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We propose a noniterative data inversion process for the phase retrieval by omega oscillating filtering method that
could measure both isolated attosecond pulses and periodic optical arbitrary waveform (OAW). The built-in phase
modulation depth recovery not only prevents the need of independent calibration (a critical advantage in the ex-
treme ultraviolet regime) but provides a self-consistency check for the data integrity. Our experiments successfully
retrieved OAW with ∼100% duty cycle in the near infrared regime. © 2013 Optical Society of America
OCIS codes: (320.7100) Ultrafast measurements; (120.5050) Phase measurement; (140.7240) UV, EUV,

and X-ray lasers.
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Optical arbitrary waveforms (OAW) [1] that can span
the entire repetition period (100% duty cycle) have been
applied to radiofrequency (RF) photonics [2] and gener-
ation of ultrahigh-rate pulse trains [3]. However, OAW
cannot be fully characterized by conventional pulse
measurement techniques that need to split the signal
pulse into two isolated replicas [4–6]. Dual-quadrature
spectral shearing interferometry [7], dual-quadrature
spectral interferometry [8], and parallel optical homo-
dyne detection followed by high-speed digitization [9]
have been experimentally used in characterizing OAW in
the near-infrared (NIR) regime. However, they are subject
to lower sensitivity (due to the need of nonlinear optics)
and requirement of well characterized reference pulse,
respectively. These limitations would restrict their appli-
cations in measuring attosecond pulses in the extreme
ultraviolet (EUV) regime. A novel OAW-compatible tech-
nique based on linear phasemodulationwas proposed and
successfully measured NIR pulse train of 33% duty cycle
[10,11]. The spectral phase is algebraically retrieved by
using four power spectra taken under weak sinusoidal
temporal phase modulation in phase increments of π∕2.
However, the phase modulation depth needs to be inde-
pendently calibrated by CW interference or fitting the
spectral shape of the RF-modulated CW light. These pro-
cedures need extra effort and are difficult to implement
in the EUV regime. Phase retrieval by omega oscillation
filtering (PROOF) [12] was recently developed and used
in characterizing the record short (67 as) isolated EUV
pulse [13]. In practice, PROOF is OAW compatible, free
of nonlinear optics, and only needs a trivial reference
(weak temporal phase modulation). In addition to these
common merits enjoyed by the linear phase modulation
method [10], PROOF is particularly attractive in measur-
ing EUV waveforms, for it does not need to calibrate the
phase modulation depth. However, the recursive and
evolutionary phase-retrieval algorithms shown in [12] are
subject to the π-phase ambiguity for adjacent frequency
components (due to the inverse sine relation) and in-
creased complexity, respectively. In this Letter, we pro-
pose a nonambiguous recursive data inversion process

with built-in modulation depth recovery (or self-consis-
tency check) for the PROOF method. Experiments were
carried out for measuring OAW in the NIR regime, but the
new approach is readily applicable to measurement of
attosecond EUV pulses.

Assume the complex temporal and spectral envelopes
of the unknown pulse as a�t� and A�ω�≡ Ffa�t�g≡
U�ω�ejψ�ω�, where U�ω� (normalized to unit peak) can be
obtained by an optical spectrum analyzer (OSA). A peri-
odic temporal phase modulation ϕ�t� � Φ cos�ωmodt�
is applied to the variably delayed unknown pulse
[Fig. 1(a)], where ωmod∕�2π� � fmod has to match the
repetition rate when measuring a periodic pulse train
(discrete spectrum). The phase-modulated temporal
envelope is approximated by

a0�t; τ�≡ a�t − τ� × ejϕ�t� ≈ a�t − τ� × �1� jϕ�t��
� a�t − τ� × �1� j0.5Φ�ejωmodt � e−jωmodt��;

