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We have used aperiodically poled lithium niobate waveguides to perform intensity autocorrelation and
frequency-resolved optical gating (FROG) measurements for ultraweak femtosecond pulses at 1.5 �m
wavelength. The required pulse energies for intensity autocorrelation and FROG are as low as 52 aJ and
124 aJ, respectively. The corresponding sensitivities are 3.2 � 10�7 mW2 and 2.7 � 10�6 mW2, about 3–5
orders of magnitude better than the previous records. The high nonlinear conversion efficiency is
attributed to the long waveguide structure, and the needed broad phase-matching bandwidth is
realized by chirping the poling period. We discuss the theory of intensity autocorrelation and FROG
measurements in the presence of different phase-matching bandwidths, and we show, for the first
time to our knowledge, that the distorted intensity autocorrelation trace due to a �-like phase-
matching spectrum is described by a modified field autocorrelation function. We also report new
experimental results comparing autocorrelation traces measured with chirped and unchirped
waveguide samples and demonstrating high-quality FROG measurements for cubic phase waveforms
generated in a programmable pulse shaper. © 2007 Optical Society of America

OCIS codes: 320.7100, 190.7110, 130.3730, 120.3180.

1. Introduction

The versatile applications of ultrafast optics rely
largely on the capability of characterizing ultrashort
��1 ps� signal pulses. This is especially true when
nearly chirp-free or precisely shaped pulses are in-
volved, such as those in the high bit-rate telecom-
munication transmissions [1], coherently controlled
two-photon fluorescence microscopy [2], optical code-
division multiple-access systems [3], and nonlinear-
optical material characterizations [4]. Since the time
scale of interest is much faster than any existing pho-
todetector, optical gating schemes are required to
measure ultrashort pulses. Nonlinear-optical interac-
tions, such as second-harmonic generation (SHG), two-

photon absorption, and four-wave mixing, have been
widely used in nonlinear gating for femtosecond pulse
measurements. The sensitivity of these nonlinear tech-
niques, however, is usually low and generally does not
meet the requirements of low (submicrowatt) average
powers for optical communication system monitoring
[5] or low (subfemtojoule) signal pulse energies for ma-
terial characterizations [6]. For high-speed telecom-
munications, iterative pulse retrieval from linear
spectrograms obtained by long ��30 ps� electronic
gating has been demonstrated to be capable of mea-
suring relatively short ��2.7 ps� optical pulses [7].
This linear technique, however, remains inapplicable
in the femtosecond regime and requires high-speed
��10 GHz� electronics even in measuring pulse
trains of low repetition rates.

Several sensitive schemes have been proposed to
characterize ultraweak ultrashort optical pulses.
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The temporal analysis by dispersing a pair of light
electric fields (TADPOLE) technique was demon-
strated to measure near-infrared pulses of 42 zJ
�42 � 10�21 J� per shot [6]. Optical parametric ampli-
fication cross-correlation FROG permits measure-
ment of sliced white-light continuum pulses around
600-nm wavelength at 50 aJ �50 � 10�18 J� [8]. These
techniques have two major limitations. First, they
require synchronized reference pulses with predeter-
mined intensity�phase profiles and a temporal dura-
tion shorter than that of the unknown pulses. In some
important cases, such as characterization of pulses at
the intermediate or receiving ends of an optical com-
munication link, the required reference is often un-
available. Second, the overall power requirement is
actually limited by the sensitivity of the reference-
free method employed to fully characterize the refer-
ence pulse (which requires much higher energy).
Consequently, it is important to improve the mea-
surement sensitivity of self-referenced schemes.

