

Chapter 7 Wavelets and Multiresolution Processing

- Wavelet transform vs Fourier transform
- Basis functions are small waves called *wavelet* with *different frequency* and *limited duration*
- Multiresolution theory: representation and analysis of signals/images at more than one resolutions.
 - Subband coding
 - Quadrature mirror filtering
 - Pyramid image processing

7.1 Background

- Small objects or low contrast images are examined at high resolutions; whereas large object and high contrast images are examined in low resolution.
- Images are 2-D array of intensity with locally varying statistics

FIGURE 7.1 A natural image and its local histogram variations. Digital Image Processing, 2nd ed.

www.imageprocessingbook.com

7.1 Background

7.1 Background

- Image Pyramids
- Base level J with size $2^J \times 2^J$ or $N \times N$ where $J = log_2 N$
- Intermediate level j with size $2^j \times 2^j$ with $0 \le j \le J$
- Most pyramids are truncated to *P*+1 levels where *j*=*J*-*P*,...*J*-1,*J*
- The total number of pixel elements in a P+1level pyramid is $N^2(1+\frac{1}{4^1}+\frac{1}{4^1}+\dots+\frac{1}{4^P}) \le \frac{4}{3}N^2$

www.imageprocessingbook.com

7.1 Background

© 2002 R. C. Gonzalez & R. E. Woods

Digital Image Processing, 2nd ed.

www.imageprocessingbook.com

7.1 Background

© 2002 R. C. Gonzalez & R. E. Woods

7.1 Background-Subband Coding

- In subband coding: an image is decomposed into a set of bandlimited components, called subbands.
- The subbands can be downsampled without loss of information.
- Reconstrunction of the original image is accomplished by upsampling, filtering, and summing the individual subbands

www.imageprocessingbook.com

7.1 Background-Subband Coding

FIGURE 7.4 (a) A two-band filter bank for onedimensional subband coding and decoding, and (b) its spectrum splitting properties.

7.1 Background-Subband Coding

- The input is 1-D band-limited discrete time signals x(n), n=0,1,2,...
- The output $\hat{x}(n)$ is formed through the decomposition of x(n) into $y_0(n)$ and $y_1(n)$ via analysis filter $h_0(n)$ and $h_1(n)$, and subsequent recombination via synthesis filters $g_0(n)$ and $g_1(n)$.
- The Z-transform of x(n) is $X(z) = \sum_{-\infty}^{\infty} x(n) z^{-n}$
- $x_{down}(n) = x(2n) \quad X_{down}(z) = 1/2[X(z^{1/2}) + X(-z^{1/2})]$
- $x_{up}(n) = x(n/2)$ for $n = 0, 2, 4, ..., X_{up}(z) = X(z^2)$

7.1 Background-Subband Coding

- $\hat{x}(n)$ is obtained from the downsampled and upsampled x(n), therefore $\hat{X}(z) = \frac{1}{2} [X(z) + X(-z)]$
- X(-z) is the modulated version of x(n)

•
$$Z^{-1}[X(-z)] = (-1)^n x(n)$$

• The system output is

$$\hat{X}(z) = \frac{1}{2} G_0(z) \Big[H_0(z) X(z) + H_0(-z) X(-z) \Big]$$

$$+\frac{1}{2}G_{1}(z)\left[H_{1}(z)X(z)+H_{1}(-z)X(-z)\right]$$

7.1 Background-Subband Coding

Rearrange
$$\hat{X}(z) = \frac{1}{2} \Big[H_0(z) G_0(z) + H_1(z) G_1(z) \Big] X(z)$$

$$+\frac{1}{2} \Big[H_0(-z)G_0(z) + H_1(-z)G_1(z) \Big] X(-z)$$

- The second component contain the –z dependence, represents the aliasing that is introduced by downsampling-upsampling process.
- For error-free reconstruction of the input, $x(n) = \hat{x}(n)$
- The second component is zero.

 $H_0(-z)G_0(z) + H_1(-z)G_1(z) = 0$ $H_0(z)G_0(z) + H_1(z)G_1(z) = 2$

7.1 Background-Subband Coding

- Reduce to matrix expression
- Where $\begin{aligned} & \begin{bmatrix} G_0(z) & G_1(z) \end{bmatrix} \mathbf{H}_m(z) = \begin{bmatrix} 2 & 0 \end{bmatrix} \\ & \mathbf{H}_m(z) = \begin{bmatrix} H_0(z) & H_0(-z) \\ H_1(z) & H_1(-z) \end{bmatrix} \end{aligned}$
- Assume that $H_m(z)$ is nonsingular then

$$\begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \frac{2}{\det(\mathbf{H}_m(z))} \begin{bmatrix} H_1(-z) \\ -H_0(-z) \end{bmatrix}$$
(7-12)

• The analysis and synthesis filtered are crossmodulated.

