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Direct measurement of time-frequency analogs of sub-Planck structures
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Exploiting the correspondence between the Wigner distribution function and the frequency-resolved optical
gating (FROG) measurement, we experimentally demonstrate the existence of chessboardlike interference
patterns with a time-bandwidth product smaller than that of a transform-limited pulse in the phase-space
representation of compass states. Using superpositions of four electric pulses as the realization of compass
states, we have shown via direct measurements that displacements leading to orthogonal states can be smaller
than limits set by uncertainty relations. In the experiment we observe an exactly chronocyclic correspondence to
the sub-Planck structure in the interference pattern appearing for the superposition of two Schrödinger-cat-like
states in a position-momentum phase space.
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I. INTRODUCTION

It is the superposition principle that leads to interference
and diffraction phenomena, determining the evolution of wave
packets in classical and quantum systems. When applied to
macroscopic objects, the interpretation paradox of the wave
function in superposition arises from Schrödinger’s gedanken
experiment on cat states [1]. By a Schrödinger-cat-like state
in quantum optics, one usually understands the coherent
superposition of two coherent states, say, |α〉 + | − α〉. Ex-
perimentally, such superpositions were created, e.g., in atomic
and molecular systems [2,3], superconducting circuits [4,5],
and quantum optical setups [6,7]. It has been noted by
Zurek [8] that a superposition of two Schrödinger-cat-like
states (four coherent states in total, |α〉 + | − α〉 + |iα〉 +
| − iα〉, a so-called compass state) in a Wigner phase-space
description [9] gives rise to an interference structure that
changes rapidly on an area smaller than a Planck’s constant
�. The result is counterintuitive because the Heisenberg’s
uncertainty principle sets a limitation on the simultaneous
resolutions in two conjugate observables.

It turns out that the sub-Planck structure determines the
scales important to the distinguishability of quantum states [8],
and, thereby, potentially has an impact on an ultrasensitive
quantum metrology [10,11] and could affect the efficient
storage of quantum information [12,13]. In principle, these
sub-Planck structures could be used to improve the sensitivity
in weak-force detection [14,15] and to help maintain a high
fidelity in continuous-variable teleportation protocols [16,17].
In practice, the classical wave optics analogs of sub-Planck
structures in the time-frequency domain were observed exper-
imentally so far only for the superposition of two Gaussian
pulses [18,19]. Obviously, a single Schrödinger-cat-like state
offers a sensitivity to the perturbations only in one direction:
perpendicularly to the line joining the coherent states. To pro-
vide sensitivity in all directions, another pair of coherent states
is needed. Theoretical proposals for the generation of compass
states include interactions in cavity-QED systems [13,20],
evolution in a Kerr medium [21,22], and fractional revivals
of molecular wave packets [23]. Nevertheless, there was
no experimental proof in the more complex and demanding

case of the superposition of four pulses. The main technical
challenge in the preparation of states separated simultaneously
in two conjugate coordinates comes from the difficulty in
keeping the coherence among them. Furthermore, performing
measurements of such tiny phase-space structures is far from
trivial.

In this article, we report a direct measurement of a compass
state superposition of four optical pulses and the correspond-
ing interference pattern in the time-frequency domain. The
mathematical equivalence between the electric field of an
ultrashort pulse and the quantum mechanical wave function
of the same shape enables us to observe the phase-space
structures through the time-dependent spectrum of light. The
experimental data obtained from frequency-resolved optical
gating (FROG) measurements of light pulses reveal sub-
Planck structure analogs corresponding directly to the compass
states. In the interference patterns, areas smaller than those
of transform-limited pulses are measured, illustrating that
displacements leading to the orthogonality of compass states
can be smaller than the Fourier limit imposed on the pulses
forming these superpositions.

