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Chapter 6
Color Image Processing

• Color is a powerful descriptor
• Human can discern thousands of color 

shades.
• "color" is more pleasing than "black and 

white“.
• Full Color: color from full-color sensor, i.e., 

CCD camera
• Pseudo color: assign a color to a particular 

monochromatic intensity.
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6.1 Color Fundamentals6.1 Color Fundamentals
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6.1 Color Fundamentals6.1 Color Fundamentals
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6.1 Color Fundamentals

Cone sensitivity
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6.1 Color Fundamentals

• The colors that humans perceive of an object are 
determined by the nature of the light reflected from 
the object.

• Incident light (electromagnetic wave) → human eye
• The light is visible to human eyes if its wavelength is 

between 380-780 (nm). Human eyes have the 
following sensitivity :
1. Brightness : light intensity (energy)
2. Color : different spectral composition
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6.1 Color Fundamentals

• how to specify color？
(1) color matching
(2) color difference
(3) color appearance
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6.1 Color Fundamentals

• Color Mixture
• light of any color can be synthesized by an 

approximation mixture of three primary colors
• Maxwell (1855) provided "colorimetry"

Test Color

Dark background

Adjust 
mixture of 
three primary 
colors
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6.1 Color Fundamentals

• Tristimulus values of a test color are the 
amounts of three primary colors required to 
give a match by additive mixture.

• Two rules of colorimetry : 

⎩
⎨
⎧
additivity
linearity
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6.1 Color Fundamentals

• linearity:

If S1(λ)                  S2(λ) then aS1(λ )                 aS2(λ)

• additivity : 

If S1(λ)                  S2(λ) and  S3(λ )                  S4(λ)

then S1(λ)+S3(λ)                     S2(λ)+S4(λ)

• Color with negative tri-stimulus values:

test color S aR(λ)–bG(λ)+cB (λ)

⎯⎯⎯ →←
match
color    

⎯⎯⎯ →←
match
color    

⎯⎯⎯ →←
match
color    

⎯⎯⎯ →←
match
color    

⎯⎯⎯ →←
match
color    

⎯⎯⎯ →←
match
color    
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6.1 Color Fundamentals6.1 Color Fundamentals
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6.1 Color Fundamental

• Additive Color System
• Primary: RGB

Red Green Blue Color
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6.1 Color Fundamental

• Subtractive Color System:
• Primary: CMY

Yellow Cyan MagentaWhite Color
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6.1 Color Fundamentals

• Color matching function : the tristimulus
values of the spectral color with unit intensity 
light of single wavelength.

• The primary colors are the spectral color of 
wavelength:
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6.1 Color Fundamentals

• CIE RGB and XYZ color matching functions: RGB is 
shown in dashed lines, and XYZ are shown in solid lines.
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6.1 Color Fundamentals

• Any color S(λ) can be derived as the color 
sensitivity summation as

Using color matching function
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6.1 Color Fundamentals

• Color matches between

• metamer :
• isomer:
• Color matching function are averaged for people 

with normal color vision.
• Color matching normally depends on the conditions 

of observation and previous exposure of eyes.

S S1 2↔
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6.1 Color Fundamentals - Color 
Coordinate System Transformation

where r+g+b=1 →reduced to 2-D color 
information -→ chromaticity
The 3rd information is the luminance
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6.1 Color Fundamentals - Color Coordinate System 
Transformation

• Y(luminance) →The 3rd-dimension information
• Luminance (Brightness) sensor
• Different wavelengths contribute different 

brightness to the sensor
• The relative brightness response for the eye is 

termed "relative luminous efficiency" y(λ)
• y(λ) is obtained by photometric matches 

(matching of brightness)
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6.1 Color Fundamentals - Color Coordinate 
System Transformation

• The luminance of any spectral distribution 
S(λ) is

where
• Brightness match  

λλλ dySkY m )()(∫=

2m 1       680 candelaslumenwattlumenskm ==
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6.1 Color Fundamentals-Standard CIE 
Color System

• The tristimulus values for two color-matched colors 
are different for different observers.

