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A quasi-phase matching (QPM) structure based on phase correction by inserting a “healing block” (HB) of length dHB
into M regular domains of constant length d is proposed to enhance the nonlinear conversion efficiency when the
first-order QPM domain length d1 is too short to be reliably fabricated. Second-harmonic conversion efficiency 4.69
times higher than that of a third-order QPM grating has been experimentally demonstrated by using HB-QPMwhere
all the domains are longer than 1.08d1. © 2013 Optical Society of America
OCIS codes: 230.4320, 160.3730, 190.2620.

The quasi-phase matching (QPM) technique [1] has been
widely used in nonlinear wavelength conversion proc-
esses, for the utilization of the largest nonlinear tensor
component enables much higher conversion efficiency
over the birefringence phase matching (BPM) counter-
part. In addition, the highly flexible QPM structures
greatly facilitate some important applications. For exam-
ple, fan-out and multiple QPM devices are useful in
wavelength-tunable optical parametric oscillation (OPO)
[2,3]. QPM gratings with spatially chirped periods are at-
tractive in ultrafast wavelength conversion and pulse
characterizations [4,5]. The cascaded QPM structure
has been employed in the generation of a commensurate
optical frequency comb and the synthesis of subfemto-
second waveforms [6]. Two-dimensional QPM permits
an arbitrary conversion process in different spatial direc-
tions [7]. User-defined phase matching spectral grids can
be realized by several optimization algorithms, such as
genetic algorithms [8], and iterative domino [9]. How-
ever, the conversion efficiency of a real QPM device
could be subject to the minimum domain length dmin that
can be reliably fabricated. This is particularly evident
when one of the operating wavelengths is close to the
material absorption band, where the strong dispersion
may result in a large wavevector mismatch Δk. For ex-
ample, second-harmonic generation (SHG) of 914 nm us-
ing periodically poled 5 mol. % MgO-doped lithium
niobate (PPMgLN) demands a short domain length of
d1�� π∕Δk� � 2.11 μm to implement the first-order QPM
[10]. In the event of d1 < dmin, a higher-order QPM struc-
ture is typically used at the cost of significantly reduced
SHG efficiency. The second-order QPM with a 25∕75 duty
ratio can get the maximum SHG efficiency of η1∕4 (η1
means the efficiency of the first-order QPM), but the
smaller domain length remains d1 [1]. As a consequence,
the third-order QPM with an efficiency of η1∕9 is the
common choice. It becomes highly desirable to access
the large efficiency gap between η1 and η1∕9, achieved
by the first- and third-order QPM structures, respectively.
In this Letter, we proposed and experimentally demon-
strated the healing block (HB)-assisted QPM structure
to address this issue for the first time (to the best of our
knowledge). It is found that the SHG efficiency of HB-
QPM could be higher than η1∕9 as long as dmin < 1.54d1.
In our experiment, an HB-QPM structure with dmin �
1.08d1 achieved 4.69 times higher SHG efficiency

than that of a third-order QPM grating of the same
length.

Under the conditions of a plane wave and nondepleted
pump, the SHG efficiency of an arbitrary QPM grating is

η � ηnorm × jGj2; G � 1
L

Z
L

0
g�x�ei�Δk·x�dx; (1)

where ηnorm is the normalized efficiency accounting for
the input intensity, crystal nonlinearity, and grating
length, G is the complex mismatch function value, g�x�
denotes the x-dependent domain orientation, and Δk is
the wave vector mismatch. An HB-QPM grating consists
of repeated substructures; each is composed ofM regular
domains of constant length d plus one longer HB of
length dHB [Fig. 1(a)]. The corresponding complex
mismatch function value becomes

Fig. 1. (Color online) (a) Schematic of HB-QPM and the cor-
responding domain orientation distribution function g�x�,
(b) the complex numbers fGng contributed by uniformly spaced
domain boundaries when the domain length d is not an odd
multiple of d1, (c) the complex numbers fGng and Gsub due
to the individual domain boundaries (solid) and the entire
substructure (dashed) with M � 1. All the following substruc-
tures will contribute to the same Gsub and can be added up
constructively.
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G � G0 � GN � 2
XN−1

n�1

Gn; Gn � eiϕn

Δk × L
;

