter bank split the spectrum and the subspace V_{J-1}, the lower half-band, into quarter-band subspaces W_{J-2}, and V_{J-2}, with corresponding DWT coefficients: $W_{\varphi}(J-2, n)$ and $W_{\psi}(J-2, n)$.

7.4 Fast Wavelet Transform

a

FIGURE 7.16
(a) A two-stage or two-scale FWT analysis bank and (b) its frequency splitting characteristics.

ω

7.4 Fast Wavelet Transform

- Consider discrete function $f(n)=\{1,4,-3,0\}$
- The corresponding scaling and wavelet vectors

$$
h_{\varphi}(n)=\left\{\begin{array}{cc}
1 / \sqrt{2} & n=0,1 \\
0 & \text { otherwise }
\end{array} \quad h_{\psi}(n)=\left\{\begin{array}{cc}
1 / \sqrt{2} & n=0 \\
-1 / \sqrt{2} & n=1 \\
0 & \text { otherwise }
\end{array}\right.\right.
$$

- $\{1,4,-3,0\} *\left\{-(1 / 2)^{0.5},(1 / 2)^{0.5}\right\}=\left\{-(1 / 2)^{0.5},-3(1 / 2)^{0.5}\right.$, $\left.7(1 / 2)^{0.5},-3(1 / 2)^{0.5}, 0\right\}$
- $W_{\psi}(1, k)=\left\{-3(1 / 2)^{0.5},-3(1 / 2)^{0.5}\right\}$
- Or $W_{\psi}(1, k)=\left.h_{\psi}(-n) W_{\varphi}(2, n)\right|_{n=2 k, k \geq 0}$

$$
\begin{aligned}
& =\left.h_{\psi}(n) f(n)\right|_{n=2 k, k>0}=\left.\sum_{l} h_{\psi}(2 k-l) x(l)\right|_{k=0,1} \\
& =(1 / 2)^{0.5} x(2 k)-(1 / 2)^{0.5} x(2 k+1)
\end{aligned}
$$

7.4 Fast Wavelet Transform

FIGURE 7.17 Computing a two-scale fast wavelet transform of sequence $\{1,4,-3,0\}$ using Haar scaling and wavelet vectors.

Digital Image Processing, 2nd ed.

7.4 Fast Wavelet Transform- Inverse FWT

FIGURE 7.18 The FWT ${ }^{-1}$ synthesis filter bank.

$$
W_{\varphi}(j+1, k)=\left.h_{\varphi}(k) \otimes W_{\varphi}^{u p}(j, k)\right|_{k \geq 0}+\left.h_{\psi}(k) \otimes W_{\psi}^{u p}(j, k)\right|_{k \geq 0}
$$

7.4 Fast Wavelet Transform- Inverse FWT

FIGURE 7.19 A
two-stage or twoscale FWT ${ }^{-1}$ synthesis bank.

7.4 Fast Wavelet Transform- Inverse FWT

FIGURE 7.20 Computing a two-scale inverse fast wavelet transform of sequence $\{1,4,-1.5 \sqrt{2},-1.5 \sqrt{2}\}$ with Haar scaling and wavelet vectors.

7.4 Fast Wavelet Transform= Inverse FWT

Time

Time
a b c
FIGURE 7.21 Time-frequency tilings for (a) sampled data, (b) FFT, and (c) FWT basis functions.

7.5 Wavelet transform in Two Dimension

- 2-D scaling function:

$$
\varphi(x, y)=\varphi(x) \varphi(y)
$$

- 2-D wavelets:

$$
\begin{aligned}
& \psi^{H}(x, y)=\psi(x) \varphi(y) \\
& \psi^{V}(x, y)=\varphi(x) \psi(y) \\
& \psi^{D}(x, y)=\psi(x) \psi(y)
\end{aligned}
$$

- Translated and scaled basis functions:

$$
\begin{aligned}
& \varphi_{j, m, n}(x, y)=2^{j / 2} \varphi\left(2^{j} x-m, 2^{j} y-n\right) \\
& \psi_{j, m, n}^{i}(x, y)=2^{j / 2} \psi\left(2^{j} x-m, 2^{j j} y-n\right), \quad i=\{H, V, D\}
\end{aligned}
$$