Intensity autocorrelation and FROG [9] using SHG
in bulk crystals are standard techniques in charac-
terizing pulse durations and intensity�phase profiles
of ultrashort pulses in the absence of a reference.
However, the nonlinear conversion efficiency is re-
stricted in part by diffraction, which prohibits the
coexistence of a small beam cross section and a long
interaction length. When ultrashort pulses are in-
volved, the broad input spectrum should be phase
matched to avoid distortion of intensity autocorrela-
tion traces [10] and spectral truncation in FROG
spectrograms [9]. Since the phase-matching (PM)
bandwidth is inversely proportional to the group
velocity mismatch (GVM) walkoff (which is the
product of interaction length and GVM between
fundamental and second-harmonic waves), thin
nonlinear crystals are typically employed (e.g.,
thickness of LiNbO3 should be less than 1 mm when
measuring 300-fs pulses at 1.5-�m wavelength), fur-
ther limiting the conversion efficiency. As a result,
SHG bulk crystals only offer quadratic sensitivities
(defined as the minimum peak-power average-power
product needed to generate a detectable nonlinear
signal) of �1 mW2 for intensity autocorrelation and
�500 mW2 for FROG, respectively [11,1].

Much effort has been paid to improve the sensi-
tivities of intensity autocorrelation and FROG mea-
surements. Several recent intensity autocorrelation
experiments at 1.5-�m wavelength exploited broad-
band two-photon absorption in silicon avalanche pho-
todiodes [12], GaAs photomultiplier tubes [13], and
InGaAsP laser diodes [14]. Measurement sensitivity
as low as 1.5 � 10�4 mW2 has been reported [14],
which is about 4 orders of magnitude better than
that achieved by conventional SHG bulk crystals.
On the other hand, four-wave mixing in a semicon-
ductor optical amplifier and in a spool of 22-km-long
dispersion-shifted fiber were used to demonstrate
quadratic FROG measurements with sensitivities of
50 mW2 and 0.2 mW2, respectively [15,16]; improving
on the conventional SHG FROG scheme using bulk

crystals by 1–3 orders of magnitude. Despite the im-
pressive progress, the resulting sensitivities of these
two-photon absorption and four-wave mixing ap-
proaches still do not meet the requirement for sub-
microwatt average powers for 10-Gbit�s optical
communication system monitoring [5].

In this paper, we report on record sensitivities for
intensity autocorrelation and FROG measurements
by using long aperiodically poled LiNbO3 (A-PPLN)
waveguides. Section 2 examines the fundamentals
of pulsed SHG, autocorrelation, and FROG mea-
surements when different PM bandwidths are
present. As a special case of the theory published in
Ref. [10], an analytical description of the distortion
introduced into the intensity autocorrelation trace
in the limit of extremely narrow PM bandwidth is
derived for the first time to our knowledge. Section
3 elucidates how to engineer the phase-matching
response by chirping and apodization of quasi-
phase matched (QPM) gratings, as well as the de-
tails of our A-PPLN waveguide device used in the
experiments. In Section 4 we report a series of
experimental results of intensity autocorrelation
and FROG measurements. Our data demonstrate
record sensitivities of 3.2 � 10�7 mW2 for intensity
autocorrelation [17] and 2.7 � 10�6 mW2 for FROG
[18], improving upon previous sensitivities [14,16] by
500 and 750,000 times, respectively. In addition, we
report previously unpublished experimental results
comparing autocorrelation traces measured with
chirped and unchirped waveguide samples and dem-
onstrating FROG measurements for cubic phase
waveforms generated in a programmable pulse
shaper. These data clearly illustrate the importance
of adequate PM bandwidth and demonstrate the pos-
sibility of high quality waveform retrieval with pulses
of greater complexity than in our previous experi-
ments. In Section 5 we conclude and discuss some
ideas for future improvements.

2. Theory of Nonlinear Pulse Measurements

Femtosecond pulse measurement usually relies on a
nonlinear process to perform ultrafast optical gating.
SHG is the most widely employed process, especially
for measurements with femtosecond oscillators, be-
cause it is more efficient than processes using ��3�. In
this section we summarize the theory of SHG for
short pulses under the low-conversion condition. It
can be used to formulate intensity autocorrelation
and FROG measurements by introducing a variable
time delay in the presence of a Michelson interferom-
eter. The influence of finite PM bandwidth on pulsed
SHG and especially on pulse measurements is ana-
lyzed to justify the employment of chirped QPM de-
vices for accurate pulse characterization.