II. EXPERIMENTAL SETUP

As illustrated in Fig. 1(b), in our second-harmonic gen-
eration (SHG) FROG measurement [24] the input optical
pulse E(t) is split into two replicas with a tunable time
delay by passing through a standard Michelson interferometer.
These two mutually delayed replicas mix in a χ (2) nonlinear
crystal, such as the barium borate (BBO) crystal used in our
experiment. Then, a spectrally resolved sum frequency signal
is recorded for each time delay τ . The resulting time-frequency
map (spectrogram) implemented by a nonlinear self-optical
gating mechanism can be formulated as the following function
for an initial field E(t):

IFROG
E (τ,ω) =

∣∣∣∣
∫ ∞

−∞
E(t)E(t − τ )eiωt dt

∣∣∣∣
2

. (1)

For pulses with real envelopes and a linear phase, the spec-
trogram (1) is easily mapped to the Wigner quasiprobability
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distribution W (q,p) [9]

W (q,p) = 1

π�

∫ ∞

−∞
e2iξp/� F (q − ξ )F ∗(q + ξ )dξ (2)

as

IFROG
E (τ,ω) ∝ |W (τ/2,ω/2)|2. (3)

Here, F ∗(q) denotes the complex conjugate of F (q), � is set
to 1, and our time and frequency domains are represented by
(τ,ω). Moreover, under these conditions, all cross sections of
the FROG spectrogram correspond to a scalar product between
the probe state E(t) and its “twin” appropriately shifted in
time or frequency [18,25]. Thus, zeros of the cross sections
appear for these values of time and frequency shifts that lead
to orthogonal states. In the following, we check the scale of the
phase-space displacements resulting in distinguishable states
based on this property. Let us stress that the data presented
here come from direct spectrogram measurements and, unlike
typical FROG applications, do not involve steps of state
reconstruction.

In our experiment, an Er-doped fiber laser with a 1564 nm
center wavelength, 37 nm spectral bandwidth, and 5.68 MHz
repetition rate is used as the light source. To construct a
compass state, i.e., the superposition of four coherent states, a
pulse shaper is introduced to split the input pulse in both time
and frequency domains, as illustrated in Fig. 1(a) [26]. Here, a
telescope is employed to improve the spectral resolution of the
pulse shaper by expanding the beam diameter from 2.8 mm (at
the collimator) to 4.5 mm. The input pulse is directly shaped
in the frequency domain, through a set of grating, lens, and a
spatial light modulator (SLM). The whole spectrum occupies
320 pixels in the SLM, and the throughput of our pulse shaper
is around 30%. The spectral separation is realized by blocking
the central range of the input spectrum [see Fig. 2(a)], while
the temporal separation 2t0 is achieved by imposing an extra

FIG. 1. Schematic view of our experimental setup, where, with
the help of a pulse shaper, a superposition of pulses is created and then
measured in a SHG FROG setup. The resulting FROG spectrograms
are presented in Figs. 3 and 4. Here, (a) a pulse shaper composed of a
set of grating, lens, polarization maintain (PM) circulator, polarization
maintain (PM) collimator, and spatial light modulator (SLM);
(b) SHG FROG composed of a beam splitter (BS) and a motorized
stage in one arm to control the time delay τ , a nonlinear crystal (BBO)
for the second-harmonic generation (SHG), and a spectrometer.

FIG. 2. Typical experimental profiles for our compass states are
shown as a function of (a) relative frequency νr = ω/(2π ) and (b)
time t . Here, the four pulses are concurrently separated by ω0/π =
3.3 THz in frequency and 2t0 = 4 ps in time.

mask function MSLM(ω) = cos(ωt0)e−iωt0 via the SLM [27].
The spectrally and temporally separated coherent pulses are
further made transform limited by compensating the residual
spectral phase via the phase modulation function of the pulse
shaper. The power spectrum and temporal intensity of an
example are shown in Figs. 2(a) and 2(b), respectively. In total,
an initial laser spectra was divided into four pulses separated
simultaneously by 2ω0 in frequency and 2t0 in time, i.e., shaped
into our time-frequency representation of the compass state.
In our experiments, the spectral resolution is about 0.1 nm,
while the delay step size is 6.8 fs. For practical reasons, in the
experiment, the separation between pulses in frequency was
kept constant while the time separation 2t0 varied from 1.5 to
5 ps.

