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We proposed and experimentally demonstrated the iterative domino algorithm to optimize optical superlattice with
>105 unit blocks to achieve arbitrary target phase-matching power spectrum. This scheme can achieve unprece-
dented overall conversion efficiency and spectral fidelity with extremely high computation efficiency. © 2012
Optical Society of America
OCIS codes: 190.2620, 230.4320, 160.3730.

The ability of tailoring phase-matching (PM) response
by engineering the spatial distribution of nonlinear
coefficient is one of the key advantages of quasi-phase-
matching (QPM) over the birefringence PM in wave-
length conversion processes [1]. This is of particular
importance in some applications, such as gas sensing
using several absorption lines [2], where several discrete
PM peaks at prespecified wavelengths and with desired
relative efficiencies are required. This goal can be rea-
lized by some existing techniques, such as periodic
continuous phase modulation [2], aperiodic optical
superlattice (AOS) optimized by simulated annealing
(SA) [3], and nonperiodic optical superlattice (NOS) op-
timized by genetic algorithm (GA) [4]. However, the spa-
cing between PM peaks due to phase modulation is
limited by an integral multiple of some unit value deter-
mined by the modulation period. AOS suffers from lower
conversion efficiency, and worse spectral fidelity for the
domain size can only be an integral multiple of some unit
block length dx restricted by the poling technique (e.g.,
dx � 3.5 μm in [3]). NOS allows for analogue domain size
and generally outperforms AOS [4]. However, the compu-
tation time of GA increases with the number of domains
and the genetic pool size nonlinearly, seriously restrict-
ing the complexity of target PM spectra (e.g., ≤5 PM
peaks in [4]).
We proposed a new scheme, coined as hyperfine aper-

iodic optical superlattice (HAOS) optimized by iterative
domino (ID) algorithm, to overcome the aforementioned
problems. The extremely high computation efficiency of
the ID algorithm permits very small unit block length
(dx ≥ 0.1 μm in this work) and very complicated target
PM spectrum (≤21 PM peaks here), while all the domains
are still made longer than the minimum domain size dxmin
(4.5 μm here). In the design of five PM peaks, the overall
conversion efficiency (average shape error) achieved by
HAOS + ID is 9% and 25% higher (2–3 orders of magnitude
lower) than those of NOS + GA and AOS+ SA, respec-
tively. Besides, HAOS + ID can exceed the overall con-
version efficiencies achieved by NOS + GA and AOS +
SA with 2–3 orders of magnitude less computation times.
Figure 1(a) shows the schematic of HAOS consisting of

N unit blocks {bn, n � 1; 2;…; N) of length dx, where

g�x� represents the spatial distribution of domain orien-
tations. The ID algorithm is utilized to determine the N
binary numbers fδn � �1g such that the target PM tuning
curve [Fig. 1b] composed of M peaks centered at arbi-
trary wavelengths fλαg and with relative efficiencies
fη�0�α g (α � 1; 2;…; M) can be achieved.

Assuming plane waves and nondepleted pump, the
SHG efficiency of a QPM grating at fundamental wave-
length λ is

η�λ��ηnorm�λ�× jG�λ�j2; G�λ�� 1
L

Z
L

0
g�x�eiΔk·xdx; (1)

where ηnorm is the normalized efficiency accounting for
the input intensity, crystal nonlinearity, and grating
length, G is the complex mismatch function, and Δk is
the λ-dependent wavevector mismatch. For a periodic
QPM grating of 50% duty-cycle, η�λ� is roughly a sinc2

function with a peak value of η0 � ηnorm�λ0� × �2∕π�2 at
the central PM wavelength λ0. For a general HAOS
device, G�λ� can be calculated by the summation of N
complex numbers:

G�λ��
XN
n�1

δn×zn�Δk�; zn�Δk��eiΔk·xn −eiΔk·xn−1

Δk×L
; (2)

where δn × zn�Δk� represents the contribution of the nth
unit block bn. If G�λα� denotes the mismatch function va-
lue at λα of an HAOS device, the new coefficient G0�λα�
due to domain inversion of bn (while all the other

Fig. 1. (Color online) (a) Schematic of HAOS and the corre-
sponding domain orientation distribution function. (b) The
conceptual target PM tuning curve.
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N − 1 unit blocks remain unchanged) can be easily
calculated by a subtraction:

