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Chapter 7
Wavelets and Multiresolution Processing

• Wavelet transform vs Fourier transform
• Basis functions are small waves called wavelet 

with different frequency and limited duration
• Multiresolution theory: representation and analysis 

of signals/images at more than one resolutions. 
– Subband coding
– Quadrature mirror filtering
– Pyramid image processing
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7.1 Background

• Small objects or low contrast images are 
examined at high resolutions; whereas large 
object and high contrast images are 
examined in low resolution.

• Images are 2-D array of intensity with 
locally varying statistics
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7.1 Background

• Image Pyramids
• Base level J with size 2J×2J or N×N where 

J=log2N
• Intermediate level j with size 2j×2j with 0≤j≤J
• Most pyramids are truncated to P+1 levels 

where j=J-P,…J-1,J
• The total number of pixel elements in a P+1

level pyramid is  2
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7.1 Background7.1 Background

Gaussian pyramid

Laplacian Pyramid
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7.1 Background-Subband Coding

• In subband coding: an image is decomposed 
into a set of bandlimited components, called 
subbands.

• The subbands can be downsampled without 
loss of information.

• Reconstrunction of the original image is 
accomplished by upsampling, filtering, and 
summing the individual subbands
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7.1 Background-Subband Coding

• The input is 1-D band-limited discrete time signals 
x(n), n=0,1,2,…

• The output         is formed through the decomposition 
of x(n) into y0(n) and y1(n) via analysis filter h0(n) 
and h1(n), and subsequent recombination via 
synthesis filters g0(n) and g1(n).   

• The Z-transform of x(n) is

• xdown(n)=x(2n)   Xdown(z)=1/2[X(z1/2)+X(-z1/2)]
• xup(n)=x(n/2) for n=0,2,4,..   Xup(z)=X(z2)
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7.1 Background-Subband Coding

• is obtained from the downsampled and 
upsampled x(n), therefore

•
• X(-z) is the modulated version of x(n)
• Z-1 [X(-z)]=(-1)n x(n)
• The system output is
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7.1 Background-Subband Coding

• Rearrange

• The second component contain the –z dependence, 
represents the aliasing that is introduced by 
downsampling-upsampling process.

• For error-free reconstruction of the input, x(n)=
• The second component is zero.

H0(-z)G0(z)+H1(-z)G1(z)=0
H0(z)G0(z)+H1(z)G1(z)=2
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7.1 Background-Subband Coding

• Reduce to matrix expression

• Where

• Assume that Hm(z) is nonsingular then
(7-12)

• The analysis and synthesis filtered are cross-
modulated.
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7.1 Background-Subband Coding

• For FIR filters, the determinate of the 
modulation matrix is a pure delay, i.e.,

det( Hm(z)) =αz-(2k+1)

• Ignoring the delay and let α=2, by taking 
inverse Z transform we have
g0(n)=(-1)n h1(n)  and g1(n)=(-1)n+1 h0(n)

• If α=-2 then
g0(n)=(-1)n+1 h1(n)  and g1(n)=(-1)n h0(n) :



Digital Image Processing, 2nd ed.Digital Image Processing, 2nd ed.
www.imageprocessingbook.com

© 2002 R. C. Gonzalez & R. E. Woods

7.1 Background-Subband Coding

• The biorthogonality of the analysis and synthesis 
filters, let P(z) be the product of he lowpass
analysis and synthesis filter
from (7.12)

P(z)=G0(z)H0(z)=2H0(z)H1(-z)/det(Hm(z))
also  det(Hm(z))=-det(Hm(-z)) 
and   G1(z)H1(z)=-2H0(-z)H1(z)/det(Hm(z))=P(-z)
Thus G1(z)H1(z) =P(-z)=G0(-z)H0(-z)
and G0(-z)H0(-z)+G0(-z)H0(-z)=2
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7.1 Background-Subband Coding

• Inverse z-transform

• Odd index terms cancel, it is simplified as

• Express G0 and H0 as function of G1 and H1
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7.1 Background-Subband Coding

• More general expression:
(7.21)

• Filter banks satisfying this condition are bi-
orthogonal

• Quadrature mirror filter(QMF) (Table 7.1)
• Conjugate quadrature filter (CQF) (Table 7.1)
• Orthonormal filter (Table 7.1) for fast wavelet 

transform, it requires that  (7.22)
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7.1 Background-Subband Coding7.1 Background-Subband Coding

They satisfy perfect 
reconstruction and 
(7.21) and (7.22)
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7.1 Background-Harr Transform

• The oldest and simplest known orthonormal wavelets
• The Harr transform is both separable and symmetric as  

T=HFH
where F is N×N image matrix and H is N×N transform 
matrix and T is the resulting N×N transform.