A. Theory of Pulsed Second Harmonic Generation

Given the sinusoidal wave at angular frequency �0
is nondepleted and perfectly phase matched [i.e.,
wavevector mismatch �k � k2� � 2k� 	 k�2�0� �
2k��0� 	 0], the output second-harmonic (SH) inten-
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sity I2� due to nonlinear interaction of fundamental
intensity I� over a length L becomes I2� 	 
2L2I�

2,
where 
2 � 2�0

2deff
2��0c

3n3, deff is the effective non-
linear coefficient, n is refractive index, and c and �0
are light speed and permittivity in vacuum, respec-
tively [19,20]. As a result, the SHG efficiency normal-
ized to input fundamental power I2���I��P�	
 is
typically used as a figure of merit (with units of %�W)
for continuous-wave second-harmonic converters. In
the presence of short pulses, the SHG formalism can
be simplified by assuming (i) a nondepleted pump, (ii)
perfect phase matching at the center frequencies, (iii)
the fundamental pulse satisfies the slowly varying
envelope approximation, and (iv) group velocity dis-
persion (GVD) is negligible. This will result in an
equation relating the spectral amplitudes (Fourier
transform of temporal envelopes) of SH and funda-
mental pulses [10,19,20]:

A2��L, �� 	 �j�PNL��� � H���, (1)

where � � �0��n�2�0�c
, PNL��� � A���� � A���� (R
denotes convolution) is the nonlinear polarization

spectrum due to the fundamental pulse, and H��� is
the phase-matching spectrum provided by the non-
linear crystal. If the effective nonlinear coefficient deff
is constant across the crystal, we have

H��� 	 deffL � sinc�Ts��2�, (2)

where sinc�x� � sin�x��x, Ts � ��g
�1� � L is the

walkoff arising from group velocity mismatch, and
��g

�1� � k��2�0� � k���0� (prime notation represents
first-order derivative). The PM bandwidth, defined
as the full width at half-maximum (FWHM) of the
phase-matching power spectrum, would be ����PM
� 5.57�Ts and ���PM � 0.886�Ts. As is shown in
Section 3, the corresponding phase-matching tuning
curve has an FWHM ����PM � 0.443�0��0Ts�, where
�0 is the central wavelength of the fundamental
pulse, and 0 	 c��0. The SH pulse energy U2� is
proportional to the integration of power spectrum
|A2��L, ��|2:

U2� ��
��

�

�PNL����2 � �H����2d�. (3)

We examine the influence of the phase-matching
spectrum on the waveform and energy of SH pulse by
three special cases illustrated in Fig. 1.

1. Thin Crystal with Broad Phase-Matching
Bandwidth
As shown in Fig. 1(a), PNL��� only overlaps with a
small portion of H���, where H��� � deffL:

A2��L, �� � �j�deffL � PNL���. (4)

The SH field and intensity envelopes are proportional
to the square of their fundamental counterparts:
a2��L, t� � a�

2�t�, I2��L, t� 	 
2L2I�
2�t�. The average

SH power (defined as U2��Trep, Trep is the repetition
period) becomes �P2�	 	 
2�L2�Aeff� � �P̂��P�	
, where
Aeff denotes the effective cross-sectional area for both
fundamental and second-harmonic beams, and P̂�

represents the peak fundamental power [20]. This
relation indicates the following: (i) The SHG effi-
ciency normalized to peak fundamental power �P2�	�
��P�	P̂�
 is a figure of merit (with units of %�W) of
“quasi-continuous wave” second-harmonic convert-
ers. (ii) The higher the efficiency of the second-
harmonic converter, the lower the value of �P̂��P�	

needed to generate a detectable average SH power
�P2�	 (for a given detector sensitivity at second-
harmonic band and integration time). Consequently,
we normally use the expression

S � P̂� � �P�	 (5)

to estimate the sensitivity of quadratic pulse mea-
surement schemes.

