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Abstract: We experimentally measured the phase-matching spectral phases 
of aperiodic quasi-phase matched gratings for the first time (to the best of 
our knowledge) by nonlinear spectral interferometry. The retrieved 
information is useful in determining the temporal shape of the nonlinearly 
converted ultrafast signal and reconstructing the slowly-varying domain 
period distribution. The method is nondestructive, fast, sensitive, accurate, 
and applicable to different nonlinear materials. Compared to taking 
microscopic images of the etched crystal surface, our method can directly 
measure the domain period distribution in the crystal interior and is free of 
the artificial random duty period error due to image concatenation. 
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1. Introduction 

Designs and applications of aperiodic quasi-phase matched (QPM) gratings have been 
intensively explored during the past two decades [1–7]. For example, an arbitrary nonlinear 
conversion efficiency spectrum can be achieved by optimizing the domain orientation 
distribution g(x) (defined in [1]) and has been applied to the detection of multiple 
hydrocarbon gases [2,3]. Chirped QPM gratings with broadened and tailored complex phase-
matching (PM) responses H(Ω) [defined in Eq. (1)] were used in parametric amplification of 
few-cycle mid-infrared pulse [5] and second-harmonic pulse shaping [6,7], respectively. 
Applications of aperiodic QPM can be facilitated by the ability to measure H(Ω) 
experimentally for two reasons. First, the temporal shaping of the nonlinear signal depends on 
H(Ω), which could deviate from the design due to the increased poling error in the presence 
of different domain sizes [6]. Second, the domain period function Λ(x), or even the domain 
orientation distribution g(x), can be reconstructed if H(Ω) and the dispersion relation are 
known. In contrast to measuring the statistical information (e.g. random duty cycle error) of 
periodic QPM gratings by analyzing the PM efficiency pedestal [8] or Maker fringes [9], this 
approach would allow the convenient determination of the slowly-varying Λ(x) or 
deformations of aperiodic QPM structures arising from lithographic patterning error in the 
presence of uneven substrates [10]. There exist some methods able to measure H(Ω) or g(x) 
experimentally. (1) Under the assumptions of plane waves, non-depleted pump, and 
negligible group velocity dispersion, the second-harmonic spectral envelope is given by a 
transfer function relation [1]: 

 2 ( ) ( ) ( ),NLA P Hω Ω = Ω × Ω  (1) 

where PNL(Ω) = Aω⊗Aω is the nonlinear polarization spectrum of the fundamental spectral 
envelope Aω(ω). As a result, H(Ω) can be determined by simultaneously measuring the 
fundamental and second-harmonic fields Aω(ω) and A2ω(Ω). However, measuring A2ω(Ω) 
typically requires another nonlinear conversion process [e.g. second-harmonic generation 
(SHG) or parametric amplification] [11], which is subject to worse sensitivity, accumulated 
error, and higher risk that the converted wavelengths become absorptive in the nonlinear 
medium. (2) A double-pass SHG scheme was proposed to measure g(x) of arbitrary QPM 
gratings nondestructively [12], but has not been experimentally verified. (3) Taking local 
microscopic images of the etched surface of a QPM grating, and concatenating them to obtain 
the global g(x). In addition to the enormous time and effort required in sample preparation, 
image taking, and signal processing, this method suffers from errors due to image 
concatenation (artificial random duty period error) and non-uniformly poled cross-section that 
could be substantial for short-period or thick QPM gratings (Fig. 1). 

 

Fig. 1. Microscopic side views of two z-cut periodically poled MgO-doped lithium niobate 
(PPMgLN) samples with (a) uniformly, and (b) non-uniformly poled cross-sections, 
respectively. Dark regions represent the inverted domains. 