7.5 Wavelet transform in Two Dimension

- The DWT of function $f(x, y)$ of size $\mathrm{M} \times \mathrm{N}$ is

$$
\begin{aligned}
& W_{\varphi}\left(j_{0}, m, n\right)=\frac{1}{\sqrt{M N}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \varphi_{j 0, m, n}(x, y) \\
& W_{\psi}\left(j_{0}, m, n\right)=\frac{1}{\sqrt{M N}} \sum_{x=0}^{M-1 N-1} \sum_{y=0}^{N-1} f(x, y) \psi_{j 0, n, n}^{i}(x, y) \\
& \quad \text { where } i=\{H, V, D\}
\end{aligned}
$$

Normally we let $j 0=0$ and $M=N=2^{J}, j=0,1,2, \ldots J-1$ Inverse DWT

$$
\begin{aligned}
f(x, y) & =\frac{1}{\sqrt{M N}} \sum_{m} \sum_{n} W_{\varphi}(j 0, m, n) \varphi_{j 0, m, n} \\
& +\frac{1}{\sqrt{M N}} \sum_{i=H, V, D} \sum_{m} \sum_{n} W_{\varphi}(j 0, m, n) \psi_{j 0, m, n}^{i}
\end{aligned}
$$

Digital Image Processing, 2nd ed.

7.5 Wavelet transform in Two Dimension

Figure 7.22 the 2-D fast wavelet transform (a) the analysis filter bank;
 (b) the results of decomposition; (c) the synthesis filter bank

7.5 Wavelet transform in Two Dimension

a b
c d
FIGURE 7.23 A three-scale FWT.

Digital Image Processing, 2nd ed.

FIGURE 7.24
Fourth-order symlets: (a)-(b) decomposition filters; (c)-(d) reconstruction filters; (e) the onedimensional wavelet; (f) the one-dimensional scaling function; and (g) one of three twodimensional wavelets, $\psi^{H}(x, y)$.

7.5 Wavelet

 transform in Two Dimensionwww.imageprocessingbook.com

7.5 Wavelet Transform in Two Dimension

Fig. 7.24 (Con't)

a	b
c	d

FIGURE 7.25
Modifying a DWT for edge detection: (a) and (c) two-scale decompositions with selected coefficients deleted; (b) and (d) the corresponding reconstructions.

DWT for edge detection

(a) Emphasize the reconstructed image edge
(b) Isolate the vertical edge

7.5 Wavelet Transform in Two Dimension

- The general wavelet-based for de-noising the image.
- Step 1: choose a wavelet and number of levels or scales, p, for decomposition, then compute FWT.
- Step 2: Thresholding the detail coefficients. Select and apply a threshold to the detail coefficients from scales J-1 to J-P. (a) Hard thresholding; (b) Soft thresholding, first hard-thresholding and then followed by scaling the nonzero coefficients toward zero to eliminate the discontinuity at the threshold.
- Step 3: Perform a wavelet reconstruction based on the original approximation coefficients at level J-P and the modified detail coefficients for level from J-1 to J-P.

Digital Image Processing, 2nd ed.

7.5 Wavelet Transform in Two Dimension

Digital Image Processing, 2nd ed.

7.6 Wavelet packet

- DWT: the low frequencies are group into narrow bands, while the high frequencies are grouped into wider bands - constant-Q filters.
- Wavelet packet - a Generalized DWT, in which the details are teratively filtered and separated.
- Increased computation complexity raised from $O(M)$ to $O(M \log M)$

Digital Image Processing, 2nd ed.

7.6 Wavelet packet

a b
FIGURE 7.27 A coefficient (a) and analysis (b) tree for the two-scale FWT analysis bank of Fig. 7.16.

7.6 Wavelet packet

FIGURE 7.28 A three-scale FWT filter bank:
(a) block diagram;
(b) decomposition space tree; and
(c) spectrum
splitting characteristics.

7.6 Wavelet packet

- Double subscripts are introduced for Wavelet packet
- The first identifies the scale of the FWT parent node, and the second is a variable length string of A's and D's.