7.1 Background-Subband Coding

- For FIR filters, the determinate of the modulation matrix is a pure delay, i.e., $det(H_m(z)) = \alpha z^{-(2k+1)}$
- Ignoring the delay and let $\alpha=2$, by taking inverse Z transform we have

 $g_0(n) = (-1)^n h_1(n)$ and $g_1(n) = (-1)^{n+1} h_0(n)$

• If $\alpha = -2$ then

 $g_0(n) = (-1)^{n+1} h_1(n)$ and $g_1(n) = (-1)^n h_0(n)$:

7.1 Background-Subband Coding

• The biorthogonality of the analysis and synthesis filters, let P(z) be the product of he lowpass analysis and synthesis filter from (7.12)

$$\begin{split} P(z) = G_0(z)H_0(z) = 2H_0(z)H_1(-z)/det(\mathbf{H}_m(z)) \\ also \ det(\mathbf{H}_m(z)) = -det(\mathbf{H}_m(-z)) \\ and \ G_1(z)H_1(z) = -2H_0(-z)H_1(z)/det(\mathbf{H}_m(z)) = P(-z) \end{split}$$

- *Thus* $G_1(z)H_1(z) = P(-z) = G_0(-z)H_0(-z)$
- and $G_0(-z)H_0(-z)+G_0(-z)H_0(-z)=2$

7.1 Background-Subband Coding

• Inverse z-transform

$$\sum g_0(k)h_0(n-k) + (-1)^n \sum g_0(k)h_0(n-k) = 2\delta(n)$$

- Odd index terms cancel, *k* it is simplified as $\sum g_0(k)h_0(2n-k) = \langle g_0(k), h_0(2n-k) \rangle = \delta(n)$
- Express G_0 and H_0 as function of G_1 and H_1 $\langle g_1(k), h_1(2n-k) \rangle = \delta(n), \langle g_0(k), h_1(2n-k) \rangle = 0$ $\langle g_1(k), h_0(2n-k) \rangle = 0$

7.1 Background-Subband Coding

• More general expression:

$$\langle g_{j}(k), h_{i}(2n-k) \rangle = \delta(i-j)\delta(n) \quad i, j = \{0, 1\} \quad (7.21)$$

- Filter banks satisfying this condition are *bi*-*orthogonal*
- Quadrature mirror filter(QMF) (Table 7.1)
- Conjugate quadrature filter (CQF) (Table 7.1)
- Orthonormal filter (Table 7.1) for *fast wavelet transform*, it requires that (7.22)

$$\langle g_i(n), g_i(n+2m) \rangle = \delta(i-j)\delta(m) \quad i, j = \{0, 1\}$$

www.imageprocessingbook.com

7.1 Background-Subband Coding

Filter	QMF	CQF	Orthonormal
$H_0(z)$	$H_0^2(z) - H_0^2(-z) = 2$	$egin{aligned} &H_0(z)H_0\!\!\left(z^{-1} ight)+\ &H_0^2(-z)H_0\!\!\left(-z^{-1} ight)=2 \end{aligned}$	$G_0(z^{-1})$
$H_1(z)$	$H_0(-z)$	$z^{-1}H_0(-z^{-1})$	$G_1(z^{-1})$
$G_0(z)$	$H_0(z)$	$H_0(z^{-1})$	$egin{array}{lll} G_0(z)G_0\!\!\left(z^{-1} ight)+\ G_0(-z)G_0\!\!\left(-z^{-1} ight)=2 \end{array}$
$G_1(z)$	$-H_0(-z)$	$zH_0(-z)$	$-z^{-2K+1}G_0(-z^{-1})$

TABLE 7.1 Perfect reconstruction filter families.

www.imageprocessingbook.com

7.1 Background-Subband Coding

FIGURE 7.5 A two-dimensional, four-band filter bank for subband image coding.

7.1 Background-Subband Coding

© 2002 R. C. Gonzalez & R. E. Woods

7.1 Background-Subband Coding

FIGURE 7.7 A

four-band split of the vase in Fig. 7.1 using the subband coding system of Fig. 7.5.

© 2002 R. C. Gonzalez & R. E. Woods

7.1 Background-Harr Transform

- The oldest and simplest known orthonormal wavelets
- The Harr transform is both separable and symmetric as **T=HFH**

where **F** is $N \times N$ image matrix and **H** is $N \times N$ transform matrix and **T** is the resulting $N \times N$ transform.

For Harr transform, the transformation matrix H contains the Harr basis function h_k(z) defined over the continuous closed interval [0,1] for k=0,1,....N-1 where N=2ⁿ.

