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Drain E-Field Manipulation in AlGaN/GaN HEMTs
by Schottky Extension Technology

Yi-Wei Lian, Yu-Syuan Lin, Hou-Cheng Lu, Yen-Chieh Huang, and Shawn S. H. Hsu, Member, IEEE

Abstract— The proposed hybrid Schottky–ohmic drain struc-
ture is analyzed in detail for AlGaN/GaN power high-electron
mobility transistors on the Si substrate. Without any additional
photomasks and process steps, the hybrid drain design can
alter the electric field distribution to improve the breakdown
voltage VBK. In addition, it provides an additional current path
to achieve zero onset voltage and reduce the ON-resistance. It was
found that the Schottky extension Lext is critical to VBK, RON,
and also the current collapse phenomena of the transistors. The
extended Schottky electrodes for optimized transistor character-
istics are investigated, and the physics behind are discussed. With
an Lext ∼ 2–3 µm, VBK can be improved up to 60% with an
RON degradation below 3%.

Index Terms— Breakdown voltage, GaN-on-Si, high-electron
mobility transistor (HEMT), leakage current, Schottky contact.

I. INTRODUCTION

W ITH the increasing demand of high-efficiency and
compact power conversion circuits and systems, the

power devices capable of low loss and high-speed opera-
tion have attracted much attention recently. The GaN-based
high-electron mobility transistors (HEMTs) are a promising
candidate to satisfy such requirements owing to the large
bandgap (Eg = 3.4 eV) and high electron saturation velocity
(vsat ∼ 2.5 × 107 cm/s) of the material, and also high carrier
density (n ∼ 1 × 1013 cm−2) in the 2-D electron gas channel
in the transistor. In addition, recent progress of material
engineering allows high-quality GaN layers to be grown on
large-scale silicon substrates (on an 8-in wafer was
reported [1]–[3]), making it possible to achieve low-cost
and high-performance GaN power devices. Previous stud-
ies have shown that high-performance AlGaN/GaN HEMTs
exhibit low storage charge and high V 2

BK/RON,SP [Baliga’s
figure-of-merit (FoM)], which can be employed for power
conversion systems to achieve high switching speed and high
efficient [4]–[6].

However, one issue raised for the GaN-on-Si devices is the
rapid increase of buffer leakage current when a large drain
voltage is applied, which causes transistor breakdown [7].
Significant efforts on buffer growth technology of GaN-on-Si
structure have been made to enhance breakdown voltage, such
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as increasing the buffer thickness and using compensated
C- or Fe-doped buffer layers [8]–[13]. In addition to the
study in material side, it has been shown that the source/drain
metallic contact is also critical to device premature
breakdown [14]–[16]. The alloy spikes underneath the ohmic
contact could cause the undesired local E-field peaks, result-
ing in leakage current [17]. Different approaches of contact
engineering were proposed to manipulate the E-field near
contacts to improve the buffer breakdown and gate–drain
breakdown, such as Si-doping [17] and Schottky contact tech-
nology [14]. The Schottky drain device exists a nonzero onset
voltage VON (typical ∼1 V) even with recess technique, which
causes the increased ON-resistance RON [14], [15]. In general,
using Schottky contact to replace ohmic contact in HEMTs
will encounter the problem of increased ON-resistance, but the
overall performance can still be effectively improved, espe-
cially for high-voltage applications. In our previous studies,
we proposed using the hybrid Schottky–ohmic drain contact
to enhance breakdown voltage without obvious degradation of
RON for GaN-on-Si HEMTs by manipulating the electric field
distribution near the contact edge [18]. A zero VON can be also
obtained.

In this paper, we further focus on the analysis and optimiza-
tion of Schottky–ohmic drain design. More physical insight of
the observed trends is provided, and how the E-field is manip-
ulated around the drain electrode is explained. The transistors
with various Schottky electrode extensions Lext are char-
acterized using different measurements, such as breakdown
voltage, ON-resistance, and gate lag. The tradeoffs among
different transistor parameters are discussed, and the design
for improved overall device performance is recommended.

II. DEVICE DESIGN AND FABRICATION

The cross sections of the AlGaN/GaN HEMTs on
Si substrate with the proposed hybrid ohmic–Schottky
drain structure are shown in Fig. 1. The epitaxial layer
of AlGaN/GaN heterostructure was grown on a 3-in Si
substrate (provided by Nippon Telegraph and Telephone
Corporation-Advanced Technology). The wafer consists of a
1-μm unintentionally doped (UID) layer (including buffer and
GaN channel), followed by a 24-nm UID Al0.25Ga0.75N barrier
layer. The hall mobility and the sheet carrier concentration are
1519 cm2/V · s and 8.6×1012 cm−2 (provided by the vendor),
respectively, which results in a calculated sheet resistance
of 478 �/�.