• For Harr transform, the transformation matrix H
contains the Harr basis function hk(z) defined over the 
continuous closed interval [0,1] for k=0,1,….N-1 
where N=2n.
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7.1 Background-Harr Transform

• To generate H, we define k=2p +q-1
where 0≤p≤n-1, q=0 or 1 for p=0, 

and 1≤q≤2p for p≠0
• The Harr basis functions are

h0(z)=h00(z)=1/N1/2 ,   z∈[0,1]
and
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7.1 Background-Harr Transform

• The ith row of an N×N Harr transformation 
matrix contains the elements of hi(z), z=0/N, 
1/N,….(N-1)/N

• If N=4, k, q, and p are assumed as the 
following values: k p q

0 0 0
1 0 1
2 1 1
3 1 2
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7.1 Background-Harr Transform

• The 4×4 transformation matrix is

• The 2×2 transformation matrix is

• The basis functions satisfy the QMF prototype 
filter in Table 7.1, the h0(n) and h1(n) are the 
elements of the first and the second rows of H2.
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7.1 Background-
Harr Transform

7.1 Background-
Harr Transform



Digital Image Processing, 2nd ed.Digital Image Processing, 2nd ed.
www.imageprocessingbook.com

© 2002 R. C. Gonzalez & R. E. Woods

7.2 Multiresolution Expansions

• Multi-resolution analysis (MRA)
• A scaling function is used to create a series 

of approximations of a function or image, 
each different by a factor of 2 from its 
neighboring approximation

• Additional functions, called wavelet, are 
used to encode the difference between two 
adjacent approximation.
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7.2 Multiresolution Expansions

• Series expansion
• A signal f(x) can be represented as a linear 

combination of expansion functions as

• The expressible functions form a function space that is 
the closed span of the expansion set denoted as

• f(x)∈ V means that f(x) is in the closed span of {ϕk(x)}
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7.2 Multiresolution Expansions

• For any function space V and the 
corresponding expansion set {ϕk(x)} there is 
a set of dual functions denoted as              
that can be used to compute the αk as

)}(~{ xkϕ

∫== dxxfxxfx kkk )()(~)()(~ *ϕϕα
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7.2 Multiresolution Expansions

• Case 1: The expansion functions form orthonormal
basis for V that

• The basis and its dual are equivalent ϕk(x)=
• and then
• Case 2: If the expansion functions  are not 

orthonormal, but orthogonal basis for V then

• and the basis functions and their duals are called bi-
orthogonal.

• The biorthogonal basis and their duals are

jkkj xx δϕϕ =)()(

)()( xfxkk ϕα =

kjifxx kj ≠= 0)()( ϕϕ
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7.2 Multiresolution Expansions

• Case 3: If the expansion set is not a basis for V, 
but support the expansion, then it is a spanning set 
in which there is more than one set of αk for any 
f(x)∈ V

• The expansions and their duals are said to be 
overcomplete or redundant. They form a frame in 
which

• A and B “frame” the normalized inner products of 
the expansion coefficients and the function.
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7.2 Multiresolution Expansions

• If A=B the expansion is called a tight frame, 
and it can shown that
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7.2 Multiresolution Expansions

• Scaling Functions
• Consider a set of expansion functions composed of 

integer translations and binary scaling of the real 
square-integrable function ϕ(x), that is the set {ϕj,k(x)} 
where ϕj,k(x)= 2j/2ϕ(2jx-k)

• For all j, k ∈I and ϕ(x) ∈L2(R)
• j determines the position of ϕj,k(x), and k determines 

the width of ϕj,k(x)
• ϕj,k(x) is called the scaling function
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7.2 Multiresolution Expansions