In this paper, we propose a scheme based on nonlinear spectral interferometry (NLSI) to 
measure the phase of H(Ω) and reconstruct the domain period function Λ(x). The functions of 
H(Ω) and Λ(x) of aperiodically poled MgO-doped lithium niobate (A-PPMgLN) samples 
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were experimentally measured by NLSI and microscopic images (of the HF-etched surfaces), 
respectively. They were analyzed and compared with those defined by the lithographic masks. 
NLSI is nondestructive, fast, sensitive, accurate, and applicable to different nonlinear 
materials. It is free of the artificial random duty period error, and can directly measure the 
domain period distribution in the crystal interior (where optical beam normally accesses). 

2. Theory 

Spectral interferometry is a linear technique used in measuring the spectral phase difference 
between two optical waves of the same carrier frequency [13]. In NLSI, the signal and 
reference waves come from SHG of a common fundamental field of carrier frequency ω0 and 
spectral envelope Aω(ω) passing through a test QPM grating and a reference thin nonlinear 
crystal with complex PM responses H(Ω) = |H(Ω)| × exp[jψ(Ω)] and Hr(Ω) = |Hr(Ω)| × 
exp[jψr(Ω)] (Ω denotes the angular frequency detuning from 2ω0), respectively. According to 
Eq. (1), the spectral envelopes of the (second-harmonic) signal and reference waves are As(Ω) 
= PNL(Ω) × H(Ω) and Ar(Ω) = PNL(Ω) × Hr(Ω), respectively. If the two waves are temporally 
separated by a delay τ, the resulting power spectrum (interferogram) becomes 

 [ ]2 2

0( ) ( ) ( ) 2 ( ) ( ) cos ( ) ( ) 2 ,s r s r s rS A A A A A Aτ ω τΩ = Ω + Ω + Ω × Ω × Ω − ∠ Ω + ∠ Ω +  (2) 

where the symbol ∠Z means the phase of Z. Equation (2) shows that the spectral phase 
difference function Δψ(Ω) = ∠As(Ω)−∠Ar(Ω) can be retrieved by Fourier analysis of S(Ω) 
[13]. Since ∠As(Ω) = ∠PNL(Ω) + ψ(Ω), ∠Ar(Ω) = ∠PNL(Ω) + ψr(Ω), the phase difference 
Δψ(Ω) = ψ(Ω)−ψr(Ω) is independent of the phase of PNL(Ω). This means that the fundamental 
spectral phase ∠Aω(ω) is unimportant, and a broadband light source (regardless of its chirp) is 
sufficient for NLSI. Besides, Δψ(Ω) will be equal to the desired PM spectral phase ψ(Ω) if 
the reference crystal is sufficiently thin such that ψr(Ω) is nearly constant within the spectral 
range of interest. By measuring SHG yield as a function of input wavelength, one can 
independently determine the PM spectral intensity |H(Ω)|2 and thus the complex H(Ω). 

 

Fig. 2. Dependence of spatial resolution on source bandwidth. (a) SHG wavenumber mismatch 
Δk of PPMgLN versus fundamental wavelength λ. (b) The fundamental frequency bandwidth 
(solid) and boundary wavelengths (dotted, dashed-dotted) versus the corresponding spatial 
resolution of the reconstructed g(x) of a PPMgLN with 1575-nm central PM wavelength. The 
maximum wavelength (dashed) is ceiled due to the increasing Δk for λ>2701 nm shown in (a). 

Under the same assumptions that validate Eq. (1), H(Ω) of a QPM grating of length L and 
refractive index spectrum n(ω) is related to the domain orientation function g(x) via 

 ( ) [ ]
0

( ) ( ) , ( ) ( 2) .
L i k xH g x e dx k c n nΔ ⋅Ω ∝ Δ = Ω × Ω − Ω
 

 
     (3) 