In the ideal case, when the pulses cut from the initial laser
spectrum have Gaussian envelopes, the state generated in a
pulse shaper has the form

Ein(t) � e−(t−t0)2−i(ω−ω0)t + e−(t+t0)2−i(ω−ω0)t

+e−(t−t0)2−i(ω+ω0)t + e−(t+t0)2−i(ω+ω0)t , (4)

where 2t0 and 2ω0 are the time and frequency separations
between the Gaussian peaks. For clarity of notation, normal-
ization coefficients and parameters denoting the width of the
wave packets are omitted in Eq. (4). Depending on the context,
in the following, we will use either a regular frequency ν or
the corresponding angular frequency ω = 2πν. The compass
state Ein(t) from Eq. (4) is constructed as a superposition
of two mutually delayed pairs of pulses with the same carrier
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FIG. 3. Compass state in the phase space obtained by (a) a
FROG map measured for t0 = 2 ps, and (b) the numerical simulation
calculated for a superposition of four identical Gaussian pulses.

frequency in each pair. The superposition of pulses created in a
pulse shaper is then measured in the FROG setup. The resulting
spectrograms are presented in Figs. 3 and 4, which correspond
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FIG. 4. Zooms of the central interference structure of FROG maps
measured for (a) t0 = 1.25 ps, (b) t0 = 1.75 ps, and (c) t0 = 2.5 ps.
As a comparison, the corresponding simulations calculated for the
compass states built from perfect Gaussian pulses are shown in (d)–
(f), respectively.

to the original compass states from the Zurek paper [8] rotated
by π/4 in the phase space.

III. THEORETICAL ANALYSIS

A comparison between a theoretical simulation and exper-
imentally obtained time and frequency phase-space maps of
compass states is presented in Fig. 3, where spectrograms
corresponding to the same time and frequency separation
between the cat states are plotted. Experimental data from
SHG FROG spectrogram measured for t0 = 2 ps are shown in
Fig. 3(a), while the theoretical plot calculated analytically for
perfect Gaussian pulses is presented in Fig. 3(b). In addition
to four peaks representing Gaussian wave packets and located
at the four corners of the plots, the characteristic patterns
of interference fringes are clearly visible between every two
of the peaks. Moreover, in the center of four perimeters, a
chessboardlike interference pattern appears. In the following,
we will verify that for a large enough separation between
the peaks this chessboardlike pattern is constructed from
areas smaller than 	τ	ω = 1/2 indicated by the uncertainty
relation, which would correspond to sub-Planck areas in the
position-momentum phase space. The shape of our pulses is
obtained by cutting the laser spectra, and a slight discrepancy
between the patterns formed by the real experimental profiles
and the theoretically considered ideal Gaussian pulses can be
seen between Figs. 3(a) and 3(b).

In the Wigner representation of a compass state, the middle
interference pattern is built up from small rectangles of
alternating positive and negative values of the function. Even
though recordings in the FROG spectrograms take on only
non-negative values, areas of the above-mentioned rectangles
remain the same, i.e., the distances between subsequent zero
lines do not change. For a large enough separation distances
between pulses forming the superposition, these areas grow
smaller than the area unit defined by the elementary uncertainty
relation. In quantum mechanical version, the area unit is equal
to �/2, while in a chronocyclic phase space, it is simply 1/2. It
is worth noting that even for smaller separation distances the
“sub-Fourier” areas might appear in the FROG maps, namely,
areas smaller than those corresponding to dispersion 	τ	ω

calculated for any of the pulses forming the compass state
superposition.