• If we restrict j to a specific value j=j0 then 
{ϕj0,k(x)} is a subset of  {ϕj,k(x)} 
and

• Figure 7.9
f(x)= 0.5ϕ1,0(x) +ϕ1,1(x) –0.25ϕ1,4(x)

• Expansion function can be decomposed as
ϕ0,k(x)= 1/20.5ϕ1,2k(x)+ 1/20.5ϕ1,2k(x)

k j ,k
k

f ( x ) ( x )α ϕ=∑ { }j j ,k
k

V Span ( x )ϕ=
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7.2 Multiresolution Expansions7.2 Multiresolution Expansions



Digital Image Processing, 2nd ed.Digital Image Processing, 2nd ed.
www.imageprocessingbook.com

© 2002 R. C. Gonzalez & R. E. Woods

7.2 Multiresolution Expansions

• Four requirements for MRA
• MRA requirement 1: The scaling function is 

orthogonal to its integer translates
• MRA requirement 2: The subspace spanned by the 

scaling function at low scales are nested within 
those spanned at higher scales.

• Subspaces containing high resolution function must 
also contain all lower resolution functions

V-∞⊂ …..⊂V-1⊂ V0⊂V1⊂ V2 ….⊂V∞

• If  f(x)∈ Vj then f(2x)∈ Vj+1
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7.2 Multiresolution Expansions7.2 Multiresolution Expansions
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7.2 Multiresolution Expansions

• MRA requirement 3: The only function that is 
common to all Vj is f(x)=0 

• MRA requirement 4: Any function can be 
represented with arbitrary precision.

• All measureable square-integrable functions can 
be represented in the limit as j→∞ as

V∞ ={L2(r)} 
• The expansion function of subspace Vj can be 

expressed as a weighted sum of expansion 
functions in Vj+1 space as

ϕj,k (x)= Σn αn ϕj+1,n (x)
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7.2 Multiresolution Expansions

• Change αn to hϕ(n)
ϕj,k (x)= Σn hϕ(n)2(j+1)/2 ϕ(2(j+1)/2 x-n)

• Set j=k=0 then ϕ0,0 (x)=ϕ (x)
ϕ(x)= Σn hϕ(n)21/2 ϕ(2x-n)

• It is called the refinement equation, MRA equation, or 
the dilation equation.

• hϕ(n) coefficients are called scaling function coefficients.
• hϕ is referred as scaling vector
• The scaling function for Harr function are hϕ(0)=hϕ(1) 

=1/21/2 then ϕ(x)= 1/21/2[21/2ϕ(2x)+ 21/2ϕ(2x-1)]
= ϕ(2x)+ϕ(2x-1)
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7.2 Multiresolution Expansions

• Wavelet functions
• We define the set {ψj,k (x)} as

ψj,k (x)=2j/2ψ(2j x-k)
• The Wj space is

• If f(x)∈Wj then  f(x)=Σk αk ψj,k (x)

{ })(, xSpanW kj
k

j ψ=
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7.2 Multiresolution Expansions7.2 Multiresolution Expansions
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7.2 Multiresolution Expansions

• The scaling and wavelet subspaces in Figure 7.11 are 
related as  Vj+1=Vj ⊕Wj
where ⊕ denotes the unions of spaces.

• The orthogonal complement of Vj in Vj+1 is Wj and all 
members of Vj are orthogonal to the member of Wj , 
Thus

• <ϕj,k (x) ψj,k (x)>=0 for all appropriate j, k, l∈Z
• We can express the space of all measurable square-

integrable functions as
• L2(R)=V0 ⊕W0 ⊕W1 ⊕…or L2(R)=V1⊕W1⊕W2⊕….. 
• Or   L2(R)= ……⊕ W-1 ⊕W0 ⊕W1 ⊕….. 
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7.2 Multiresolution Expansions

• If f(x) is an element of V1, but not V0, an expansion of 
f(x) using V0 scaling function; wavelet from W0
would encode the difference between the 
approximation and the actual function. It can be 
generalized as