G0�λα� � G�λα� − 2zn�Δk�. (3)

Equation (3) makes ID algorithm much faster than SA
and GA.
The ID algorithm starts with a device D consisting

of N positively oriented blocks, i.e. D � fδn � 1;
n � 1; 2;…; Ng. The conversion efficiencies relative to
η0 at the M target wavelengths, i.e. fηα � η�λα�∕η0;
α � 1; 2; ;…; Mg, are calculated by Eqs. (1) and (2).
The appropriateness of the device is quantitatively esti-
mated by a fitness function:

F1 �
��������������������������������
XM
α�1

���� ηα − η�0�α

η�0�α

����
p

p

vuut �p ≥ 2�; (4)

where the target conversion efficiencies η�0�α are normal-
ized according to

PM
α�1 η

�0�
α � a ≤ 1 and a larger p value

can result in a better spectral fidelity at the cost of longer
computation time. The trial device D0 is initialized by in-
verting the first block b1 ofD. SinceD0 only differs fromD
by one unit block, the corresponding effective nonlinear
coefficient G0 can be evaluated by Eq. (3). One can then
calculate the relative conversion efficiencies η0α and the
fitness value F1�D0� accordingly. The device D is updated
by D0 if F1�D0� < F1�D�. The same process applies to all
the N unit blocks in sequence within one iteration. More
iterations are repeated until no block is inverted in one
iteration. To ensure that all domains are longer than
dxmin, an extra iteration is performed where D remains
unchanged if F1�D0� < F1�D� but the domain ended by
bn−1 is still shorter than dxmin. The performance of a de-
vice is quantitatively measured by overall conversion ef-
ficiency ηtot and average shape error Δη. In this Letter,
we considered two HAOS devices made by 18.9-mm-long
congruent lithium niobate and restricted all the domains
longer than dxmin � 4.5 μm. The parameter p of Eq. (4)
was chosen 16. Figure 2(a) shows the first target spec-
trum S1 consisting of 5 PM peaks distributed in a V shape
(open circles), where the total target efficiencies are nor-
malized to a � 1. By using a unit block length of dx �
0.1 μm (N � 189; 000 blocks), HAOS + ID gives a nearly
perfect result (solid) with overall conversion efficiency
ηtot � 0.94 and average shape error Δη � 4 × 10−5. The
minimum domain length is 8.9 μm. The results of NOS
+ GA (dashed-dotted) and AOS + SA (dashed) designed
with dxmin � 4.5 μm and 4.82 μm are also shown for com-
parison [4], where values of ηtot�Δη� are 9% and 25% (2–3
orders of magnitude) worse than those of HAOS + ID.
The computation efficiency of the ID algorithm is re-
markably high. Figure 2(b) shows the evolution of ηtot
(left axis) and the number of inverted blocks within
one iteration (right axis) during the ID optimization pro-
cess. It only took two iterations (∼2 s) and 47 iterations
(∼53 s) to have ηtot exceed 0.75 and 0.86, which were
achieved by AOS� SA and NOS + GA with eight minutes
and 430 minutes, respectively. The overall efficiency ηtot
kept on increasing until the 1601th iteration (∼30 min-
utes) where no block inversion occurred. Our simulation
also showed that the probability of further improvement

by simultaneously inverting two (three) unit blocks at
one time is only ∼10−5 (∼10−7). It will take an excessively
long time to get a marginal improvement.

Figure 3 shows the target spectrum S2 composed of 21
equally high PM peaks uniformly distributed between
1530 nm and 1590 nm (open circles). An additional
parameter, ripple contrast, is used to characterize the
flatness of the resulting PM spectrum:

Δηrip ≡�0.5 × �max�ηα� −min�ηα��∕�ηtot∕M�:
By using the simulation parameters dx � 0.2 μm , a � 1,
and the fitness function F1, we got a result with
ηtot � 0.92, Δη � 1.26%, and Δηrip � �3.23% (solid)
within 502 iterations (12 minutes). If the spectral fidelity
is critical, one can use a < 1 and (or) a hybrid fitness
function:

F2 � F1 � b ×
X
α�1

jηα − ηtot × η�0�α j �b > 0�. (5)