7.1 Background-Harr Transform

- To generate **H**, we define $k=2^{p}+q-1$ where $0 \le p \le n-1$, q=0 or 1 for p=0, and $1 \le q \le 2^{p}$ for $p \ne 0$
- The Harr basis functions are

$$h_{0}(z) = h_{00}(z) = 1/N^{1/2}, \quad z \in [0,1]$$

and
$$h_{k}(z) = h_{pq}(z) = \frac{1}{\sqrt{N}} \begin{cases} 2^{p/2} & (q-1)/2^{p} \le z < (q-0.5)/2^{p} \\ -2^{p/2} & (q-0.5)/2^{p} \le z < q/2^{p} \\ 0 & otherwise, z \in [0,1] \end{cases}$$

7.1 Background-Harr Transform

- The *i*th row of an *N×N* Harr transformation matrix contains the elements of $h_i(z)$, z=0/N, 1/N,....(*N*-1)/*N*
- If N=4, k, q, and p are assumed as the following values:

k	p	q
0	0	0
1	0	1
2	1	1
3	1	2

7.1 Background-Harr Transform

The 4×4 transformation matrix is

$$H_4 = \frac{1}{\sqrt{4}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & -1 \\ \sqrt{2} & -\sqrt{2} & 0 & 0 \\ 0 & 0 & \sqrt{2} & -\sqrt{2} \end{bmatrix}$$

• The 2×2 transformation matrix is

$$H_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

• The basis functions satisfy the QMF prototype filter in Table 7.1, the $h_0(n)$ and $h_1(n)$ are the elements of the first and the second rows of \mathbf{H}_2 .

7.2 Multiresolution Expansions

- *Multi-resolution analysis* (MRA)
- A *scaling function* is used to create a series of approximations of a function or image, each different by a factor of 2 from its neighboring approximation
- Additional functions, called *wavelet*, are used to encode the difference between two adjacent approximation.

7.2 Multiresolution Expansions

- Series expansion
- A signal *f*(*x*) can be represented as a linear combination of expansion functions as

$$f(x) = \sum_{k} \alpha_{k} \varphi_{k}(x)$$

 The expressible functions form a function space that is the closed span of the expansion set denoted as

$$V = \overline{Span\{\varphi_k(x)\}}$$

• $f(x) \in V$ means that f(x) is in the closed span of $\{\varphi_k(x)\}$

7.2 Multiresolution Expansions

For any function space V and the corresponding expansion set {φ_k(x)} there is a set of dual functions denoted as {φ̃_k(x)} that can be used to compute the α_k as

$$\alpha_k = \left\langle \widetilde{\varphi}_k(x) \quad f(x) \right\rangle = \int \widetilde{\varphi}_k^*(x) f(x) dx$$

7.2 Multiresolution Expansions

- *Case 1*: The expansion functions form orthonormal basis for V that $\langle \varphi_j(x) \ \varphi_k(x) \rangle = \delta_{jk}$
- The basis and its dual are equivalent $\varphi_k(x) = \tilde{\varphi}_k(x)$
- and then $\alpha_k = \langle \varphi_k(x) \ f(x) \rangle$
- *Case 2*: If the expansion functions are not orthonormal, but orthogonal basis for V then

$$\langle \varphi_j(x) \ \varphi_k(x) \rangle = 0 \quad if \ j \neq k$$

- and the basis functions and their duals are called biorthogonal.
- The biorthogonal basis and their duals are

$$\left\langle \varphi_{j}(x) \quad \widetilde{\varphi}_{k}(x) \right\rangle = \delta_{jk}$$

© 2002 R. C. Gonzalez & R. E. Woods

7.2 Multiresolution Expansions

- *Case 3*: If the expansion set is not a basis for V, but support the expansion, then it is a spanning set in which there is more than one set of α_k for any $f(x) \in V$
- The expansions and their duals are said to be overcomplete or redundant. They form a frame in which $A \|f(x)\|^2 \le \sum_k \left| \left\langle \varphi_k(x) \quad f(x) \right\rangle \right|^2 \le B \|f(x)\|^2$
- A and B "frame" the normalized inner products of the expansion coefficients and the function.

7.2 Multiresolution Expansions

• If A=B the expansion is called a *tight frame*, and it can shown that

$$f(x) = \frac{1}{A} \sum_{k} \langle \varphi_{k}(x) \quad f(x) \rangle \varphi_{k}(x)$$

7.2 Multiresolution Expansions

• Scaling Functions

- Consider a set of expansion functions composed of integer translations and binary scaling of the real square-integrable function $\varphi(x)$, that is the set $\{\varphi_{j,k}(x)\}$ where $\varphi_{j,k}(x) = 2^{j/2} \varphi(2^j x \cdot k)$
- For all $j, k \in I$ and $\varphi(x) \in L^2(R)$
- *j* determines the position of $\varphi_{j,k}(x)$, and *k* determines the width of $\varphi_{j,k}(x)$
- $\varphi_{j,k}(x)$ is called the scaling function

7.2 Multiresolution Expansions

- If we restrict *j* to a specific value $j=j_0$ then { $\varphi_{j0,k}(x)$ } is a subset of { $\varphi_{j,k}(x)$ } and $f(x) = \sum_k \alpha_k \varphi_{j,k}(x)$ $V_j = \overline{Span} \{\varphi_{j,k}(x)\}$
- *Figure* 7.9

 $f(x) = 0.5\varphi_{1,0}(x) + \varphi_{1,1}(x) - 0.25\varphi_{1,4}(x)$

• Expansion function can be decomposed as $\varphi_{0,k}(x) = 1/2^{0.5} \varphi_{1,2k}(x) + 1/2^{0.5} \varphi_{1,2k}(x)$

7.2 Multiresolution Expansions

© 2002 R. C. Gonzalez & R. E. Woods

7.2 Multiresolution Expansions

Four requirements for MRA

- MRA requirement 1: *The scaling function is orthogonal to its integer translates*
- MRA requirement 2: *The subspace spanned by the scaling function at low scales are nested within those spanned at higher scales.*
- Subspaces containing high resolution function must also contain all lower resolution functions

$$V_{-\infty} \subset \dots \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \dots \subset V_{\infty}$$

• If
$$f(x) \in V_j$$
 then $f(2x) \in V_{j+1}$

www.imageprocessingbook.com

7.2 Multiresolution Expansions

FIGURE 7.10 The nested function spaces spanned by a scaling function.