L2(R)=Vj0⊕Wj0⊕Wj0+1⊕….
where j0 is an arbitrary starting scale

• Any wavelet function can be expressed as a weighted 
sum of shifted double-resolution scaling functions 
that is ψ(x)= Σn hψ (n)21/2ϕ(2x-n)

• Where hψ (n) is wavelet function coefficients and hψ
is the wavelet vector.
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7.2 Multiresolution Expansions

• hψ (n) is related to hϕ (n) as
hψ (n)=(-1)n hϕ (1-n)

• The Harr scaling factor illustrated as hϕ (0)=hϕ(1) 
=1/21/2

hψ (0)=(-1)0 hϕ (1-0)=1/21/2

hψ (1)=(-1)1 hϕ (1-1)=-1/21/2

• We get ψ(x)=ϕ(2x)- ϕ(2x-1)
The Harr wavelet function is
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7.2 Multiresolution Expansions

• A function in V1 that is not subspace in V0 can be 
expanded using V0 and W0 as

f(x)=fa(x)+fd(x)
where

fa(x) is an approximation of f(x) using V0 scaling 
function, whereas fd(x) is the difference f(x)-fa(x) 
as a sum of W0 wavelets
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7.3 Wavelets transform in one dimension-
the wavelet series expansion

• Expand f(x) related to wavelet ψ(x) and scaling 
function ϕ(x) as

• Where j0 is an arbitrary starting scale and cj0(k)’s 
and d(k) are relabeled α.  The cj0(k)’s are 
normally called the approximation or scaling 
coefficients and the dj(k)’s are referred as the 
detail or wavelet coefficients 

•

0 0
0
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7.3 Wavelets 
transform in one 

dimension

7.3 Wavelets 
transform in one 

dimension
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7.3 Wavelets transform in one dimension- the 
wavelet series expansion

• Wavelet series expansion
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7.3 Wavelets transform in one dimension- the 
discrete wavelet transform

• For discrete case, the series expansion becomes

for j≥j0

• Here f(x), ϕj0,k(x), ψj,k(x) are functions of the discrete 
variable x=0,1,2,…M-1

• For example f(x)=f(x0+xΔx) for some x0, Δx, and 
x=0,1,2,…M-1.

• Normally, we select M=2J, j=0,1,2,…J-1, k=0,1,…. 2j-1 
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7.3 Wavelets transform in one dimension- the 
discrete wavelet transform

• Example 7.8
• f(0)=1, f(1)=4, f(2)=-3, f(3)=0, M=4, J=2, and with j0=0,

the summation is performed over x=0,1,2,3, j=0,1, and 
k=0 for j=0 or k=0, 1 for j=1.

• Using Harr scaling and wavelet functions (the rows of H4
)and assume that four samples of f(x) are distributed over 
the support of basis functions.
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7.3 Wavelets transform in one dimension- the 
discrete wavelet transform
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7.3 Wavelets transform in one dimension-
the continuous wavelet transform

• CWT: transform a continuous function into 
a highly redundant function of two 
continuous variables - translation and scale 

where

s and τ are called the scale and translation 
parameters.
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7.3 Wavelets transform in one dimension- the 
continuous wavelet transform

• ICWT

where  
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7.3 Wavelets transform in one dimension- the 
continuous wavelet transform

• The Mexican hat wavelet
ψ(x)=((2/31/2)π-1/4)(1-x2)e-x2/2

Figure 7.14(a)  f(x)= ψ1,10(x)+ψ6,80(x)
Figure 7.14(c) shows a portion (1≤s≤10 and τ ≤100) 

of the CWT of Figure 7.14(a)
• Continuous translation τ
• Continuous scaling s
• The set of transformation coefficients {Wψ(s, τ)} 

and basis functions {ψ s, τ(x)}are infinite.
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7.3 Wavelets transform in one dimension7.3 Wavelets transform in one dimension
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7.4 Fast Wavelet Transform (FWT)

• FWT exploits a surprising but fortunate relationship 
between the coefficients of the DWT at adjacent 
scales (known as Herringbone algorithm)

• Consider the multi-resolution refinement equation: 
ϕ(x)= Σn hϕ(n)21/2 ϕ(2x-n)