The determinations of a and b depend on the trade-off
between the spectral fidelity and the overall conversion
efficiency. With a � 0.91 and b � 0.2, we got ηtot � 0.87,
Δη � 1.21%, and Δηrip � �2.66% within 11 minutes. On
the other hand, GA is too slow to handle the 21-peak

Fig. 2. (Color online) (a) Simulated PM tuning curves of three
devices designed by HAOS + ID (solid), NOS + GA (dashed-
dotted), and AOS + SA (dashed), respectively. The target
spectrum S1 (open circles) consists of five peaks distributed in
a V -shape. (b) The overall conversion efficiency (dashed) and
thenumberof invertedblocks(solid)versusnumberof iterations.
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target, while AOS� SA only achieved ηtot � 0.71, Δη �
1.86%, and Δηrip � �4.43% within 70 minutes (dashed).
We used the standard electric-field poling technique to

fabricate LiNbO3 QPM samples based on the simulation
results. A reference QPM grating of constant period Λ �
18.8 μm (domain length l � Λ∕2) was fabricated on each
sample such that η0 can be experimentally measured. The
second-harmonic yield was measured as a function of
fundamental wavelength to get a PM tuning curve.
Figure 4(a) shows the experimentally measured PM

tuning curves of three devices designed for the target
spectrum S1 by HAOS (solid), NOS (dashed-dotted),
and AOS (dashed), respectively. The corresponding
values of ηtot�Δη� are 0.94, 0.80, 0.70 (2.5%, 5.5%, 6.2%),
respectively. These results show that HAOS can be well
implemented by standard fabrication technology and out-
performs NOS and AOS. Figure 4(b) shows the experi-
mentally measured PM tuning curve (solid) of HAOS
designed for S2 (optimized with a � 0.91 and b � 0.2),
where all the 21 peaks are clearly resolvable. Discre-
pancy between simulation and experiment is mainly
due to the fabrication error. The normalized random
duty-cycle (RDC) error �σl of a periodic QPM grating
can be estimated by the pedestal level of its PM tuning
curve [5]. For QPM gratings composed of a wide variety
of domain lengths, the variation of domain expansion
speed can further degrade the poling quality. PM pedestal
measurement of our reference QPM gratings of constant
period gave �σl � 20% for both samples. The effects of
RDC error were simulated by introducing a Gaussian
random variable of zero mean and standard deviation
of σδl � l × �σl � 1.88 μm to distort each domain bound-
ary. Ten random trials were performed to calculate
the mean value of each performance parameter. For the
HAOS designed for S1, both simulation (with σδl �
1.88 μm) and experiment arrived ηtot � 0.94, Δη �
2.5%. In contrast, the experimental results of NOS
and AOS (ηtot � 0.80; 0.70; Δη � 5.5%; 6.2%) are worse
than those obtained by simulation (ηtot � 0.85, 0.75,
Δη � 3.2%, 3.4%). The better robustness of HAOS results
from the smaller variation of domain lengths (standard
deviations σl of HAOS, NOS, AOS are 0.15 μm,
0.73 μm, 1.37 μm, respectively). For a complicated target

spectrum S2, the experimental results of HAOS are much
worse than the simulated counterparts (Δη � 5.9%;
Δηrip � �13% ) because of the larger σl (1.10 μm). These
problems can be solved by using poling techniques with
ultrahigh resolution [6].

We proposed and experimentally demonstrated
HAOS + ID scheme for PM spectral engineering. It can
achieve unprecedented overall efficiency, spectral fide-
lity, and computation efficiency. The experimentally
measured PM tuning curve agrees well with the 5-peak
target spectrum, while the discrepancy in the 21-peak
case is mainly attributed to the fabrication error.

This material is based on research supported by the
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Fig. 3. (Color online) Simulated PM tuning curves of two de-
vices designed by HAOS� ID (solid) and AOS� SA (dashed),
respectively. The target spectrum S2 (open circles) consists of
21 uniformly distributed peaks during 1530–1590 nm.

Fig. 4. (Color online) Experimentally measured PM tuning
curves designed for target spectra (open circles) (a) S1 and
(b) S2 by HAOS� ID (solid), NOS� GA (dashed-dotted),
and AOS� SA (dashed), respectively.
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