• Standard Observer : by averaging the color 
matching data of a large number of color normal 
observers.

• 1931, CIE defined standard observer which consists 
of color matching functions for primary stimuli of 
wavelengths:

• Unit normalized       equal amount of three primaries 
are required to match the light from equal energy 
illumination energy.

700 546 1 435 80 0 0( ), . ( ), . ( )R G B  
⇒
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6.1 Color Fundamentals-Standard CIE Color 
System

• CIE also define three new primaries : X, Y, Z

..(a)

• By matrix inversion, we obtain

..(b)
• Y  tristimulus value corresponds to the luminance 

normalized.
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6.1 Color Fundamentals-Standard CIE Color 
System

• The tristimulus values and color-matching function are 
always positive primaries; X, Y, Z are non-real 
(cannot be realized by actual color stimuli)

• Normalized tristimulus values: X, Y, Z→chromaticity

• x : red light → orange, reddish-purple
• y : green light → bluish-green, yellowish-green.
• small x, y : blue light → violet or purple

⎩
⎨
⎧

++
=

++
=

++
=

       luminance
,  tychromatici

color       
Y

yx

ZYX
Zz

ZYX
Yy

ZYX
Xx



Image Comm. Lab EE/NTHU 24

6.1 Color Fundamentals-Standard CIE 
Color System

• Chromaticity diagram :            and 
• Pure spectral colors are plotted on the 

elongated horseshoe-shaped curve called the 
spectral locus.

• line of purples : straight line consists of two 
extremes of the spectral locus

• chromaticity diagram ≠ color matching 
function

( , )r g0 0 ( , )x y
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6.1 Color 
Fundamentals

6.1 Color 
Fundamentals

y = 62% green
x = 25% red
z = 13% blue
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6.1 Color 
Fundamentals

6.1 Color 
Fundamentals
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6.1 Color Fundamentals --Color Mixtures

Grassman's Law :
• The tristimulus values of a color mixture are obtained by 

the vector addition of the tristimulus values of the 
components of the mixture

• If colors: S1=(X1, Y1, Z1) and S2=(X2, Y2, Z2) are mixed
as S=(X, Y, Z) then X=X1+X2   Y=Y1+Y2    Z=Z1+Z2

• If colors: S1=(x1, y1, Y1) and S2=(x2, y2, Y2) are mixed
as S=(x, y, Y) then
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6.2 Color Models

• The color model (color space or color system) is to 
facilitate the specification of colors in some 
standards.

• Color model is a specification of a coordinate 
system and a subspace within the system where a 
color is represented.

• RGB for color monitor.
• CMY (cyan, magenta, yellow) for color printing.
• HIS (hue, intensity and saturation): decouple the 

color and gray-scale information.
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6.2 Color Models6.2 Color Models
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6.2 Color Models6.2 Color Models
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6.2 Color Models6.2 Color Models



Image Comm. Lab EE/NTHU 32

6.2 Color Models

• Safe RGB colors (or all-system safe color, safe 
web color): a subset of colors that are likely to be 
reproduced faithfully reasonably independently of 
viewers hardware capability.

• 216 colors = 6×6× 6
• 6 levels in R, G, and B: in decimal: 0, 51, 102, 

153, 204, or 255.
• In hex: 00, 33, 66, 99, CC, FF
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6.2 Color Models6.2 Color Models
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6.2 Color Models6.2 Color Models
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6.2 Color Models

• RGB to CMY conversion

• Instead of adding C,M, and Y to produce 
black, a fourth color black is added
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6.2 Color Models

• Human describes color in terms of hue 
saturation and brightness.

• Hue: describe the pure color, pure yellow, 
orange, green or red.

• Saturation measures the degree to which a 
pure color is diluted by white light.

• Brightness is a subjective descriptor 
difficult to be measured.