• Scaling x by 2, translating by k, and letting m=2k+n 
then

ϕ(2jx-k)= Σn hϕ(n)21/2 ϕ(2(2jx-k)-n)
=Σn hϕ(m-2k)21/2 ϕ(2j+1x-m)

• hϕ can be thought of as the “weights” used to expand 
ϕ(2jx-k) as sum of the scale j+1 scaling function.
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7.4 Fast Wavelet Transform (FWT)

Similarly, for ψ(2jx-k) we have
ψ(2jx-k) = Σn hψ (m-2k)21/2 ψ (2j+1x-m)

For DWT,

Replacing ψ(2jx-k), we have

or
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7.4 Fast Wavelet Transform (FWT)

• where the bracketed quantity is identical to 
the DWT transform pair with j0=j+1, so

• The DWT detail coefficients at scale j are a 
function of the DWT approximation 
coefficients at scale j+1.

• Similarly, we have
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7.4 Fast Wavelet Transform7.4 Fast Wavelet Transform

It is identical to the analysis portion 
of the two-band subband system of 
Figure 7.4 with h0(n)= hϕ(-n) and 
h1(n)= hψ(-n) 
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7.4 Fast Wavelet Transform

• Figure 7.16 shows a two-stage filterbank for 
generating the coefficients at two highest scales of the 
transform.

• The highest level is Wϕ(J, n)=f(n), where J is the 
highest scale.

• Wϕ(J-1, n) is the low-pass approximation component, 
and Wψ(J-1, n) is the high-pass detail component

• The second filter bank split the spectrum and the 
subspace VJ-1, the lower half-band, into quarter-band 
subspaces WJ-2, and VJ-2, with corresponding DWT 
coefficients: Wϕ(J-2, n) and Wψ(J-2, n).
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7.4 Fast Wavelet Transform7.4 Fast Wavelet Transform
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7.4 Fast Wavelet Transform

• Consider discrete function f(n)={1, 4, -3, 0}
• The corresponding scaling and wavelet vectors

• {1, 4, -3, 0} * {- (½)0.5, (½)0.5}={-(½)0.5, -3(½)0.5, 
7(½)0.5, -3(½)0.5, 0 }

• Wψ(1,k)={-3(½)0.5, -3(½)0.5}
• Or   Wψ(1,k)=hψ(-n)Wϕ(2,n)|n=2k, k≥0

=hψ(n)f(n) |n=2k, k≥0 =Σlhψ(2k-l)x(l) |k=0,1
= (½)0.5x(2k)- (½)0.5x(2k+1)
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7.4 Fast Wavelet Transform7.4 Fast Wavelet Transform
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7.4 Fast Wavelet Transform- Inverse FWT7.4 Fast Wavelet Transform- Inverse FWT

Wϕ(j+1,k)=hϕ (k)⊗ Wϕ
up(j, k)|k≥0+hψ (k)⊗ W ψ up(j, k)|k≥0
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7.4 Fast Wavelet Transform- Inverse FWT7.4 Fast Wavelet Transform- Inverse FWT
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7.4 Fast Wavelet Transform- Inverse FWT7.4 Fast Wavelet Transform- Inverse FWT
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7.4 Fast Wavelet Transform- Inverse FWT7.4 Fast Wavelet Transform- Inverse FWT
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7.5 Wavelet transform in Two Dimension

• 2-D scaling function:
ϕ(x, y)=ϕ(x)ϕ(y)

• 2-D wavelets:
ψH(x, y)=ψ(x) ϕ(y)
ψV(x, y)=ϕ(x) ψ(y) 
ψD(x, y)=ψ(x) ψ(y)

• Translated and scaled basis functions:
ϕj,m,n(x, y)=2j/2 ϕ(2jx-m, 2jy-n)
ψi

j,m,n(x, y)=2j/2 ψ (2jx-m, 2jy-n),  i={H, V, D}
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7.5 Wavelet transform in Two Dimension

• The DWT of function f(x,y) of size M×N is

where i={H, V, D}
Normally we let j0=0 and M=N=2J, j=0,1,2,…J-1
Inverse DWT 
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Figure 7.22 the 2-D fast wavelet 
transform (a) the analysis filter bank;  
(b) the results of decomposition; (c) 
the synthesis filter bank