7.2 Multiresolution Expansions

- MRA requirement 3: The only function that is common to all V_j is f(x)=0
- MRA requirement 4: Any function can be represented with arbitrary precision.
- All measureable square-integrable functions can be represented in the limit as $j \rightarrow \infty$ as

$$V_{\infty} = \{L^2(r)\}$$

- The expansion function of subspace V_j can be expressed as a weighted sum of expansion functions in V_{j+1} space as

$$\varphi_{j,k}(x) = \Sigma_n \alpha_n \varphi_{j+1,n}(x)$$

7.2 Multiresolution Expansions

• Change α_n to $h_{\varphi}(n)$ $\varphi_{j,k}(x) = \sum_n h_{\varphi}(n) 2^{(j+1)/2} \varphi(2^{(j+1)/2} x - n)$ • Set j = k = 0 then $\varphi_{0,0}(x) = \varphi(x)$ $\varphi(x) = \sum_n h_{\varphi}(n) 2^{1/2} \varphi(2x - n)$

- It is called *the refinement equation, MRA equation, or the dilation equation.*
- $h_{\varphi}(n)$ coefficients are called scaling function coefficients.
- h_{φ} is referred as scaling vector
- The scaling function for Harr function are $h_{\varphi}(0) = h_{\varphi}(1)$ = $1/2^{1/2}$ then $\varphi(x) = 1/2^{1/2} [2^{1/2} \varphi(2x) + 2^{1/2} \varphi(2x-1)]$ = $\varphi(2x) + \varphi(2x-1)$

7.2 Multiresolution Expansions

- Wavelet functions
- We define the set $\{\psi_{j,k}(x)\}$ as $\psi_{j,k}(x)=2^{j/2}\psi(2^j x-k)$
- The W_j space is $W_j = \overline{Span\{\psi_{j,k}(x)\}}$
- If $f(x) \in W_j$ then $f(x) = \Sigma_k \alpha_k \psi_{j,k}(x)$

www.imageprocessingbook.com

7.2 Multiresolution Expansions

FIGURE 7.11 The relationship between scaling and wavelet function spaces.

7.2 Multiresolution Expansions

- The scaling and wavelet subspaces in Figure 7.11 are related as V_{j+1}=V_j ⊕W_j where ⊕ denotes the unions of spaces.
- The orthogonal complement of V_j in V_{j+1} is W_j and all members of V_j are orthogonal to the member of W_j , Thus
- $\langle \varphi_{j,k}(x) | \psi_{j,k}(x) \rangle = 0$ for all appropriate $j, k, l \in \mathbb{Z}$
- We can express the space of all measurable squareintegrable functions as
- $L^2(\mathbf{R}) = V_0 \oplus W_0 \oplus W_1 \oplus \dots \text{ or } L^2(\mathbf{R}) = V_1 \oplus W_1 \oplus W_2 \oplus \dots$
- Or $L^2(\mathbf{R}) = \dots \oplus W_{-1} \oplus W_0 \oplus W_1 \oplus \dots$

7.2 Multiresolution Expansions

• If *f*(*x*) is an element of *V*₁, but not *V*₀, an expansion of *f*(*x*) using *V*₀ scaling function; wavelet from *W*₀ would encode the difference between the approximation and the actual function. It can be generalized as

 $L^{2}(\mathbf{R}) = V_{j0} \oplus W_{j0} \oplus W_{j0+1} \oplus \dots$ where j0 is an arbitrary starting scale

- Any wavelet function can be expressed as a weighted sum of shifted double-resolution scaling functions that is $\psi(x) = \sum_n h_{\psi}(n) 2^{1/2} \varphi(2x-n)$
- Where $h_{\psi}(n)$ is wavelet function coefficients and h_{ψ} is the wavelet vector.