The mesa isolation was done by inductively coupled
plasma using Cl2/Ar mixture gas with an etching depth
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Fig. 1. ON-state current mechanism of AlGaN/GaN HEMTs with
hybrid Schottky–ohmic drain. (a) When Schottky drain diode is
OFF (VDS < VON,SK), the current flows only via ohmic conduction.
(b) When Schottky drain diode is ON (VDS > VON,SK), the current via
Schottky electrode rapidly increases.

of approximately 300 nm. The ohmic metal was deposited
with Ti/Al/Ti/Au by e-beam evaporation and liftoff process,
followed by rapid thermal annealing at 800 °C for 30 s in
the N2 ambient. The metal stack of Ni/Au was deposited
to form the Schottky gate contact. Finally, a multilayer
surface passivation composed of SiN/SiO/SiN was deposited
by Plasma-Enhanced Chemical Vapor Deposition at 300 °C
(with a total thickness of ∼0.5 μm). Note that the devices with
conventional ohmic drain, pure Schottky drain, and hybrid
Schottky–ohmic drain electrodes were all fabricated on the
same die simultaneously and in a close proximity to ensure
a fair comparison. In addition, the square-gate layout was
adopted to suppress the gate leakage current and mitigate
trapping effect originating from the dry etching damage at
the sidewall of mesa edge [19]. It should be emphasized that
the Schottky gate metal was also utilized as the Schottky
drain metal by the same photomask. This self-aligned Schottky
extended technique is an effective way to avoid the lateral
metal overflow near the edge of drain ohmic contact during
the process.

As shown in Fig. 1, the Schottky portion of the drain metal
is directly deposited above the ohmic contact with an extension
length Lext toward the gate. The metal spikes underneath
the ohmic contact are also emphasized in the figure. Note
that the hybrid drain contact can be viewed as a Schottky
diode in parallel connection with the ohmic contact at the
drain terminal, which forms dual conductive paths and results
in a nearly zero drain onset voltage. The extended Schottky
drain metal has a smooth interface with the AlGaN layer,
functioning similar to a �-shaped drain field plate. As a result,
it can provide a more uniform E-field distribution at the edge
of drain contact, alleviate the E-field crowding at the sharp
points of the spikes, and improve VBK.

III. RESULTS AND DISCUSSION

The fabricated GaN-on-Si HEMTs are with a gate length LG

and a gate–source spacing LGS both of 2 μm. The gate–drain
spacing LGD varies from 5 to 20 μm, but with the same total
gate width of 400 μm. All the devices are depletion mode
with a threshold voltage VTH of ∼−3 V.

A. ON-State Characteristics

Fig. 2 compares IDS–VDS characteristics at VGS = 1 V for
different type devices, where Lext varies from 1 to 5 μm,

Fig. 2. Comparison of IDS–VDS characteristics for three types of devices
with LGD = 5 μm at VGS = 1 V.

Fig. 3. Normalized RON as a function of Lext for LGD of 5, 10, and 15 μm.

but LGD keeps identical to 5 μm. With a pure Schottky drain,
the device shows a typical onset voltage of ∼1 V, and VON is
zero for the conventional ohmic drain device as expected. With
the additional Schottky metal in the hybrid drain transistor,
zero onset voltages can also be obtained due to the dual current
paths. Note that the GaN HEMTs showed VON ∼ 0.5 V even
with Schottky–ohmic drain electrode due to the additional
F− ions underneath the Schottky drain [20].

In the low VDS bias region, the knee voltage gradually
increases with Lext, while the drain current changes in an
opposite trend due to the increased voltage drop in the drift
region underneath the extended Schottky electrode, as shown
in Fig. 2. In addition, a dual-slope I–V characteristic in the
linear region can be observed for the hybrid drain devices due
to the combination of linear ohmic and nonlinear Schottky
behaviors. When VDS further increases to the high VDS bias
region, similar saturation current levels can be achieved for
both Schottky drain and hybrid drain devices, compared
with the ohmic drain devices. The results are consistent
with [14] and [15].

The RON,sp (specific ON-resistance) can be calculated from
the I–V curves, as shown in Fig. 2. The active area between
the source and the drain is used for RON,SP calculation,
where a transfer length from the source/drain pads of 1.5 μm
is included. Fig. 3 shows the normalized RON (defined as
RON,Lext/RON,ohmic) with LGD = 5, 10, and 15 μm for the
three type devices as a function of Lext. Note that the RON,ohmic
is 1.32, 1.72, and 2.12 m� · cm2, respectively, for the
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Fig. 4. OFF-state drain leakage current with Lext = 2 μm (VGS = −5 V).

three different LGD. Based on the measured results from the
Transmission Line Model test, the contact resistance RC is in
the range of 1–2 � · mm, which is one important factor for
the observed relatively high ON-resistance.