Image Comm. Lab EE/NTHU 37

6.2 Color Models6.2 Color Models

All pointes contained in the plane segment define by the 
intensity and boundary of the cube have the same hue
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6.2 Color Models - Converting colors

• From RGB to HSI

with

• S = 1–[3/(R+G+B)][min(R, G, B)]
• I = (R+G+B)/3
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6.2 Color Models6.2 Color Models

Primary colors are separated by 120o



Image Comm. Lab EE/NTHU 40

6.2 Color Models - Converting colors

• From HSI to RGB
• RG sector (0≤H<120), min(R, G, B)=B

B = I(1–S)

G = 3I–(R+B)
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6.2 Color Models - Converting colors

• GB sector
(120≤H<240)

• min(R, G, B)=R
• H=H-120
• R=I (1-S)
•

• B=3I-(R+G)

• BR sector
(240≤H<360)

• min(R, G, B)=G
• H=H-240
• G=I (1-S)
•

• R=3I-(G+B)
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6.2 Color Models6.2 Color Models
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6.2 Color Models6.2 Color Models
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6.2 Color Models6.2 Color Models
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6.2 Color Models6.2 Color Models
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6.3 Pseudo Image Processing

• Assigning colors to gray values based on a specified criterion.
• Intensity slicing: using a plane at f(x, y)=li to slice the image 

function into two levels.
• In general, we assume that P planes perpendicular to the 

intensity axis defined at level li i=1,2,..P. These P planes 
partition the gray level in to P+1 intervals: Vk k=1,2,..P+1

• f(x, y)=ci if f(x, y) ∈Vk

• where ci is the color associated with the kth intensity interval
Vk defined by the partition lanes at l=k-1 and l=k. 

• From Figure 6.19; if more levels are used, the mapping 
function takes on a staircase form.
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6.3 Pseudo Image Processing6.3 Pseudo Image Processing
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6.3 Pseudo Image Processing6.3 Pseudo Image Processing
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6.3 Pseudo Image Processing6.3 Pseudo Image Processing
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6.3 Pseudo Image Processing6.3 Pseudo Image Processing
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6.3 Pseudo Image Processing6.3 Pseudo Image Processing
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6.3 Pseudo Image Processing- gray-level to color 
transformation

• Three independent transformation functions 
on the gray-level of each pixel.

• Piecewise linear function
• Smooth non-linear function
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6.3 Pseudo Image Processing6.3 Pseudo Image Processing
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6.3 Pseudo Image 
Processing

6.3 Pseudo Image 
Processing

Figure 6.25 (a) Figure 6.25 (b)
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6.3 Pseudo Image 
Processing

6.3 Pseudo Image 
Processing
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6.3 Pseudo Image Processing

• Change the phase and frequency of each 
sinusoid can emphasize (in color) ranges in the 
gray scale.

• Peak → constant color region.
• Valley → rapid changed color region.
• A small change in the phase between the three 

transforms produces little change in pixels whose 
gray level corresponding to the peaks in the 
sinusoidal.

• Pixels with gray level values in the steep section
of the sinusoids are assigned much strong color. 
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6.3 Pseudo Image Processing6.3 Pseudo Image Processing

Combine several monochrome images into a single 
color image.
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6.3 Pseudo Image 
Processing

6.3 Pseudo Image 
Processing
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6.3 Pseudo Image 
Processing

6.3 Pseudo Image 
Processing
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6.4 Full-Color Image Processing

• Two categories:
– Process each component individually and then 

form a composite processed color image from 
the components.

– Work with color pixels directly. In RGB 
system, each color point can be interpreted as a 
vector.

– c(x, y)=[cR(x, y), cG(x, y), cB(x, y)]
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6.4 Full-Color Image Processing6.4 Full-Color Image Processing
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6.5 Color Transformation- formulation

Gray-level transformation
g(x, y)=T[f(x, y)]

Color transformation
si=Ti(r1, r2,….rn) i=1,2,….n

Where ri and si are variables denoting the color 
component of f(x, y) and g(x, y) at any point (x, y), 
n is the number of color components, and {Ti} is a 
set of transformation or color  mapping functions.
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6.5 Color Transformation6.5 Color Transformation
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6.5 Color Transformation