ϕn � nπ � Δk × xn; (2)

where N is the total number of domains. Equation (2)
means that the nth domain boundary xn contributes to
G by a complex number 2Gn [except for the two end
boundaries (n � 0, N), where the factor of “2” is absent].
In the case of the first-order QPM (xn � n × d1,
ϕn � 2nπ), jGj is maximized, for all the constituent com-
plex numbers fGng are in-phased �Gn � �Δk × L�−1�. They
remain perfectly in-phased in the third-order QPM
(xn � n × 3d1, ϕn � 4nπ), while the number of domains
and the resulting jGj are reduced by a factor of 3 com-
pared with the first-order counterpart. For a uniform
QPMwith improper domain length d � �1� Δ�d1, we got
xn � n�1� Δ�d1, ϕn � n × δ, and the complex numbers
Gn, Gn−1 arising from two adjacent boundaries differ by a
constant phase of δ � Δ × π [Fig. 1(b)]. As a result, jGj is
significantly reduced because of the mutual cancellation
when summing up many complex numbers fGng in
Eq. (2). In HB-QPM, this problem is alleviated by reorient-
ing the “vector” GM�1 along the positive real axis (i.e.,
ϕM�1 equals an integral multiple of 2π) such that the com-
plex mismatch function values Gsub due to individual
substructures are identical and can be added up con-
structively. Figure 1(c) illustrates the idea by assuming
only one regular domain (M � 1) per substructure.
For a general substructure with M regular domains

of length �1� Δ�d1, the HB length dHB is determined
by having ϕM�1 � 2�M � p� 1�π given xM�1 �
M�1� Δ�d1 � dHB. This will result in

dHB � �2p� 1 −M × Δ�d1; (3)

where p is the smallest positive integer greater than
�M � 1�Δ∕2 such that dHB > d > d1 is satisfied. To formu-
late the SHG efficiency of an HB-QPM grating relative to
that of a first-order QPM grating of the same length, one
can employ Eq. (2) to calculate the corresponding
complex mismatch function values

Gsub � 2ei�M×δ∕2�

Δk × Lsub
×
sin��M � 1�δ∕2�

sin�δ∕2� ; G�1� �
2
π
;

where Lsub � M × d� dHB � �M � 2p� 1�d1 represents
the length of one substructure. As a result, the normal-
ized SHG efficiency of an HB-QPM grating becomes

μ �
����Gsub

G�1�

����
2
�

�
1

M � 2p� 1
×
sin��M � 1�δ∕2�

sin�δ∕2�

�
2
: (4)

The optimal number of M for a given regular domain
length d � �1� Δ�d1 could be derived by maximizing
Eq. (4). Figure 2(a) shows that the optimal number M
(solid curve) decreases with the increase of regular do-
main length d, for the phase difference δ increases with d
and will diminish jGsubj [Fig. 1(c)]. Once the optimalM is
obtained, the corresponding HB length dHB (dotted) is
determined by Eq. (3). Figure 2(b) illustrates that the
SHG efficiency of HB-QPM (solid curve) is higher than

those of the third-order (dashed–dotted curve) and
second-order (dashed curve, assuming a duty cycle of
0.25) QPMs when the regular domain length is shorter
than 1.54d1 and 1.23d1, respectively. As a result, the con-
version efficiency gaps inherited by periodic QPM gra-
tings can be sealed by using the HB-QPM structure.

A practical concern about QPM devices is the effi-
ciency degradation due to overpoling or underpoling.
A quantitative measure is the uniform overpoling ratio
rop, defined by d0low � �1� rop�dlow, where d0low and dlow
represent the actual and designed downward oriented
domain lengths, respectively. Figure 3(a) shows that
the conversion efficiency of a third-order QPM grating
(dashed curve) will drop whenever the domains are over-
poled (rop > 0) or underpoled (rop < 0). For HB-QPM

Fig. 2. (Color online) (a) Optimal number of regular domains
(solid) and the corresponding normalized HB length dHB∕d1
(dotted), as well as (b) the normalized conversion efficiency
μ (solid, achieved by using the optimalM and dHB), as functions
of the normalized regular domain length d∕d1. The efficiencies
due to the second-order (dashed) and third-order (dashed–
dotted) QPM are also shown for comparison.