A indicates the approximation filter.
D indicates the detail filter.

- This creates a fixed logarithmic relationship between the frequency bands.
- In general, P scale, 1-D wavelet packet transform support $D(P+1)=[D(P)]^{2}+1$ unique decompositions, where $D(1)=1$.

7.6 Wavelet packet

FIGURE 7.29 A three-scale wavelet packet analysis tree.

7.6 Wavelet packet

FIGURE 7.30 The
(a) filter bank and
(b) spectrum splitting characteristics of a three-scale full wavelet packet analysis tree.

7.6 Wavelet packet

$$
\mathrm{V}_{\mathrm{J}}=\mathrm{V}_{\mathrm{J}-1} \oplus \mathrm{~W}_{\mathrm{J}-1, \mathrm{D}} \oplus \mathrm{~W}_{\mathrm{J}-1, \mathrm{AA}} \oplus \mathrm{~W}_{\mathrm{J}-1, \mathrm{AD}}
$$

FIGURE 7.31 The spectrum of the decomposition in Eq. (7.6-5).

7.6 Wavelet packet

- The spectrum resulting from th first iteration $(\mathrm{j}+1=\mathrm{J})$ is shown in Figure 7.32
- It divides the frequency plane into four equal areas.
- Figure 7.33, a three-scale full wavelet packet decomposition.
- In general, A P-scale, 2-D wavelet packet transform support $D(P+1)=[D(P)]^{4}+1$ unique decompositions, where $D(1)=1$
- Three-scale tree offer 83522 possible decompositions

7.6 Wavelet packet

a b

FIGURE 7.32 The first decomposition of a two-dimensional FWT: (a) the spectrum and (b) the subspace analysis tree.

Digital Image Processing, 2nd ed.

7.6 Wavelet packet

FIGURE 7.33 A three-scale, full wavelet packet decomposition tree. Only a portion of the tree is provided.
igital
Image Processing

Digital Image Processing, 2nd ed.

7.6 Wavelet packet

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4 \& \& 120

3 \& \& \& \& 䍚 \&

\hline Wer \& 领 \& \& \& \& \& \&

\hline \& \& \& 4 \& \& \& \&

\hline 2exare \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& $$
8
$$

\hline \& \& \& \& \& \& \&

\hline \& $$
3
$$ \& \& \& \[

5
\] \& \& \&

\hline
\end{tabular}

a b

FIGURE 7.34 (a) A scanned fingerprint and (b) its three-scale, full wavelet packet decomposition. (Original image courtesy of the National Institute of Standards and Technology.)

7.6 Wavelet packet

- To select a optimal decompositions for the compression of the image is considering the cost function $E(f)=\Sigma \Sigma|f(x, y)|$, which measures the entropy or information content of 2-D function f .
- Minimal entropy leaf nodes should be favored because they have more near-zero values that lead to greater compression.
- The cost function $\mathrm{E}(\mathrm{f})$ can be used as a local measurement for the node under consideration.

Digital Image Processing, 2nd ed.

7.6 Wavelet packet

- For each node of the analysis tree 1) compute both the entropy of the node E_{P} (parent entropy) and the entropy of the four offsprings, $E_{A}, E_{H}, E_{V}, E_{D}$.

2) Compare E_{p} with $E_{A}+E_{H}+E_{V}+E_{D}$, If the combined entropy is greater than the entrop of the parent than prune the offspring, keep only the parent.

Digital Image Processing, 2nd ed.

7.6 Wavelet packet

FIGURE 7.35 An optimal wavelet packet decomposition for the fingerprint of Fig. 7.34(a).

7.6 Wavelet packet

FIGURE 7.36 The optimal wavelet packet analysis tree for the decomposition in Fig. 7.35.

Digital Image Processing, 2nd ed.

a b

a	b
c	d

e f
g h
FIGURE 7.37 A
member of the
Cohen-
Daubechies-
Feauveau
biorthogonal
wavelet family:
(a) and
(b) decomposition
filter coefficients;
(c) and
(d) reconstruction filter coefficients; (e)-(h) dual wavelet and scaling functions.

7.6 Wavelet packet