• To modify the intensity of the image 
g(x, y)=kf(x, y) 0<k<1

• HSI : s3=kr3

• RGB:  si=kri i=1, 2, 3
• CMY: si=kri+(1-k)  i=1, 2, 3
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6.5 Color Transformation6.5 Color Transformation

I H,S
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6.5 Color Transformation -
Color Complements

• The hues directly opposite one another on 
the color circle are called complements

• Color complements are useful for enhancing 
detail that is embedded in dark regions of a 
color image
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6.5 Color Transformation - Color Complements6.5 Color Transformation - Color Complements
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6.5 Color Transformation - Color Complements6.5 Color Transformation - Color Complements
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6.5 Color Transformation - Color Slicing

• Highlighting a specific range of colors in an image 
is useful for separating object from their 
surrounding.

• The simplest way to “slice” a color image is to 
map the colors outside some range of interest to a 
nonprominent neutral color (e.g., (R, G, B)=(0.5, 
0.5, 0.5)).  If the colors of interest are enclosed by 
a cube (or hypercube for n>3) of width W and 
centered at a average color with component (a1, 
a2,…an) the necessary set of transformation is
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6.5 Color Transformation - Color Slicing

• If a sphere is used to specify the colors of 
interest then

• Forcing all other colors to the mid point of 
the reference color space.

• In RGB color space, the neural color is 
(0.5, 0.5, 0.5)
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6.5 Color Transformation - Color Slicing6.5 Color Transformation - Color Slicing
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6.5 Color Transformation –
Tone and Color Correction

• Digital Darkroom
• Effective transformation are developed to 

maintain a high degree of color consistency
between the monitor used and the eventual 
output devices.

• Device independent color model: relate the 
color gamut (see Fig. 6.6) of the monitor and 
output devices as well as other devices to one 
another.
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6.5 Color Transformation –
Tone and Color Correction

• The model choice for many color management 
systems (CMS) is the CIE L*a*b* model called 
CIELAB.  

• The L*a*b* color component is given as
L*=116h(Y/YW)-16,  
a*=500[h(X/XW)-h(Y/YW)]
b*=200[h(Y/YW)-h (Z/ZW)]

where
⎩
⎨
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6.5 Color Transformation –
Tone and Color Correction

• XW,YW, ZW  are reference white tristimulus values.
• The L*a*b* color is colormetric (i.e., colors perceived 

as matching are encoded identically), perceptual 
uniform (i.e., color differences among various hues are 
perceived uniformly), and device independent.

• It is not a directly displayable format.
• The gamut of L*a*b* encompasses the entire visible 

spectrum and can represent accurately the colors of any 
display, print, or input device.

• L*a*b* decouples intensity (L*) and color (a* and b*)
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6.5 Color Transformation –
Tone and Color Correction

• Before color irregularities are solved, the image’s 
tonal range are corrected.

• The tonal range of an image (key type) refers to its 
general distribution of color intensity.

• High key image is concentrated at high/light 
intensity

• Low key image is concentrated at low intensity.
• Middle key image lies in between.
• It is desireable to distribute the intensities of a color 

image equally between the highlights and the 
shadows
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6.5 Color Transformation -
Color Correction

6.5 Color Transformation -
Color Correction

Tonal transformation 
for flat, light and dark
images
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6.5 Color Transformation – Tone 
and Color Correction

6.5 Color Transformation – Tone 
and Color Correction

Color Balancing: The 
proportion of any color can 
be increased by decreasing 
the amount of opposite 
(complementary) color in 
the image. Refer to the 
color wheel (Figure 6.32) 
to see how one color 
component will affect the 
other.
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6.5 Color Transformation – Histogram Processing

• Equalized the histogram of each component will 
results in error color.

• Spread the color intensity (I) uniformly, leaving 
the color themselves (hues) unchanged.

• Equalizating the intensity histogram affects the 
relative appearance of colors in an image.