Fig. 1. Spectral representation of SHG using (a) thin crystal of
broad PM bandwidth, (b) thick crystal of narrow PM bandwidth,
and (c) thick engineered crystal with broadened PM bandwidth.
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2. Thick Crystal with Narrow Phase-Matching
Bandwidth
Figure 1(b) shows the case where the SH spectrum is
dominated by H���, while PNL��� is approximated by
PNL�0�:

A2��L, �� � �j�deffLPNL�0� � sinc�Ts��2
. (6)

Equation (6) corresponds to a square pulse of duration
Ts in the time domain: a2��L, t�, I2��L, t� � ��t�Ts�,
where ��x� � �1, for �x� � 1�2; 0, otherwise. The
fundamental field a��t� contributes to the SH pulse
energy via PNL�0� 	 �

��
� a�

2�t�dt. If the fundamental
pulse is free of phase modulation [a��t� is real], the av-
erage SH power becomes �P2�	 � �L�Aeff� � �U��P�	
.
This relation reveals some unique features of SHG
with fundamental spectra much broader than the PM
bandwidth: (i) SHG efficiency normalized to funda-
mental pulse energy �P2�	���P�	U�
 should be a figure
of merit (with units of %�J) for second-harmonic con-
verters; (ii) Eq. (5) is an improper metric to evaluate
measurement sensitivity; (iii) the second-harmonic
yield scales with L, instead L2.

3. Thick Engineered Crystal with Broadened
Phase-Matching Bandwidth
As is discussed in Subsection 3.A, proper design of
nonlinear coefficient distribution deff�z� can broaden
the PM bandwidth of thick crystals to span the region
of significant PNL��� [see Fig. 1(c)]. In the absence
of amplitude modulation of |deff�z�|, the phase-
matching power spectral area APM � �

��
� |H���|2d�

(i.e., available nonlinearity) still scales with crystal
length L, making |H���| � �L in the transparent
band of a rectangular phase-matching response and
leading to

A2��L, �� � �LPNL��� � exp�j�H���
. (7)

The SH pulse could be substantially broader than
a�

2�t� if the phase-matching spectral phase �H��� is
highly nonlinear. However, the SH energy and power
spectrum is independent of �H���. The average SH
power satisfies �P2�	 � �L�Aeff� � �P̂��P�	
, correspond-
ing to features lying between those of two previous
cases: (i) �P2�	���P�	P̂�
, and Eq. (5) remain appropri-
ate to characterize second-harmonic converters and
measurement sensitivity, respectively. (ii) The second-
harmonic yield scales with L.

B. Theory of Autocorrelation Measurements

Intensity autocorrelation measurement is widely
used to estimate ultrashort pulse duration. Here we
compare the analytic formulas of the autocorrelation
traces obtained by broadband and narrowband SHG
crystals, respectively.

1. Intensity Autocorrelation with Broad
Phase-Matching Bandwidth [9,20,21]
Figure 2 illustrates the collinear geometry of inten-
sity autocorrelation measurement. The Michelson in-

terferometer splits and recombines the input pulse of
field envelope a(t) to produce a pulse pair: aout�t, ��
	 a�t� � a�t � ��e�j�0�. By Eqs. (4) and (7), the second-
harmonic yield due to broadband SHG crystals [such
as those in Figs. 1(a) and 1(c)] should be
�P2�	 � �

��
� |PNL���|2d� � �

��
� |a�

2�t�|2dt. By substi-
tuting a��t� 	 aout�t, ��, we obtain a fringe-resolved
autocorrelation trace �P2����	FR measurable by a slow
powermeter sensitive at the second-harmonic band.
The interferometric fringes can be removed by low-
pass filtering, leading to a trace �P2����	 � 1 �
2G2���, where

G2��� � �I�t�I�t � ��	��I2�t�	 (8)

is the normalized intensity autocorrelation function
[I�t� � |a�t�|2, � 	 represents time average]. For well-
behaved pulse shapes, the pulse width �t can be
roughly estimated by deconvolution of the correlation
width �� of G2���. Nevertheless, G2��� only delivers
very limited pulse information for lack of the spectral
phase of intensity profile I(t) [20,21].