The ON-resistance increases with Lext from the pure ohmic
drain devices (i.e., Lext = 0) toward the pure Schottky
drain devices. It should be pointed out that RON,sp increases
relatively slow with smaller Lext. However, the increase
of RON,sp becomes more significant as Lext increases up
to ∼4–5 μm. For example, the degradation of RON in the
hybrid drain devices (LGD = 5 μm) is kept below 3%
as Lext ≤ 3μm, whereas that increases up to ∼13% as
Lext becomes 5 μm. This trend is similar for devices with
LGD = 10 and 15 μm. As the Schottky drain portion of the
total electrode increases, more E-field lines will concentrate on
the Schottky drain metal, and the ratio of Schottky conduction
in the total drain current gradually becomes dominant.
In addition, the effective drift length is increased
(Ldrift,eff = Lext + LGD) for ohmic conduction. Both factors
lead to increased channel resistance and knee voltage. Once the
Schottky extension Lext exceeds a certain length, the E-field
lines across the ohmic contact are shielded effectively. As
a result, the decreased ohmic current and increased knee
voltage and hence RON become more significant. The result
suggested that the design parameter Lext should be kept
relatively small to prevent significant RON degradation.

B. OFF-State Characteristics

The OFF-state breakdown voltage VBK (defined by the drain
current at 1 mA/mm) and IDS–VDS curves were measured
under the three-terminal condition with a floated substrate in
the Fluorinert liquid. Fig. 4 shows the leakage current of the
ohmic drain and hybrid drain (Lext = 2 μm) devices with
three different LGD. Compared with the ohmic drain devices,
the hybrid drain structure can suppress the drain leakage
current by about one order of magnitude. Fig. 5 shows the
dependence of measured VBK (at VGS = −10 V) on Lext for
LGD = 5 and 10 μm, and also the results of pure ohmic and
Schottky drains (average from three typical devices with the
error bar shown). With Lext = 2 μm, VBK can be improved
by ∼119 V (60%) and ∼100 V (28%) for LGD = 5 and
10 μm, respectively. The enhanced VBK of the hybrid drain
devices will eventually saturated as Lext ≥ 3 μm, and the

Fig. 5. Measured OFF-state breakdown voltage VBK (VGS = −10 V) as a
function of the extended Schottky drain length Lext .

value is similar to that of the pure Schottky drain devices.
With the optimized extended length (Lext = 2–3 μm in this
experiment), the twin peaks of E-field at the edge of Schottky
drain metal and at the sharp point of spike around the edge
of ohmic contact can be somehow balanced, which leads
to the highest improvement of VBK. Although not shown in
Fig. 5, the devices with LGD = 15 and 20 μm have a similar
improvement in VBK of ∼30 V compared with the ohmic drain
devices.

The measured results suggest that the device breakdown is
dominated by the gate leakage current (gate–drain breakdown)
in the devices with a relatively small LGD (i.e., LGD of
5 and 10 μm). As the device becomes limited by the buffer
leakage, i.e., VBK saturates even with further increased LGD,
improved VBK can still be observed in the hybrid drain
devices but not as significant. The results imply that the lateral
E-field between the gate and drain electrodes does not domi-
nant VBK anymore. Instead, the vertical E-fields between the
contact electrodes and the substrate at both source/drain sides
determine the breakdown voltage. However, the manipulated
E-field around the drain side with alleviated E-field peak
values around the spikes can still help to suppress the buffer
leakage to a certain extent, and therefore the devices still show
an improved breakdown voltage even when LGD ≥ 15 μm.
Although the VBK of the GaN-on-Si devices will eventually be
limited by the buffer, the proposed hybrid drain design demon-
strates a significantly improved device breakdown voltage with
only slightly increased RON before the device reaching the
buffer breakdown limitation. It should be emphasized that
this approach can also work for devices to achieve higher
breakdown voltages if a thicker buffer is employed, which has
been demonstrated in [18] with a 4.8 μm buffer thickness.

Fig. 6 plots the measured VBK versus RON,SP of the three
types of devices with Lext = 2 μm. Compared with the ohmic
drain devices, the hybrid drain devices with Lext = 2 μm
achieve 60% and 28% improvements in VBK with small
degradations of 1.3% and 4.4% in RON for LGD = 5 and
10 μm, respectively. Fig. 7 compares the Baliga’s FoM
of this paper with the previously published GaN-based
devices [3], [14], [20], [21]. The FoM of the proposed
devices can be further improved by optimization of the
contact resistance and also with improved epitaxial layer
quality of lower sheet resistance.
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Fig. 6. Measured VBK versus RON,sp of the Schottky drain, ohmic drain,
and hybrid drain devices with Lext = 2 μm and LGD = 5, 10, and 15 μm
for comparison.