7.2 Multiresolution Expansions

$$h_{\psi}(0) = (-1)^{0} h_{\varphi}(1-0) = 1/2^{1/2}$$

$$h_{\psi}(1) = (-1)^{1} h_{\varphi}(1-1) = -1/2^{1/2}$$

• We get
$$\psi(x) = \varphi(2x) - \varphi(2x-1)$$

The Harr wavelet function is $\psi(x) = \begin{cases} 1 & 0 \le x < 5 \\ -1 & 0.5 \le x < 1 \\ 0 & elsewhere \end{cases}$

7.2 Multiresolution Expansions

• A function in V_1 that is not subspace in V_0 can be expanded using V_0 and W_0 as $f(x)=f_a(x)+f_d(x)$

 $f_a(x)$ is an approximation of f(x) using V_0 scaling function, whereas $f_d(x)$ is the difference f(x)- $f_a(x)$ as a sum of W_0 wavelets

- 7.3 Wavelets transform in one dimensionthe wavelet series expansion
- Expand f(x) related to wavelet $\psi(x)$ and scaling function $\varphi(x)$ as

$$f(x) = \sum_{k} c_0(k) \varphi_{0,k}(x) + \sum_{i=i0} \sum_{k} d_i(k) \psi_{i,k}(x)$$

• Where j0 is an arbitrary starting scale and $c_{j0}(k)$'s and d(k) are relabeled α . The $c_{j0}(k)$'s are normally called the approximation or scaling coefficients and the $d_j(k)$'s are referred as the detail or wavelet coefficients

•
$$c_0(k) = \langle f(x) \ \varphi_{0,k}(x) \rangle = \int f(x) \varphi_{0,k}(x) dx$$

 $d_j(k) = \langle f(x) \ \psi_{j,k}(x) \rangle = \int f(x) \psi_{j,k}(x) dx$

7.3 Wavelets

dimension

a b

c d

e

Digital Image Processing, 2nd ed.

www.imageprocessingbook.com

FIGURE 7.13 A wavelet series expansion of $y = x^2$ using Haar wavelets.

• Wavelet series expansion

$$y = \frac{1}{3}\varphi_{00}(x) + \left[-\frac{1}{4}\psi_{00}(x)\right] + \left[-\frac{\sqrt{2}}{32}\psi_{10}(x) - \frac{3\sqrt{2}}{32}\psi_{11}(x)\right] + \dots$$

$$V_0 \qquad W_0 \qquad \qquad W_1$$

7.3 Wavelets transform in one dimension- the discrete wavelet transform

• For discrete case, the series expansion becomes

$$W_{\varphi}(j0,k) = \frac{1}{\sqrt{M}} \sum_{x} f(x)\varphi_{j0,k}(x)$$

for $j \ge j0$
$$W_{\psi}(j,k) = \frac{1}{\sqrt{M}} \sum_{x} f(x)\psi_{j,k}(x)$$

$$f(x) = \frac{1}{\sqrt{M}} \sum_{x} W_{\varphi}(j0,k) \varphi_{j0,k}(x) + \frac{1}{\sqrt{M}} \sum_{j=j0}^{\infty} \sum_{x} W_{\psi}(j,k) \psi_{j0,k}(x)$$

- Here f(x), $\varphi_{j0,k}(x)$, $\psi_{j,k}(x)$ are functions of the discrete variable x=0,1,2,...M-1
- For example $f(x)=f(x_0+x\Delta x)$ for some x_0 , Δx , and x=0,1,2,...M-1.
- Normally, we select $M=2^J$, j=0,1,2,...J-1, $k=0,1,...,2^j-1$

.3 Wavelets transform in one dimension- the discrete wavelet transform

• Example 7.8

- *f*(0)=1, *f*(1)=4, *f*(2)=-3, *f*(3)=0, *M*=4, *J*=2, and with *j*0=0, the summation is performed over *x*=0, 1, 2, 3, *j*=0, 1, and *k*=0 for *j*=0 or *k*=0, 1 for *j*=1.
- Using Harr scaling and wavelet functions (the rows of H₄) and assume that four samples of *f(x)* are distributed over the support of basis functions.

$$W_{\varphi}(0,0) = \frac{1}{2} \sum_{x} f(x) \varphi_{0,0}(x) = \frac{1}{2} [1 \times 1 + 4 \times 1 - 3 \times 1 + 0 \times 1] = 1$$

$$W_{\psi}(0,0) = \frac{1}{2} \sum_{x} f(x) \psi_{0,0}(x) = \frac{1}{2} [1 \times 1 + 4 \times 1 - 3 \times (-1) + 0 \times (-1)] = 4$$

.3 Wavelets transform in one dimension- the discrete wavelet transform

$$W_{\psi}(1,0) = \frac{1}{2} \sum_{x} f(x) \psi_{1,0}(x) = -1.5\sqrt{2}$$
$$W_{\psi}(1,1) = \frac{1}{2} \sum_{x} f(x) \psi_{1,1}(x) = -1.5\sqrt{2}$$
$$f(x) = \frac{1}{2} W_{\varphi}(0,0) \varphi_{0,0}(x) + W_{\psi}(0,1) \psi_{0,1}(x)$$

 $+W_{\psi}(1,0)\psi_{1,0}(x)+W_{\psi}(1,1)\psi_{1,1}(x)$

mage

rocessin

7.3 Wavelets transform in one dimensionthe continuous wavelet transform

• CWT: transform a continuous function into a highly redundant function of two continuous variables - translation and scale

where
$$W_{\psi}(s,\tau) = \int_{-\infty}^{\infty} f(x)\psi_{s,\tau}(x)dx$$

 $\psi_{s,\tau}(x) = \frac{1}{\sqrt{s}}\psi(\frac{x-\tau}{s})$

s and τ are called the scale and translation parameters.