2. Distortion of Autocorrelation due to Narrow
Phase-Matching Bandwidth
The distortion of intensity autocorrelation measure-
ment due to insufficient PM bandwidth has been for-
mulated and numerically investigated in Ref. [10].
An important limit is the case of a very narrow phase-
matching spectrum H���, which we derive here for
the first time to our knowledge. For a �-like phase-
matching spectrum, Eqs. (3) and (6) result in
�P2�	 � |PNL�0�|2 �PNL�0� 	 �

��
� a�

2�t�dt
. Substituting
a��t� 	 aout�t, �� makes PNL�0� 	 2����

� a2�t�dt
 �
e�j�0� � �G1���� � cos��0��
, where

G1���� � �a�t�a�t � ��	��a2�t�	 (9)

is defined as the modified field autocorrelation func-
tion (different from the conventional field autocorre-
lation function 
��� � �a�t�a*�t � ��	���a�t��2	). The
fringe-resolved and fringe-free autocorrelation traces
obtained in the case of a �-like phase-matching spec-
trum are

Fig. 2. Collinear geometry of intensity autocorrelation measure-
ment.
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�P2����	FR � 1 � 2�G1�����2 � 4Re�G1����cos��0��
� cos�2�0��,

�P2����	 � 1 � 2�G1�����2, (10)

respectively. In general, |G1����|2 � G2��� except for
some special pulse shapes [10]. This difference re-
mains even if a(t) is real, since generally ��a�t�a�t
� ��dt
2 � �a2�t�a2�t � ��dt. The difference becomes
larger for chirped pulses, because |G1����|2 is sensi-
tive to the phase of a(t). Figure 3 illustrates the sim-
ulated correlation width �� (FWHM) of a nonlinearly
chirped Gaussian pulse as a function of PM band-
width ���PM. The spectral amplitude is assumed
as A�� 	 exp����1.7 THz�2 � j�����3
, where
|A��|2 has an FWHM of � 	 2 THz, corresponding
to an asymmetric intensity profile with FWHM �t
	 324 fs (see inset). For simplicity, we assume rect-
angular phase-matching spectra with different full
widths ���PM. The correlation width increases from
310 fs to 447 fs as ���PM increases from 0 to �. The
minimum PM bandwidth needed to approximately
obtain standard G2��� depends on the bandwidth �
and chirp of the input pulse. A rule of thumb is
���PM � 2� for pulses without strong chirp. In ad-
dition to purely theoretical interests, measuring
fringe-resolved trace �P2����	FR caused by a �-like
phase-matching spectrum H��� could be useful in re-
trieving spectral phase information of the pulse [22].
This is partly due to each frequency component of the
nonlinear polarization spectrum PNL��� being associ-
ated with the entire fundamental spectrum A����
through autoconvolution, and spectral “sampling” by
a narrow H��� at second-harmonic band [Eq. (6)] still
preserves significant pulse information.

C. Theory of Interferometric Second Harmonic
Generation Frequency-Resolved Optical Gating

SHG FROG [8] provides complete amplitude and
phase information without the need of synchronized

reference or monochromatic pump as required in
Refs. [14,15,23]. It applies the strategy of (i) using
the unknown pulse itself for ultrafast gating, (ii)
recording considerably more data points compared
to the degrees of freedom, and (iii) then retrieving
the complex field by iteration. SHG FROG is rela-
tively robust against systematic error and noise
contamination due to self-contained consistency
checks. The sensitivity of conventional SHG FROG
using thin bulk crystals, however, is limited by
�500 mW2 [1]. This number can be greatly improved
by using A-PPLN waveguides [18] if the problems of
interferometric fringes and spectral distortion in
FROG traces can be alleviated. Here we summarize
the formalism of interferometric SHG FROG [24] and
describe our solutions to the technical difficulties.