7.5 Wavelet transform 
in Two Dimension

7.5 Wavelet transform 
in Two Dimension
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7.5 Wavelet Transform in Two Dimension7.5 Wavelet Transform in Two Dimension

Fig. 7.24 (Con’t)
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7.5 Wavelet Transform in Two Dimension7.5 Wavelet Transform in Two Dimension

DWT for edge detection

(a) Emphasize the 
reconstructed image 
edge

(b) Isolate the vertical edge
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7.5 Wavelet Transform in Two Dimension

• The general wavelet-based for de-noising the image.
• Step 1: choose a wavelet and number of levels or 

scales, p, for decomposition, then compute FWT.
• Step 2: Thresholding the detail coefficients. Select and 

apply a threshold to the detail coefficients from scales 
J-1 to J-P. (a) Hard thresholding; (b) Soft thresholding, 
first hard-thresholding and then followed by scaling the 
nonzero coefficients toward zero to eliminate the 
discontinuity at the threshold.

• Step 3: Perform a wavelet reconstruction based on the 
original approximation coefficients at level J-P and the 
modified detail coefficients for level from J-1 to J-P.
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7.5 Wavelet Transform 
in Two Dimension

7.5 Wavelet Transform 
in Two Dimension
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7.6 Wavelet packet

• DWT: the low frequencies are group into narrow 
bands, while the high frequencies are grouped into 
wider bands - constant-Q filters.

• Wavelet packet – a Generalized DWT, in which 
the details are teratively filtered and separated.

• Increased computation complexity raised from 
O(M) to O(MlogM)
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7.6 Wavelet packet7.6 Wavelet packet
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7.6 Wavelet packet7.6 Wavelet packet
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7.6 Wavelet packet

• Double subscripts are introduced for Wavelet packet

• The first identifies the scale of the FWT parent node, 
and the second is a variable length string of A’s and 
D’s. 

A indicates the approximation filter.
D indicates the detail filter.

• This creates a fixed logarithmic relationship between 
the frequency bands.

• In general, P scale, 1-D wavelet packet transform 
support D(P+1)=[D(P)]2+1 unique decompositions, 
where D(1)=1.
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7.6 Wavelet packet7.6 Wavelet packet

VJ=VJ-3 ⊕WJ-3 ⊕WJ-2,A⊕WJ-2, D⊕WJ-1,AA⊕WJ-1,AD⊕WJ-1, DA⊕WJ-1,DD
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7.6 Wavelet packet7.6 Wavelet packet
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7.6 Wavelet packet7.6 Wavelet packet

VJ=VJ-1⊕WJ-1,D⊕WJ-1, AA⊕WJ-1,AD
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7.6 Wavelet packet

• The spectrum resulting from th first iteration (j+1=J) 
is shown in Figure 7.32

• It divides the frequency plane into four equal areas.
• Figure 7.33, a three-scale full wavelet packet 

decomposition.
• In general, A P-scale, 2-D wavelet packet transform 

support D(P+1)=[D(P)]4+1 unique decompositions, 
where D(1)=1

• Three-scale tree offer 83522 possible decompositions
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7.6 Wavelet packet7.6 Wavelet packet
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7.6 Wavelet packet7.6 Wavelet packet
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7.6 Wavelet packet7.6 Wavelet packet
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7.6 Wavelet packet

• To select a optimal decompositions for the 
compression of the image is considering the cost 
function  E(f)=ΣΣ|f(x,y)|, which measures the 
entropy or information content of 2-D function f. 

• Minimal entropy leaf nodes should be favored 
because they have more near-zero values that lead 
to greater compression.

• The cost function E(f) can be used as a local  
measurement for the node under consideration.
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7.6 Wavelet packet

• For each node of the analysis tree
1) compute both the entropy of the node EP
(parent entropy) and the entropy of the four 
offsprings, EA , EH , EV , ED .
2) Compare Ep with  EA + EH + EV + ED , If 
the combined entropy is greater than the 
entrop of the parent than prune the 
offspring, keep only the parent.
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7.6 Wavelet packet7.6 Wavelet packet
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