As a result, g(x) can be reconstructed by a three-step procedure. (1) Converting the variable Ω 
to Δk according to the dispersion relation n(ω) [Fig. 2(a)]. (2) Performing Fourier transform 
(FT) for H(Δk). (3) Determining the polarity of g(x) by thresholding. Note that the missing 
linear phase of H(Ω) (if delay τ is not calibrated) coupled with the nonlinear relation between 
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Δk and Ω only incur nominal error for g(x) unless the bandwidth is extremely broad. The FT 
relation between g(x) and H(Ω) implies that the spatial resolution of the reconstructed g(x) 
scales with the spectral window of the measured H(Ω) or the fundamental light source. Figure 
2(b) shows that a larger fundamental bandwidth is required to improve the spatial resolution 
of the reconstructed g(x), where an A-PPMgLN [14] with 1575-nm central PM wavelength 
and no nonlinear process other than SHG are assumed in the simulation. The spatial 
resolution is limited by ~1.7 μm (requiring a light source spanning 700-2701 nm) due to the 
lithium niobate absorption for wavelengths shorter than 350 nm. 

3. Experimental results 

 

Fig. 3. (a) Experimental setup. HNLF: Highly nonlinear fiber. PC: Polarization controller. 
PBS: Polarization beamsplitter. L#: Lens. BS: Beamsplitter. (b) Power spectra before (dotted) 
and after (solid) the HNLF, respectively. The shaded area indicates the phase-matched spectral 
range of QPM1 and QPM2. 

Figure 3(a) shows the experimental setup of NLSI. A mode-locked fiber laser produces 50 
MHz, 300 fs pulses at 1560 nm. The −10 dB bandwidth is broadened from 24 nm to 79 nm 
[dotted and solid curves, Fig. 3(b)] by passing the pulse through a 15-m-long highly nonlinear 
fiber. The p-wave and s-wave components are separated by a polarization beamsplitter, 
focused into a 1-mm-long Type-I BBO reference crystal and a 49.5-mm-long A-PPMgLN 
with different types of QPM gratings (HC Photonics) to generate the second-harmonic 
reference and signal pulses, respectively. The mask-defined domain period distributions Λ(x) 
of QPM1 and QPM2 are linear and quadratic functions monotonically decreasing from 20.4 
µm to 19.9 µm, corresponding to phase-matched fundamental wavelengths of 1566-1586 nm 
[shaded, Fig. 3(b)]. A polarization controller is used to maximize the fringe contrast of the 
interferogram S(Ω) by controlling the power ratio of the two arms. The two s-polarized 
second-harmonic pulses are delayed with each other, recombined by a beamsplitter, focused 
into a spectrograph, and recorded by an un-cooled CCD array to get the interferogram S(Ω). 
In our experiment, 12-μW average fundamental power and 100-ms CCD integration time 
would be sufficient for accurate measurements. The broad input spectral width and the short 
BBO crystal (phase-matched wavelengths are beyond 1520-1630 nm) ensure that the fringes 
of S(Ω) exist for the entire spectral range of H(Ω) of each QPM grating [a prerequisite of 
measuring ψ(Ω)]. 
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Fig. 4. (a) A microscopic image of QPM1 with more than 8 domains. (b) The global domain 
length distributions of QPM1, QPM2 obtained by concatenating ~620 microscopic images. 

Figure 4(a) shows a sample microscopic image of the QPM1 surface, from which we can 
measure the local domain lengths. The global domain length distributions [Fig. 4(b)] of 
QPM1, QPM2 were obtained by combining the results of ~620 images taken from each of the 
two QPM gratings. In addition to the majority lengths around 10 μm, there are 30 and 40 
“long domains” (~30 μm) out of the total 4925 and 4948 “mask-defined” domains in QPM1 
and QPM2, respectively. This is attributed to the domain inversion failure such that three 
neighboring mask-defined domains merge into a 3-time-longer domain. 

 

Fig. 5. Experiment results of (a-c) QPM1 and (d-f) QPM2. (a,c) Second-harmonic power 
spectra of the reference (solid), signal (dashed), and their interferogram (shaded). (b,c,e,f) PM 
spectral intensities and phases obtained by experiments (solid and shaded), lithographic mask 
function (dashed), and microscopic images (dashed-dotted), respectively. 