The standard FROG trace typically obtained by
noncollinear SHG is defined as

IFROG��, �� � �Ft�a�t� � a�t � ���2 	�PNL
X��, ���2,

(11)

where Ft�  denotes Fourier transform with respect to
variable t, and PNL

X��, �� � Ft�a�t� � a�t � �� is the
self-gated nonlinear polarization spectrum. Since our
straight A-PPLN waveguides can only work with col-
linear geometry and guide only transverse magnetic
(TM) polarization mode, we have to employ a col-
linear Michelson interferometer that yields inter-
ferometric FROG traces (Fig. 4). The nonlinear
polarization caused by the collinear pulse pair be-
comes PNL�t, �� 	 �a�t� � a�t � �� � exp��j�0��
2,
corresponding to a spectrum of

PNL��, �� 	 PNL
X��, 0� � �1 � e�j�2�0����

� 2PNL
X��, �� � e�j�0�.

Ideal broadband SHG results in fringe-resolved
FROG trace IFR��, �� proportional to |PNL��, ��|2:

IFR��, �� � IFROG��, 0� � 2IFROG��, ��
� 4�IFROG��, 0� � IFROG��, ��
� cos��� � ���2� � cos���0 � ��2��

� IFROG��, 0� � cos��2�0 � ���
, (12)

Fig. 3. Simulated correlation width (FWHM) versus PM band-
width for a nonlinearly chirped Gaussian pulse. The inset shows
the intensity profile of the pulse.

Fig. 4. Schematic of interferometric SHG FROG measurement.
MI, Michelson interferometer.
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where �� � �PNL
X��, �� � �PNL

X��, 0�. The Fourier
transform of Eq. (12) [defined as ���

� IFR��, ��e�j�·�d�]
shows five spectral strips centered at delay frequen-
cies of � 	 0, ��0, and �2�0, respectively. The fringe-
free trace can be derived by low-pass filtering:
ILPF��, �� 	 IFROG��, 0� � 2IFROG��, ��.

In practice, the phase-matching power spectrum
|H���|2 of our A-PPLN waveguides exhibits consid-
erable fluctuation (see Section 3) and can distort the
measured traces: ĨFR��, �� 	 IFR��, �� � |H���|2,

ĨLPF��, �� 	 �IFROG��, 0� � 2IFROG��, ��
 � �H����2.
(13)

Since IFROG��, �� → 0 when |�| is much greater than
the pulse width �t, we can eliminate the signal
background of Eq. (13) by subtracting a spectral
slice taken at large delay: ĨFROG��, �� � IFROG��, ��
� |H���|2. Instead of directly measuring |H���|2

by using a tunable monochromatic source (which is
subject to environmental perturbations that in our
experiments hindered sufficiently accurate determi-
nation of |H���|2), we can retrieve it by the frequency
marginal correction method [25]. The ideal frequency
marginal function M���, defined as the delay integral
of the standard FROG trace, is equivalent to the
autoconvolution of fundamental power spectrum
I����: M��� � �

��
� IFROG��, ��d� 	 I���� � I����. In

the presence of a �-independent spectral modulation
|H���|2, it changes to M̃��� � �

��
� ĨFROG��, ��d�

	 M��� � |H���|2, leading to the relation

�H����2 	��
��

�

ĨFROG��, ��d����I���� � I����
.

(14)

Equation (14) shows that the FROG data contain
useful information about |H���|2, and we only need
to measure fundamental power spectrum I���� by
an optical spectrum analyzer (OSA). Furthermore,
|H���|2 in Eq. (14) can characterize the overall spec-
tral distortion of the measurement system (not lim-
ited to that arising from phase matching). It is worth
mentioning that a small residual background spec-
trum ���� may cause overflow in evaluating fre-
quency marginal functions: M̃��, �� 	 M̃��� � ����
� ����

� d��. Therefore, one has to subtract the spectral
background as completely as possible before perform-
ing the marginal correction process. Once the stan-
dard trace IFROG��, �� has been extracted from the raw
data, the well-developed retrieval algorithms [9] can
be employed to get solutions for the unknown field.
Detailed discussion about the uniqueness of FROG
measurements may be found in Ref. [26].