Fig. 1. (a) Schematic of noniterative PROOF method. (b) The
power spectrum (shaded), the assumed (solid), and retrieved
(open circles) spectral phases. (c) rms phase error versus
phase modulation depth at SNR values of infinity (circles),
100 (squares), and 10 (crosses), respectively. All the figures
are obtained by simulation with the frequency comb shown
in (b) and Φ � 0.1 rad.
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if the modulation depth is weak (Φ ≪ 1). The PROOF
trace I�ω; τ� (normalized to unit peak) is formulated by
b × I�ω; τ�≡ jA0�ω; τ�j2, where jA0�ω; τ�j2 ≡ jFfa0�t; τ�gj2.
If a periodic OAW with ∼100% duty cycle is measured
(as in this work), the raw PROOF trace is concatenated
along the τ axis to span multiple repetition periods
to facilitate the subsequent demodulation process
[Fig. 1(a)]. Fourier transform of b × I�ω; τ� with respect
to τ gives three components centered at delay-angular
frequencies ωτ�� 2πf τ� of 0, �ωmod, �2ωmod [Fig. 1(a)],
where the DC component is

b × I0�ω� � U2�ω��0.25Φ�U2�ω −ωmod� �U2�ω�ωmod��:
(1)

As a result, the two unknown constants fΦ; bg can be
solved by two algebraic equations arising from sampling
Eq. (1) at two optical frequencies. The data integrity can
be verified by comparing the solutions of fΦ; bg due to
different sampling frequency pairs. The demodulated
first-harmonic component (at ωτ � �ωmod) of the scaled
PROOF trace is

b × I�1�ω� � −j0.5Φ × U�ω�
× fU�ω� ωmod�ej�ψ�ω�−ψ�ω�ωmod��

− U�ω − ωmod�ej�ψ�ω−ωmod�−ψ�ω��g: (2)

Assuming ψ�0� � ψ�ωmod� � 0 and substituting ω � 0,
ωmod into Eq. (2), one can calculate two neighboring
phases ψ�−ωmod� and ψ�2ωmod�. The spectral phase func-
tion ψ�ω� (except for unimportant constant and linear
components) can be reconstructed recursively.
A phase-modulated continuous-wave (PMCW) fre-

quency comb with 20 GHz line spacing [3] was used in
the simulation. Figure 1(a) shows the (noise-free) raw,
concatenated, and transformed PROOF traces obtained
by using a0�t; τ� � a�t − τ� × ejϕ�t� andΦ � 0.1 rad, where
each τ- or ωτ-dependent trace is individually normalized
for the sake of visualization. The transformed trace ex-
hibits three well-separated components around ωτ � 0,
�ωmod; even the waveform has ∼100% duty cycle. The
mean μΦ and standard deviation σΦ of the 16 solutions
of Φ obtained by sampling Eq. (1) at 16 frequency pairs
are 0.0997 rad and 5.77 × 10−4 rad, corresponding to a
relative uncertainty εΦ (≡σΦ∕μΦ) of 0.58%. The accuracy
of measurement is estimated by the intensity-weighted
root mean square (rms) phase error εψ [14]. As shown
in Fig. 1(b), the difference between the assumed (solid)
and retrieved (open circles) spectral phases under the
conditions of noise-free and Φ � 0.1 rad is negligible
(εψ � 1.6 × 10−3 rad). In the presence of noise, large
phase error could arise if the modulation depth is too
strong or too weak due to violation of the approximation
�ejϕ�t� ≈ 1� jϕ�t�� or low fringe visibility of the PROOF
trace, respectively. Figure 1(c) illustrates the simulated
phase error εψ (5-time average) versus the modulation
depth Φ at different signal-to-noise ratio (SNR) values
(defined as the signal power to the noise power of the
17 comb lines) generated by the additive Poisson noise
model [14]. Phase error as small as 0.036 rad can still

be obtained at the minimum SNR (10) required by the
iterative PROOF method [12]. A larger SNR permits a
smaller εψ -valley and a wider range of Φ within which
the resulting error is less than a specified tolerance of εψ .