• Increasing the image’s saturation component after 
the intensity histogram equalization.
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6.5 Color Transformation – Histogram Processing6.5 Color Transformation – Histogram Processing

Mean=0.36

Mean=0.5
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6.6 Smoothing and Sharpening

• Let Sxy denote the set of coordinates 
defining a neighborhood centred at (x, y) in 
an RGB color space.
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6.6 Smoothing and Sharpening6.6 Smoothing and Sharpening
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6.6 Smoothing and Sharpening6.6 Smoothing and Sharpening
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6.6 Smoothing and Sharpening6.6 Smoothing and Sharpening

Smooth only the intensity
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6.6 Smoothing and Sharpening

• Image sharpening using Laplacian

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∇
∇
∇

=∇
),(
),(
),(

),(
2

2

2

2

yxB
yxG
yxR

yxc



Image Comm. Lab EE/NTHU 85

6.6 Smoothing and Sharpening6.6 Smoothing and Sharpening

Hue and Saturation unchanged
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6.7 Color Segmentation

• Partition an image into regions.
• Segmentation in HIS color space.
• Saturation is used as a masking image to 

isolate further regions of interest in the hue 
image.

• The intensity image is used less frequently.
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6.7 Color Segmentation6.7 Color Segmentation
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6.7 Color Segmentation

• Segmentation in RGB color space
• The measurement of color similarity is the Euclidean 

distance between two colors z, and a, (i.e. Fig. 6.43(a)),
D(z, a)=||z-a||=[(z-a)T(z-a)]1/2

• =[(zR-aR)2+ (zG-aG)2 +(zB-aB)2]1/2

• A generalization of distance measure is
D(z, a)=||z-a||=[(z-a)TC-1(z-a)]1/2

• Where C is the covariance matrix of the samples 
representative of the color we want to segment.

• In Figure 6.43(b) describes the solid elliptical body with 
the principal axes oriented in the direction of maximum 
data spread.
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6.7 Color Segmentation6.7 Color Segmentation

Distance square 
without square 
root operation.
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6.7 Color Segmentation

ISH ,,



Image Comm. Lab EE/NTHU 91

H

S

I

jII −

S

6.7 Color Segmentation



Image Comm. Lab EE/NTHU 92

6.7 Color Segmentation6.7 Color Segmentation

The dimension of 
the box along R-
axis extended 
from (aR-1.25σR) 
to (aR+1.25σR)
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6.7.3 Color Edge detection

• The gradient operators introduced is 
effective for scalar image.

• Compute the gradient on individual images 
and then using the results to form a color 
image will lead to erroneous results.
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6.7.3 Color Edge Detection6.7.3 Color Edge Detection
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6.7.3 Color Edge Detection

• Let r, g, b be a unit vector along the R, G, B axis and 
define the unit vector as

• gxx= u •u =|∂R/∂x|2+|∂G/∂x|2+|∂B/∂x|2
• gyy= v •v =|∂R/∂y|2+|∂G/∂y|2+|∂B/∂y|2
• gxy= u •v =(∂R/∂x)(∂R/∂y) +(∂G/∂x) (∂G/∂y) 

+(∂B/∂x)(∂B/∂y) 
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∂
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6.7.3 Color Edge Detection

• The direction of maximum rate of change of c(x, y)
is given by the angle

• The value of the rate of change at (x, y) in the 
direction θ is
F(θ)={0.5[(gxx+gyy)+(gxx-gyy)cos θ+2gxysin θ]}1/2

• There are two solved θ or θ +π/2 in orthogonal 
directions.

• One generate maximum F and the other generate 
minimum F.

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= −

)(
2

tan
2
1 1

yyxx

xy
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6.7.3 Color Edge Detection6.7.3 Color Edge Detection
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6.7.3 Color Edge Detection6.7.3 Color Edge Detection
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6.8 Noise in Color Image

• The noise content of a color image has the 
same characteristics in each color channel.

• It is possible for color channels to be 
affected differently by noise.