To demonstrate how the interference structure appearing
in the middle of the FROG maps changes with a change
in the initial parameters, zooms of the central parts of the
spectrograms for different time separations between pair of
pulses are presented in Fig. 4. Figure 4 shows the zoom of the
central interference patterns obtained from the FROG traces
for (a) t0 = 1.25 ps, (b) t0 = 1.75 ps, and (c) t0 = 2.5 ps.
The corresponding theoretical plots made for superpositions
of four identical Gaussian pulses are shown in Figs. 4(d)–4(f),
respectively. The comparison serves to illustrate that areas
between zero lines of FROG maps indeed decrease with an
increasing separation between the pair of pulses. Again, owing
to imperfections, the amplitudes of the pulses used in the
experiment were not the same and the resulting interference
patterns measured are not symmetric with respect to the central
wavelength line.
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FIG. 5. (a) A central frequency (ν = 383.36 THz) cross section
of the FROG map measured for t0 = 2.5 ps. Here, blue dots depict the
measured intensity values for a given time delay τ introduced between
two input state copies in the arms of the FROG apparatus. (b) Average
areas 	τ	ω of the rectangles appearing between the zero lines in the
interference structure of the central part of the FROG maps. Values
depicted by red or gray dots correspond to two independent sets of
experimental data, respectively. The region below the uncertainty
relation limit of 0.5 is denoted in yellow.

Finally, let us examine the cross section of the FROG
map measured for t0 = 2.5 ps along the central wavelength
λ = 782 nm (ν = 383.36 THz) presented in Fig. 5(a). As
mentioned before, the cross sections of the FROG spectro-
grams give values of the scalar product of a probe field
with its ideal copy, but shifted in phase space in a direction
perpendicular to the direction defining the cross section. It is
clearly seen that the values of the function plotted in Fig. 5(a)
decrease to zero between the subsequent peaks. A time shift
equal to one half of the distance between the zeros results
in superpositions orthogonal to the initial compass state. This
result is complementary to the one reported in Ref. [18], where
zeros in cross sections defined by τ = 0 were shown. Fig-
ure 5(b) demonstrates how average areas 	τ	ω of individual

rectangles forming the central interference pattern change with
a change in parameter t0. The average values of 	τ	ω plotted
in Fig. 5(b) are calculated for two independently collected
sets of data (depicted by gray or red dots, respectively).
These two sets of data are measured for slightly different
pulse shapes and differently set time delay resolutions, i.e.,
different values of the smallest stage-motor step. It is clearly
seen that in both cases, for larger separation distances, the
areas between zeros indeed reach below the limit imposed
by the uncertainty relation. These areas exactly determine a
scale of smallest change, ensuring the distinguishability of
the mutually shifted states. In principle, there are no limits
on how small the interference areas could get. The larger
distance is between superposed states, the smaller the size of
the chessboard pattern is obtained. However, in practice, the
limitation lies in maintaining coherence between superposed
states. When they are far apart, maintaining coherence is more
difficult and without coherence no interference pattern can be
observed. As a last point, we would like to underline that the
uncertainty relation is not violated. What we prove here is that
a sub-Fourier change of the initial state (shift in frequency
and/or time) is enough to produce a state orthogonal to the
initial superposition. In the quantum mechanics this leads to a
perfect distinguishability of states.

IV. CONCLUSION

In summary, using correspondence between FROG maps in
a chronocyclic phase space and the Wigner distribution func-
tion, we have demonstrated the existence of the interference
structure that changes on areas smaller than that of a transform-
limited pulse. We have performed FROG measurements of the
compass states realized through superpositions of four light
pulses constructed with the help of a spatial light modulator
(SLM), by manipulating the phase difference in the spectrum.
The interpretation of the FROG spectrograms as maps of the
values of a scalar product between probe pulses and their
shifted copies allowed us to show explicitly that the scale
of the changes leading to the orthogonality of states indeed
goes below the Fourier limit if sufficient time and frequency
separations are simultaneously kept between the input pulses.
The sub-Planck structure of the interference pattern in a
phase-space representation of the compass states not only
manifests itself as a generalized Schrödinger’s cat state, but
also provides the platform to exploit quantum metrology and
quantum information processing through ultrafast optics.
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