Fig. 3. (Color online) (a) Normalized SHG efficiencies
versus the uniform overpoling ratio rop for third-order QPM
(dashed) and HB-QPM with an odd (solid) and even
(dashed–dotted) number of regular domains. Schematic and
complex numbers fGng, fG0

ng of HB-QPM structures with
(b) underpoling, one regular domain, and (c) overpoling, two
regular domains, respectively.
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with an odd number of regular domains [Fig. 3(b),
M � 1], all the downward oriented domains are regular
ones. The complex numbers G0

n, Gn contributed by the
actual and designed domain boundaries x0n, xn will differ
by a phase of α � �rop�π � δ�∕2. A slightly underpoled
HB-QPM structure may give a larger jG0

subj, for the rela-
tive phase shift between G0

n and G0
n−1 (n ∈ odd) is re-

duced to δ − 2α. Maximum conversion efficiency occurs
when δ � 2α, i.e., rop � −δ∕�π � δ� [Fig. 3(a), solid
curve]. In contrast, the efficiency of an HB-QPM struc-
ture with an even number of regular domains is peaked
in the presence of slight overpoling [Fig. 3(a), dashed–
dotted curve]. In this case, Gsub will repeat itself for every
two substructures, for the twoHBs are oriented oppo-
sitely. For the specific case of M � 2 and rop > 0
[Fig. 3(c)], the enlarged HB within �x02; x03� contributes
to G0

2, G
0
3 with a different phase shift �β with respect

to G2, G3 (while all the other G0
n still differ from Gn by

a phase of �α). It can be shown that jG0
subj > jGsubj oc-

curs when

cos α� cos�δ− β�� cos�δ� α�> 1� 2 cos δ �if M � 2�:

In a proof-of-concept experiment, we fabricated an
8 mm long PPMgLN chip with three different QPM
gratings designed for frequency doubling of 1064 nm
(d1 � 3.46 μm). The first grating (QPM1) is a third-
order QPM with a constant domain length of 3d1 �
10.38 μm. The other two gratings are designed by
HB-QPM, where QPM2 and QPM3 are with M � 3,
d � 4.00 μm (1.15d1), dHB � 8.76 μm (2.53d1), and
M � 5, d � 3.75 μm (1.08d1), dHB � 8.93 μm (2.58d1),
respectively. A beam at ∼1064 nm from a wavelength-
tunable CW laser is focused into a QPM grating of the

PPMgLN chip for frequency doubling. The temperature
is slightly tuned (28� 1°C) to precisely determine the
peak conversion efficiency at the central wavelength
of 1061.6 nm. Two dichroic mirrors are used to suppress
the residual fundamental power, and the second-
harmonic power is measured by a photodetector.
Figure 4 illustrates the experimentally measured phase
matching tuning curves of the three QPM gratings.
The peak conversion efficiencies of QPM2 (circles)
and QPM3 (squares) are 2.50 and 4.69 times higher than
that of QPM1 (diamonds), which are in good agreement
with the theoretical values of 2.95 and 4.16, respectively.
The error could arise from the random duty cycle error
during the fabrication processes.

In summary, we proposed and experimentally demon-
strated the HB-QPM structure to enhance the conversion
efficiency when the first-order QPM domain length d1 is
too short to be reliably fabricated. Our calculation show-
ed that efficiency enhancement over the third-order QPM
occurs if the regular domain length is shorter than 1.54d1.
In our experiments, the SHG efficiency of HB-QPM could
be 4.69 (2.50) times higher than that achieved by the
third-order QPM if the regular domain length d is 1.08
(1.15) times the value of d1. HB-QPM is simple, robust
against the uniform overpoling/underpoling error, and
particularly useful in high-power, short-wavelength con-
version processes where short-period poling over thick
nonlinear crystal is typically challenging.

This material is based on research supported by the
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Fig. 4. (Color online) Experimentally measured phase match-
ing tuning curves of QPM1 (diamonds), QPM2 (circles), and
QPM3 (squares), respectively.
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