3. Quasi-Phase-Matched LiNbO3 Waveguides

It is known that second-harmonic power can mono-
tonically increase with interaction length only if the
phase velocity (wavevector) mismatch between the

fundamental and second-harmonic waves is canceled.
Here we summarize the generalized QPM technique
[27,28], which allows for tailoring of phase-matching
response to meet specific requirements of applica-
tions (such as broad bandwidth in pulsed SHG). We
will also discuss the implementation and character-
ization of our QPM waveguide device, while the ex-
perimental demonstration is left in Section 4.

A. Generalized Quasi-Phase-Matching Theory

QPM gratings with strictly periodic nonlinear coeffi-
cient distribution deff�z� of period �0 can provide an
artificial wavevector mK0 (m is an integer, K0 �
2���0) to compensate for the SHG wavevector mis-
match �k 	 k�2�0� � 2k��0� at a single fundamental
frequency. All the previous formulas remain valid
if the constant deff is substituted by the mth-order
Fourier series coefficient of deff�z�. For aperiodic
QPM gratings with a central period �0, the nonlinear
coefficient can be expressed as deff�z� 	 d̃eff�z� �
exp��jmK0z
 � c.c., and the baseband phase-
matching spectrum (given nondepleted pump and
negligible GVD) is generalized to

H��� 	�
�L�2

L�2

d̃eff�z�e�j�zdz, with � 	 ���g
�1� � �� � �w�,

(15)

where the angular frequency detuning is �� 	 �mK0

� �k����g
�1�. Equation (15) indicates that (i) the

central grating period �0 determines the carrier fre-
quency to be phase matched, and (ii) the H��� profile
is associated with the “windowed” nonlinear coeffi-
cient envelope d̃eff�z� � ��z�L� by Fourier transform,
which means there is unique deff�z� for each specific
complex H���. In practice, the phase-matching spec-
tral phase �H��� can be left as a degree of freedom in
the design of second-harmonic converters used in in-
tensity autocorrelation and FROG measurements
(for they record only the SH pulse energy and power
spectrum, respectively). As a result, there exist a
number of procedures to approach a specified phase-
matching power spectrum |H���|2 with different de-
signs of deff�z� [29–31]. An intuitive way to approach
a rectangular |H���|2 over a broad bandwidth [as in
Fig. 1(c)] is by longitudinally changing the QPM pe-
riod, such that each local period ��z� can phase
match some specific frequency component ���z� 	
2����1�z� � �0

�1
���g
�1�. Then the overall H��� is

the complex superposition of all constituent spectra.
The dotted curve in Fig. 5 illustrates the simu-

lated phase-matching power spectrum |H��|2 aris-
ing from a linearly chirped period function: ��z�
	 �0�1 � �����0� � �z�L�
 � ��z�L�, where �0 	
14.74 �m, modulation depth ����0 	 1.85%, L 	
59.5 mm, and ��g

�1� 	 �0.37 ps�mm. The resulting
PM bandwidth ���PM is 6.3 THz, about 150 times
that provided by a uniform QPM grating of the same
length. The ripple structure of the dotted curve in
Fig. 5 is associated with the hard-limited window
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��z�L� of the nonlinear strength distribution |deff�z�|,
which can be suppressed by multiplying by a spa-
tially apodized window function [32]. For example,
the solid curve in the same figure is derived by using
a Hamming window function (inset) and a slightly
increased modulation depth �����0 	 2%� to com-
pensate the reduced PM bandwidth due to the
weaker |deff�z�| near the grating edges. It shows im-
proved flatness, while the slight tilt between the
residual “ears” is attributed to the nonlinear distri-
bution of wavevector K�z� 	 2����z� [though ��z� is
linear]. The “ears” can be eliminated by even stronger
apodization at the cost of smaller phase-matching
power spectral area APM. The ripple structure of the
phase-matching response only has a weak effect on
intensity autocorrelation measurement, for the SH
pulse energy U2� involves an overlap integral of
|PNL���|2 and |H���|2 [Eq. (3)]. In FROG measure-
ments, however, any uneven phase-matching re-
sponse may distort the measured spectrograms [Eq.
(13)]; hence apodization of the nonlinearity ampli-
tude is helpful.