Figure 2(a) shows our experimental setup. A 18 GHz
sinusoidal signal from an RF function generator drives
two phase modulators PM1, PM2. A CW laser (1 kHz
linewidth, centered at λ0 � 1545 nm, f 0 � 194.2 THz) is
modulated by PM1, generating a PMCW frequency comb
[shaded, Fig. 2(b)] with 11 spectral lines. The delay τ of
the signal pulse train is scanned for one repetition period
of 55.6 ps in increments of 1.39 ps by a line-by-line (LBL)
pulse shaper [1–3]. The output pulse is modulated by
PM2 coherently driven by the attenuated RF signal.
The phase-modulated power spectra at different delays
are recorded by an OSA to get the PROOF trace I�ω; τ�.
Sampling the DC component of the PROOF trace at
some frequency pair gives Φ � 0.27 rad. The relative
uncertainty εΦ of 10 retrieved modulation depths is
5.2%, proving the good integrity of the measured PROOF
trace. The fluctuated spectral phase [circles, Fig. 2(b)] of
the PMCW comb is measured by the noniterative PROOF,
then compensated by the LBL pulse shaper. The exper-
imentally measured intensity autocorrelation (IA) func-
tion of the phase-compensated pulse [solid, Fig. 2(c)]
agrees well with that of the ideal transform-limited (TL)
pulse obtained by simulation [dashed, Fig. 2(c)], confirm-
ing the high accuracy of the noniterative PROOF method
in characterizing the ∼100% duty cycle pulse [dotted,
inset of Fig. 2(c)].

Two extra spectral phases ψ1�ω�, ψ2�ω� were added
to the compensated TL pulse train via the same LBL
pulse shaper, and retrieved by the noniterative PROOF
method. Figures 3(a) and 3(b) illustrate the experimental

Fig. 2. (a) Experimental setup. PM1 and PM2, phase modula-
tor; PA, power amplifier; OSA, optical spectrum analyzer.
(b) Power spectrum (shaded) and the spectral phase retrieved
by PROOF (open circles) of the PMCW comb. (c) The IA func-
tions of the ideal transform-limited (TL) pulse (dashed) and
the phase-compensated pulse (solid), respectively. The inset
shows the temporal intensities of the TL (solid) and uncompen-
sated (dotted) pulses, corresponding to duty cycles of 13%
and ∼100%, respectively.
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results of a funnel-shaped phase ψ1�ω� [solid, Fig. 3(a)],
corresponding to a pulse train of 32% duty cycle [inset
of Fig. 3(b)]. The retrieved phase modulation depth and
its relative uncertainty are Φ � 0.29 rad and εΦ � 3.0%,
respectively. The reconstructed spectral phase [open
circles, Fig. 3(a)] agrees well with the applied one (solid),
corresponding to an rms phase error of εψ � 0.061 rad
(0.046 rad estimated by simulation under Φ � 0.29 rad).
The reliability of phase retrieval is independently con-
firmed by the good agreement between the simulated
and experimentally measured IA functions [Fig. 3(b)].
Figures 3(c) and 3(d) show the measurement results
of a third-order polynomial phase ψ2�ω� � −�6 ps2�ω2 �
�25 ps3�ω3 [solid, Fig. 3(c)], corresponding to a pulse
train of 16% duty cycle [inset of Fig. 3(d)]. Noniterative
PROOF retrieval gives Φ � 0.48 rad, εΦ � 3.4%, and a
spectral phase curve [open circles, Fig. 3(c)] with εψ �
0.17 rad (0.11 rad estimated by simulation under Φ �
0.48 rad). The good agreement between the simulated
and experimentally measured IA functions [Fig. 3(d)]
further confirms the accuracy of phase retrieval.

In summary, we proposed a noniterative data inversion
process for the PROOF method, which can be used in
measuring both isolated pulses and periodic OAW in
the NIR and EUV regimes. The built-in phase modulation
depth recovery is not only eliminates the need of inde-
pendent calibration (a critical advantage in the EUV
regime) but provides a self-consistency check for the
data integrity. The method was experimentally verified
by measuring three NIR periodic pulse trains with duty
cycles up to ∼100%.
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Fig. 3. (a) and (b) Measurement of ψ1�ω�. (a) Power spectrum
(shaded). The applied (solid) and retrieved (circles) spectral
phases. (b) Simulated (dashed) and experimentally measured
(solid) IA functions. The inset shows the temporal intensity.
(c), (d) Counterparts of (a), (b) for the measurement of ψ2�ω�.

June 15, 2013 / Vol. 38, No. 12 / OPTICS LETTERS 2013