• ICWT

$$f(x) = \frac{1}{C_{\psi}} \int_0^\infty \int_{-\infty}^\infty W_{\psi}(s,\tau) \frac{\psi_{s,\tau}(x)}{s^2} d\tau ds$$

where
$$C_{\psi} = \int_{-\infty}^{\infty} \frac{|\Psi(u)|^2}{u} du$$

7.3 Wavelets transform in one dimension- the continuous wavelet transform

• The Mexican hat wavelet

 $\psi(x) = ((2/3^{1/2})\pi^{1/4})(1-x^2)e^{-x^2/2}$

Figure 7.14(a) $f(x) = \psi_{1,10}(x) + \psi_{6,80}(x)$

- Figure 7.14(c) shows a portion ($1 \le \le 10$ and $\tau \le 100$) of the CWT of Figure 7.14(a)
- Continuous translation τ
- Continuous scaling s
- The set of transformation coefficients $\{W_{\psi}(s, \tau)\}$ and basis functions $\{\psi_{s, \tau}(x)\}$ are infinite.

7.3 Wavelets transform in one dimension

7.4 Fast Wavelet Transform (FWT)

- *FWT* exploits a surprising but fortunate relationship between the coefficients of the *DWT* at adjacent scales (*known as Herringbone algorithm*)
- Consider the multi-resolution refinement equation: $\varphi(x) = \sum_{n} h_{\varphi}(n) 2^{1/2} \varphi(2x-n)$
- Scaling x by 2, translating by k, and letting m=2k+n then

$$\varphi(2^{j}x-k) = \sum_{n} h_{\varphi}(n) 2^{1/2} \varphi(2(2^{j}x-k)-n)$$

= $\sum_{n} h_{\varphi}(m-2k) 2^{1/2} \varphi(2^{j+1}x-m)$

• h_{φ} can be thought of as the "weights" used to expand $\varphi(2^{j}x-k)$ as sum of the scale j+1 scaling function.

7.4 Fast Wavelet Transform (FWT)

Similarly, for
$$\psi(2^{j}x-k)$$
 we have
 $\psi(2^{j}x-k) = \sum_{n} h_{\psi}(m-2k)2^{1/2} \psi(2^{j+1}x-m)$
For DWT,
 $W_{\psi}(j,k) = \frac{1}{\sqrt{M}} \sum_{x} f(x)2^{j/2} \psi(2^{j}x-k)$

Replacing $\psi(2^{j}x-k)$, we have

$$W_{\psi}(j,k) = \frac{1}{\sqrt{M}} \sum_{x} f(x) 2^{j/2} \left[\sum_{m} h_{\psi}(m-2k) \sqrt{2} \varphi(2^{j+1}x-m) \right]$$

or
$$W_{\psi}(j,k) = \sum_{m} h_{\psi}(m-2k) \left[\frac{1}{\sqrt{M}} \sum_{x} f(x) 2^{(j+1)/2} \sqrt{2} \varphi(2^{j+1}x-m) \right]$$

7.4 Fast Wavelet Transform (FWT)

- where the bracketed quantity is identical to the DWT transform pair with j0=j+1, so $W_{\psi}(j,k) = \sum h_{\psi}(m-2k)W_{\varphi}(j+1,m)$
- The DWT detail coefficients at scale *j* are a function of the DWT approximation coefficients at scale *j*+1.
- Similarly, we have

$$W_{\varphi}(j,k) = \sum_{m} h_{\varphi}(m-2k)W_{\psi}(j+1,m)$$

 $\bullet W_{\psi}(j,n)$

• $W_{\varphi}(j, n)$

7.4 Fast Wavelet Transform

FIGURE 7.15 An FWT analysis bank. It is identical to the analysis portion of the two-band subband system of Figure 7.4 with $h_0(n) = h_{\varphi}(-n)$ and $h_1(n) = h_{\psi}(-n)$

$$W_{\psi}(j,k) = h_{\psi}(-n) \otimes W_{\psi}(j+1,n) \Big|_{n=2k,k\geq 0}$$
$$W_{\varphi}(j,k) = h_{\varphi}(-n) \otimes W_{\psi}(j+1,n) \Big|_{n=2k,k\geq 0}$$

7.4 Fast Wavelet Transform

- Figure 7.16 shows a two-stage filterbank for generating the coefficients at two highest scales of the transform.
- The highest level is $W_{\varphi}(J, n) = f(n)$, where J is the highest scale.
- $W_{\varphi}(J-1, n)$ is the low-pass approximation component, and $W_{\psi}(J-1, n)$ is the high-pass detail component
- The second filter bank split the spectrum and the subspace V_{J-1} , the lower half-band, into quarter-band subspaces W_{J-2} , and V_{J-2} , with corresponding DWT coefficients: $W_{\varphi}(J-2, n)$ and $W_{\psi}(J-2, n)$.