Fig. 7. Comparison of the FoM (V 2
BK/RON,sp) for the proposed hybrid

drain devices (Lext = 2 μm and LGD = 5, 10, and 15 μm) with other
GaN-based devices in the previous publications.

C. Gate-Lag Measurements

The current collapse characteristics and surface trapping
effects for AlGaN/GaN HEMTs with different drain electrode
structures were investigated by gate-lag measurements using
the Tektronics curve tracer 370B. It is important to investigate
the impact of hybrid drain design on trapping effect and cur-
rent collapse, which is closely related to device reliability [22].
Two different gate pulsewidths of 80 and 300 μs were
applied for the measurements (default values available from
the curve tracer). The gate voltage was pulsed from −5 V
(∼VTH − 2 V) to 1 V, and the drain voltage VD was applied
within 16 V under a fixed power compliance. To avoid the
complications of device self-heating effect at high VDS, the
normalized RON is used to analyze the surface trapping effect
in these measurements. The normalized RON is defined as
RON,pulse/RON,DC, where RON,pulse is obtained at VGS = 1 V.

Fig. 8 shows the dependence of normalized RON on Lext.
As can be observed, the ohmic drain device shows a relatively
small current collapse phenomenon. On the other hand, the
reduction of drain current in the linear region and shift of
the knee voltage can be clearly observed for the Schottky
drain devices leading to a much increased RON dispersion.
In addition, the trend becomes more obvious as the pulsewidth
reduces. Note that the gate lag with a relatively small VD was
used to investigate the surface trapping effect for devices with

Fig. 8. Normalized RON versus Lext in pulsewidths of 80 and 300 μs.

Fig. 9. Location of surface traps in hybrid drain devices responsible for the
observed current collapse when the device is in OFF-state.

three different drain contacts. It is believed that the drain lag or
gate lag under a higher drain bias condition is more sensitive to
the deep traps near the buffer layer [23]. Similarly, it has been
reported that the dynamic RON is mainly related to the trapping
states in the buffer layer [24], [25], and hence it is strongly
dependent on the drain voltage. In this paper, the devices are
all with the same buffer layer but different metal/GaN interface
in the drain side. It is reasonable to exam the gate-lag effect
with a relatively small drain voltage to identify the impact of
various drain contacts on surface trapping effects.

In typical AlGaN/GaN HEMTs, the surface trapping effect
mainly comes from the surface traps in the gate–drain drift
region and/or underneath Schottky gate, which can be mainly
attributed to the issue of surface passivation and the locations
of peak E-field. The measured results of conventional ohmic
drain devices indicate that the contribution of traps in the
gate–drain region and those underneath the Schottky gate
are not significant, which may be attributed to the careful
passivation process in our devices. The results suggest that
the main location of traps should be at around the Schottky
drain contact, as shown in Fig. 9. Note that the asymmetric
band diagram for electrons injection due to different gate and
drain bias conditions could be responsible for the occurrence
of trapping effects in the drain Schottky electrode instead of
the Schottky gate in these devices, considering both electrodes
are processed at the same time and the process variation is
not an issue here. It should be mentioned that the dispersion
of RON−Pulse becomes more significant as Lext increases up
to ∼4–5 μm. This trend is similar with the dependence of
RON,DC on Lext (Fig. 3), which may also be attributed to
the manipulated E-field around the hybrid drain contact. Once
Lext exceeds a certain value, in addition to the drain-side gate
edge, the high E-field also occurs at the edge of Schottky
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drain extension. The high E-field region can easily induce
severe surface trapping effect, since the carriers sufficiently
gain high energy and jump into the deep-level traps. The
trapping effects in the Schottky drain or a hybrid drain
structure have not been clearly discussed in previous studies.
With also a hybrid Schottky–ohmic drain electrode but
F− ion implemented in the channel, Zhou et al. [20] reported
that the devices did not show adverse effects in current
collapse, compared with conventional HEMTs.

IV. CONCLUSION

In this paper, the hybrid Schottky–ohmic drain structure
in GaN-on-Si HEMTs was analyzed in detail. The effects
of extended Schottky electrode on transistor characteris-
tics were investigated by various transistor parameters, such
as RON, VBK, and leakage current. In addition, the correlation
between the extended Schottky drain and the trapping effects
was examined by gate-lag measurements. The physics behind
the observed trends were explained and discussed. The results
suggested that Lext of 2–3 μm was the optimized design
for the most improved transistor performance. Without any
additional photomasks and process steps, the hybrid drain
design forms a �-shaped electrode to improve the breakdown
voltage up to 60% with only 3% RON degradation.
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