• The fine grain noise (in Figure 6.48) tends 
to be less visually noticeable in a color 
image than it is in a monochrome image.
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6.8 Noise in Color Image6.8 Noise in Color Image
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6.8 Noise in Color Image6.8 Noise in Color Image
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6.8 Noise in Color Image6.8 Noise in Color Image
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6.8 Noise in Color Image

• Vector filtering
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6.8 Noise in Color Image

• Sliding filter window

Marginal Median Output
Vector Median Output
Vector Directional Filter Output
Original (Desired) Sample

Original Area
Noise Corrupted Area

Input Set
X1X2………….… XN

Outlier

Artifact

•The 3 ×3 filtering mask with 
the window center x(N+1)/2= x5. 
•Operating at the pixel level, 
spatial filtering operators 
replace x(N+1)/2 with the output 
pixel ˆx(N+1)/2 = f(x1, x2, . . . , xN ) 
.
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6.8 Noise in Color Image

• Vector filtering techniques that treat the color image as a vector 
field are more appropriate. 

• The filter output ˆx(N+1)/2 is a function of the vectorial inputs x1, x2, 
. . . , xN located within the supporting window W .

• A color red, green, blue (RGB) image x : Z2 → Z3, each pixel xi= 
[xi1, xi2, xi3]

T represents a three-component vector in a color space 
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6.8 Noise in Color Image

• The color image x is a vector array or a 2-D matrix of three 
component samples xi with xik denoting the R (k = 1), G (k = 2), 
or B component (k = 3). 

• The chromatic properties of xi is related to its magnitude
Mxi =║xi║= [(xi1)

2 + (xi2)
2 + (xi3)

2]1/2

and direction (orientation in the vector space) 
Oxi = xi / ║xi║= xi/Mxi , with ║Oxi║= 1. 

• Both the magnitude and the direction can be used in classifying 
the differences between two vectorial inputs.
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6.8 Noise in Color Image

• (a) RGB color cube and (b), (c) the basic parameters related to 
the RGB color vector xi = [xi1, xi2, xi3]

T .
• (b) The magnitude Mxi . 
• (c) The orientation defined as the point Oxi on unit sphere.
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6.8 Noise in Color Image

• Distance and similarity measures
• The distance between two color vectors xi = [xi1, xi2, xi3]

T and xj = [xj1, xj2, xj3]T

in the magnitude domain is the generalized weighted Minkowski metric
d(xi, xj) = ║xi − xj║L =

• The nonnegative scaling parameter c is a measure of the overall 
discrimination power.

• The exponent L defines the nature of the distance metric, i.e., L = 1 (city-
block distance), L = 2 (Euclidean distance), L→∞ (The chess-board distance)

• The distance between the two 3-D vectors is considered equal to the 
maximum distance among their components. 

• The parameter ξk measures the proportion of attention allocated to the 
dimensional component k and, therefore, Σkξk = 1. 

• Vectors having a range of values greater than a desirable threshold can be 
scaled down by the use of the weighting function ξ .

( ) L

k

L

jkikkc
/13

1∑ =
− xxξ
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6.8 Noise in Color Image

• Opposite to distance measures, a similarity measure s(xi, xj) is 
defined as a symmetric function whose value is large when the 
vectorial inputs xi and xj are similar.

• Similarity in orientation is expressed through the normalized 
inner product s(xi, xj) = (xixj

T /(|xi||xj|) → the cosine of the angle
between xi and xj. 

• Since similar colors have almost parallel orientations and 
significantly different colors point in different overall directions 
in a 3-D color space, the normalized inner product, or 
equivalently the angular distance θ = arccos (xixj

T /(|xi||xj|),  is 
used to quantify the dissimilarity (here the orientation difference) 
between the two vectors.



Image Comm. Lab EE/NTHU 110

6.8 Noise in Color Image

• Vector median filters (VMF)
• The VMF is a vector processing operator that has been 

introduced as an extension of the scalar median filter.
• The generalized Minkowski metric║xi − xj║L is used 

to quantify the distance between two color pixels xi and 
xj in the magnitude domain. 