Figures 5(a) and 5(d) illustrate the second-harmonic power spectra of the reference pulse 
(solid), the signal pulse (dashed), and their interferogram S(Ω) (shaded) due to QPM1 and 
QPM2, respectively. The fringe density of either S(Ω) increases with wavelength, consistent 
with a down-chirped second-harmonic signal pulse caused by a QPM grating with 
monotonically decreasing domain period function Λ(x). Figures 5(b) and 5(e) show the PM 
power spectra of QPM1 and QPM2 obtained by three methods: (1) wavelength-scanning SHG 
experiment (solid and shaded), (2) FT of the mask-defined g(x) (dashed), (3) FT of the 
microscopically imaged g(x) (dashed dotted), respectively. It is evident that the artificial 
random duty period error due to concatenating a large number of microscopic images may 
result in seriously distorted PM power spectra. The curves in Figs. 5(c) and 5(f) represent the 
PM spectral phases of QPM1 and QPM2 obtained by NLSI experiment ψexp (solid), mask 
function ψm (dashed), and microscopic images ψμ (dashed-dotted), respectively. The accuracy 
of PM spectral phase measurement can be quantitatively estimated by the intensity-weighted 
root-mean-square (rms) phase error 
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( ) ( ) ( ) ( ) ,
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H Hε ψ λ ψ λ λ λ= =
 ≡ − ×    (4) 

where |H(λi)|
2 is the phase-matching power spectrum, and λi (i = 1-N) indicates the ith 

sampling wavelength. The rms phase errors between ψexp and ψm are 0.36π (QPM1) and 
0.31π (QPM2), better than 1.46π (QPM1) and 0.32π (QPM2) between ψμ and ψm. Since these 
εrms values are much smaller than the overall phase range (~40π), our method is reasonably 
accurate. 

 

Fig. 6. Domain period distributions measured by experiments (solid) and microscopic images 
(dashed-dotted) for (a) QPM1, and (b) QPM2, respectively. 

Figure 6 shows the domain period functions Λexp(x) and Λμ(x) measured by (NLSI and 
wavelength-scanning SHG) experiments and microscopic images, respectively. Simulation 
[Fig. 2(b)] shows that the spectral window (783-792 nm) of the interferogram enables a 
spatial resolution of 810 μm. As a result, we reduced the spatial resolution of the raw domain 
period functions to ~800 μm by piecewise average. This resolution can reveal the slowly-
varying domain periods due to mask design or undesired lithographic patterning error [10], 
but is insufficient to identify the ~30-μm “long domains”. As shown in Figs. 6(a) and 6(b), 
Λexp(x) and Λμ(x) of QPM1 and QPM2 indeed resolve the linear and quadratic trends of Λm(x) 
defined by the lithographic masks. The bumpy Λμ(x) curves are primarily due to the 
uncertainty (~0.2 μm) in positioning the domain boundaries of microscopic images. The mean 
and standard deviation of the period difference ΔΛ(x) = |Λexp(x)-Λμ(x)| are 41 nm and 58 nm 
for QPM1, or 31 nm and 39 nm for QPM2, respectively. 

4. Conclusions 

We experimentally retrieved the phase-matching spectral phases of aperiodic QPM gratings 
for the first time (to the best of our knowledge) by using nonlinear spectral interferometry. 
The complex phase-matching responses and domain period distributions of aperiodic QPM 
gratings measured by NLSI and microscopic images are in good agreement with those 
defined by the lithographic masks. Our method is nondestructive, fast (only acquiring one 
power spectrum and using non-iterative phase retrieval), sensitive (using only one nonlinear 
conversion process), accurate, applicable to different nonlinear materials, and independent of 
the chirp of the fundamental light source. Compared to taking microscopic images of the 
etched crystal surface, our method can directly measure the domain period distribution in the 
crystal interior (normally accessed by the optical beams) and is free of the artificial random 
duty period error due to image concatenation. 
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