Digital Image Processing, 2nd ed.

www.imageprocessingbook.com

7.4 Fast Wavelet Transform

7.4 Fast Wavelet Transform

• Consider discrete function $f(n) = \{1, 4, -3, 0\}$

• The corresponding scaling and wavelet vectors

$$h_{\varphi}(n) = \begin{cases} 1/\sqrt{2} & n = 0, 1 \\ 0 & otherwise \end{cases} \quad h_{\psi}(n) = \begin{cases} 1/\sqrt{2} & n = 0 \\ -1/\sqrt{2} & n = 1 \\ 0 & otherwise \end{cases}$$

- {1, 4, -3, 0} * {- $(\frac{1}{2})^{0.5}$, $(\frac{1}{2})^{0.5}$ }={- $(\frac{1}{2})^{0.5}$, $-3(\frac{1}{2})^{0.5}$, $-3(\frac{1}{2})^{0.5}$, $-3(\frac{1}{2})^{0.5}$, 0}
- $W_{\psi}(1,k) = \{-3(1/2)^{0.5}, -3(1/2)^{0.5}\}$

• Or
$$W_{\psi}(1,k) = h_{\psi}(-n)W_{\varphi}(2,n)/_{n=2k, k \ge 0}$$

= $h_{\psi}(n)f(n)/_{n=2k, k \ge 0} = \sum_{l}h_{\psi}(2k-l)x(l)/_{k=0,1}$
= $(\frac{1}{2})^{0.5}x(2k)-(\frac{1}{2})^{0.5}x(2k+1)$

© 2002 R. C. Gonzalez & R. E. Woods

www.imageprocessingbook.com

7.4 Fast Wavelet Transform

FIGURE 7.17 Computing a two-scale fast wavelet transform of sequence $\{1, 4, -3, 0\}$ using Haar scaling and wavelet vectors.

FIGURE 7.18 The FWT⁻¹ synthesis filter bank.

 $W_{\varphi}(j+1,k) = h_{\varphi}(k) \otimes W_{\varphi}^{up}(j,k)/_{k \geq 0} + h_{\psi}(k) \otimes W_{\psi}^{up}(j,k)/_{k \geq 0}$

FIGURE 7.20 Computing a two-scale inverse fast wavelet transform of sequence $\{1, 4, -1.5\sqrt{2}, -1.5\sqrt{2}\}$ with Haar scaling and wavelet vectors.

a b c

Time

FIGURE 7.21 Time-frequency tilings for (a) sampled data, (b) FFT, and (c) FWT basis functions.

Time

Time

7.5 Wavelet transform in Two Dimension

- 2-D scaling function: $\varphi(x, y) = \varphi(x)\varphi(y)$
- 2-D wavelets:

 $\psi^{H}(x, y) = \psi(x) \ \varphi(y)$ $\psi^{V}(x, y) = \varphi(x) \ \psi(y)$ $\psi^{D}(x, y) = \psi(x) \ \psi(y)$

• Translated and scaled basis functions:

$$\varphi_{j,m,n}(x, y) = 2^{j/2} \varphi(2^{j}x-m, 2^{j}y-n) \psi_{j,m,n}^{i}(x, y) = 2^{j/2} \psi(2^{j}x-m, 2^{j}y-n), \quad i = \{H, V, D\}$$

• The DWT of function f(x, y) of size M×N is

$$W_{\varphi}(j_{0},m,n) = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \varphi_{j0,m,n}(x,y)$$
$$W_{\psi}(j_{0},m,n) = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \psi_{j0,m,n}^{i}(x,y)$$
where $i = \{H, V, D\}$

Normally we let j0=0 and $M=N=2^J$, j=0,1,2,...J-1Inverse DWT $f(x,y) = \frac{1}{\sqrt{MN}} \sum_{m} \sum_{n} W_{\varphi}(j0,m,n)\varphi_{j0,m,n}$

$$+\frac{1}{\sqrt{MN}}\sum_{i=H,V,D}\sum_{m}\sum_{n}W_{\varphi}(j0,m,n)\psi_{j0,m,n}^{i}$$

© 2002 R. C. Gonzalez & R. E. Woods

© 2002 R. C. Gonzalez & R. E. Woods

7.5 Wavelet transform in Two Dimension

a b c d

FIGURE 7.23 A three-scale FWT.

© 2002 R. C. Gonzalez & R. E. Woods

www.imageprocessingbook.com

-1.5

0

1

2

3

4

3

4

5

2

n

n

х

7

0

0

1

-0.2

8

ዋ

5

6

8

7.5 Wavelet transform in Two **Dimension**

a b

c d

e f

g

symlets:

three two-

wavelets.

 $\psi^H(x, y).$

www.imageprocessingbook.com

7.5 Wavelet Transform in Two Dimension

Fig. 7.24 (Con't)

www.imageprocessingbook.com

7.5 Wavelet Transform in Two Dimension

a b c d

FIGURE 7.25

Modifying a DWT for edge detection: (a) and (c) two-scale decompositions with selected coefficients deleted; (b) and (d) the corresponding reconstructions.