• The VMF output is the sample x(1)∈W that minimizes 
the distance to the other samples inside W as
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6.8 Noise in Color Image

• Vector directional filters (VDFs)
• VDF represents a different type of vector processing filter. 
• VDF operates on the directions of image vectors, aiming at 

eliminating vectors with atypical directions in the color space.
• The Basic VDF (BVDF) operates in the directional domain of a 

color image, its output is the color vector x(1)∈W whose direction 
is the MLE of directions of the input vectors. 

• The BVDF output x(1) minimizes the angular ordering criteria to 
other samples inside the sliding filtering window W:

where θ(xi, xj) represents the angle between two vectors xi and xj.



Image Comm. Lab EE/NTHU 112

6.8 Noise in Color Image

• Algorithm of VMF or BVDF outputting the lowest ranked vector.
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6.8 Noise in Color Image

• Data Adaptive Filter
• The general form of the data-dependent filter is given as a fuzzy 

weighted average of the input vectors inside the supporting 
window W

• where f(·) is a nonlinear function that operates over the weighted 
average of the input set, and wi is the filter weight equivalent to 
the fuzzy membership function associated with the input color 
vector xi. with the constraints wi

∗ ≥ 0 and Σwi
∗ = 1.

• The weights wi are determined adaptively using functions of a 
distance criterion between the input vectors as 

wi =β(1 + exp{                     })−r, where r is a parameter 
adjusting the weighting effect of the membership function, and 
β is a normalizing constant.

( )∑ =

N

j jid
1

,xx
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6.8 Noise in Color Image

• Based on the difference between the observation (noisy) 
color vector xi = [xi1, xi2, xi3]

T and the original (desired) 
sample oi = [oi1, oi2, oi3]

T, the noise corruption is modeled 
via the additive noise model defined as follows:

xi = oi + vi
where vi = [vi1, vi2, vi3]

T is the vector describing the noise
process and i denotes the spatial position of the samples 
in the image. Note that vi can describe either signal-
dependent or independent noise.

• Considering the likely presence of many noise sources, it 
is reasonable to assume that the overall noise process can 
be modeled as a zero mean white Gaussian, affecting 
each color component and pixel position independently.

• The noise variance σ is the same for all three color 
components in a correlated color space, such as RGB.
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6.8 Noise in Color Image

• Angular noise margins for a color signal.
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6.8 Noise in Color Image

• The noise can be reduced to a scalar perturbation, the magnitude of 
the noise vector pi = ║vi ║= 

• It follows that the distribution of the pis is:

• This perturbation results in a “noise cone’’ in the RGB color space. 
• This vector magnitude perturbation can be translated into an angular 

perturbation A. 
• Assuming ║oi║>>σ, A can be approximated to have the distribution

Pr(A) ≈ A(║o║2 /σ2)exp{−(║o║2 A2/(2σ2))}. 
• This is a Rayleigh distribution with mean .
• Using this concept of color noise as an angular perturbation of the 

original color vector represented in a correlated vector color space, 
the effect of the median operator can be roughly derived.
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6.8 Noise in Color Image

• Test image Parrots (512 × 512) corrupted by different kinds 
of noise: (a) original image, (b) additive Gaussian noise with 
σ = 20,
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6.8 Noise in Color Image

• (c) 5% impulsive noise, (d) mixed noise (additive Gaussian 
noise of σ = 20 followed by 5% impulsive noise).
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6.8 Noise in Color Image

• Additive Gaussian noise (σ = 20) filtered output. (a) VMF, 
(b) BVDF, and (c) data adaptive filter utilizing the angular 
distance measure. 
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6.8 Noise in Color Image

• 5% impulsive noise filtered output. (a) VMF, 
(b) BVDF, and (c) data adaptive filter utilizing 
the angular distance measure. 
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6.8 Noise in Color Image

• Mixed noise filtered output (Gaussian with σ = 
20 and 5% impulsive noise. (a) VMF, (b) BVDF, 
and (c) data adaptive filter utilizing the angular 
distance measure.
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6.9 Color Image 
Compression

6.9 Color Image 
Compression

Using JPEG 2000, 
the compression 
ratio is 1:230.
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