DWT for edge detection

- (a) Emphasize the reconstructed image edge
- (b) Isolate the vertical edge

7.5 Wavelet Transform in Two Dimension

- The general wavelet-based for de-noising the image.
- Step 1: choose a wavelet and number of levels or scales, p, for decomposition, then compute FWT.
- Step 2: Thresholding the detail coefficients. Select and apply a threshold to the detail coefficients from scales J-1 to J-P. (a) Hard thresholding; (b) Soft thresholding, first hard-thresholding and then followed by scaling the nonzero coefficients toward zero to eliminate the discontinuity at the threshold.
- Step 3: Perform a wavelet reconstruction based on the original approximation coefficients at level J-P and the modified detail coefficients for level from J-1 to J-P.

a b c d

e f

FIGURE 7.26

Modifying a DWT for noise removal: (a) a noisy MRI of a human head; (b), (c) and (e) various reconstructions after thresholding the detail coefficients; (d) and (f) the information removed during the reconstruction of (c) and (e). (Original image courtesy Vanderbuilt University Medical Center.)

7.5 Wavelet Transform in Two Dimension

© 2002 R. C. Gonzalez

7.6 Wavelet packet

- DWT: the low frequencies are group into narrow bands, while the high frequencies are grouped into wider bands constant-Q filters.
- *Wavelet packet* a Generalized DWT, in which the details are teratively filtered and separated.
- Increased computation complexity raised from O(M) to O(MlogM)

a b

FIGURE 7.27 A coefficient (a) and analysis (b) tree for the two-scale FWT analysis bank of Fig. 7.16.

www.imageprocessingbook.com

7.6 Wavelet packet

a b c

FIGURE 7.28 A three-scale FWT filter bank: (a) block diagram; (b) decomposition space tree; and (c) spectrum splitting characteristics.

 V_{J-1} W_{J-1} W_{J-2} W_{J-3} W_{J-3}

7.6 Wavelet packet

- Double subscripts are introduced for Wavelet packet
- The first identifies the scale of the FWT parent node, and the second is a variable length string of A's and D's.

A indicates the approximation filter.

D indicates the detail filter.

- This creates a fixed logarithmic relationship between the frequency bands.
- In general, P scale, 1-D wavelet packet transform support $D(P+1)=[D(P)]^2+1$ unique decompositions, where D(1)=1.

www.imageprocessingbook.com

7.6 Wavelet packet

FIGURE 7.29 A three-scale wavelet packet analysis tree.

Digital Image Processing, 2nd ed.

7.6 Wavelet packet

a b

FIGURE 7.30 The (a) filter bank and (b) spectrum splitting characteristics of a three-scale full wavelet packet analysis tree.

www.imageprocessingbook.com

7.6 Wavelet packet

$\mathbf{V}_{J}\!\!=\!\!\mathbf{V}_{J\text{-}1}\!\oplus\!\mathbf{W}_{J\text{-}1,D}\!\oplus\!\mathbf{W}_{J\text{-}1,AA}\!\oplus\!\mathbf{W}_{J\text{-}1,AD}$

7.6 Wavelet packet

- The spectrum resulting from th first iteration (j+1=J) is shown in Figure 7.32
- It divides the frequency plane into four equal areas.
- Figure 7.33, a three-scale full wavelet packet decomposition.
- In general, A P-scale, 2-D wavelet packet transform support $D(P+1)=[D(P)]^4+1$ unique decompositions, where D(1)=1
- Three-scale tree offer 83522 possible decompositions

www.imageprocessingbook.com

7.6 Wavelet packet

a b

FIGURE 7.32 The first decomposition of a two-dimensional FWT: (a) the spectrum and (b) the subspace analysis tree.

www.imageprocessingbook.com

7.6 Wavelet packet

FIGURE 7.33 A three-scale, full wavelet packet decomposition tree. Only a portion of the tree is provided.

www.imageprocessingbook.com

7.6 Wavelet packet

a b

FIGURE 7.34 (a) A scanned fingerprint and (b) its three-scale, full wavelet packet decomposition. (Original image courtesy of the National Institute of Standards and Technology.)

© 200

7.6 Wavelet packet

- To select a optimal decompositions for the compression of the image is considering the cost function $E(f)=\Sigma\Sigma/f(x,y)|$, which measures the entropy or information content of 2-D function f.
- Minimal entropy leaf nodes should be favored because they have more near-zero values that lead to greater compression.
- The cost function E(f) can be used as a local measurement for the node under consideration.

7.6 Wavelet packet

• For each node of the analysis tree

1) compute both the entropy of the node E_P (parent entropy) and the entropy of the four offsprings, E_A , E_H , E_V , E_D .

2) Compare E_p with $E_A + E_H + E_V + E_D$, If the combined entropy is greater than the entrop of the parent than prune the offspring, keep only the parent.

www.imageprocessingbook.com

7.6 Wavelet packet

FIGURE 7.35 An optimal wavelet packet decomposition for

the fingerprint of Fig. 7.34(a).

FIGURE 7.36 The optimal wavelet packet analysis tree for the decomposition in Fig. 7.35.

Digital Image Processing, 2nd ed.