Although chirping the QPM period reduces the
phase-matching spectral peak, in the absence of
apodization it preserves the power spectral area APM
(available nonlinearity) of the unchirped device. This
is because (i) the period function ��z� simply modu-
lates the phase of nonlinear coefficient envelope,
d̃eff�z� 	 deff � exp�j2����1�z� � �0

�1
z; (ii) Parseval’s
relation results in APM � �L |d̃eff�z�|2dz 	 deff

2L,
which is independent of ��z�. On the contrary, the
available nonlinearity is decreased by a factor of N if
we use a nonlinear crystal of length L�N to broaden
the PM bandwidth by N times: APM � �L�N deff

2dz
	 deff

2L�N. Since the second-harmonic yield is pro-
portional to the phase-matching power spectral area
(instead of its peak) in the limit where |PNL���|2 is

constant, our chirped QPM scheme can produce fun-
damentally more power in broadband SHG and short
pulse measurements, compared to a short crystal
with the same bandwidth. Practically, some reduc-
tion in SH power will occur when |PNL���|2 has spec-
tral rolloff within the transparent band of |H���|2.
However, our previous experiments proved that this
reduction in efficiency remains weak if the PM band-
width remains of the order of the width of nonlinear
polarization spectrum [17].

B. Aperiodically Poled Lithium Niobate Waveguide
Sample

The A-PPLN waveguide sample used in our exper-
iments was made by electric field poling [33] and
annealed proton exchange (APE) [34] in a z-cut
LiNbO3 substrate. The APE process can only in-
crease the extraordinary index ��ne � 0.09� and
guide TM modes. The size of TM00 mode in the
fundamental band is made to be 10.7 �m wide and
8.2 �m deep at the two ends to match single mode
fiber (SMF), but is tapered to 8.1 �m wide and 4.4
�m deep in the QPM grating region to enhance the
nonlinear interaction. In view of the coupling and
propagation losses (�0.43 dB�cm at 1550-nm wave-
length), our waveguide sample has a back-to-back loss
of �8.5 dB (dominated by our free-space coupling).
The loss can be significantly reduced to 2–3 dB if the
waveguide is made by the reverse proton exchange
process [35] and is fiber pigtailed [3]. To exploit
the largest ��2� tensor component of LiNbO3 �d33 	
27 pm�V�, a TM-polarized fundamental beam is
coupled into the waveguide to produce a TM-
polarized second-harmonic beam. The central pol-
ing period �0 is �14.75 �m, designed to phase match
a fundamental wavelength �PM of 1538 nm at room
temperature. Increasing the sample temperature
can shift the central phase-matching wavelength
longer (about 0.1–0.2 nm�°C) as a result of the effec-
tive index change of waveguide modes. The length of
the poling region is 5.95 cm, corresponding to a GVM
walkoff Ts � 22 ps, since ��g

�1� � �0.37 ps�mm for
the APE waveguides.

The phase-matching tuning curve can be ob-
tained by measuring the output SH power as a
function of fundamental wavelength. Figure 6(a)
illustrates that an unchirped periodically poled
LiNbO3 (PPLN) waveguide has a sinc2 tuning curve
with a peak response of �2000 %�W and an
FWHM ����PM � 0.17 nm [i.e., ���PM � 42 GHz in
the second-harmonic band], consistent with the 22-ps
GVM walkoff. Measurement of subpicosecond pulses
with such a PPLN waveguide would be subject to
serious distortion [9]. A series of chirped A-PPLN
waveguides were fabricated on the same LiNbO3
sample with different tuning curve widths: ����PM
� 5, 10, 15, 20, and 25 nm, depending on the modu-
lation depth of the period chirping function. Figure
6(b) shows a phase-matching tuning curve of a
chirped A-PPLN waveguide with ����PM � 25 nm and
���PM � 6.3 THz, which is sufficient to accurately

Fig. 5. Simulated baseband phase-matching power spectra using
linearly chirped QPM period without (dotted) and with (solid) non-
linear strength apodization. The inset shows the Hamming win-
dow function with 10% length used for apodization.
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characterize chirp-free pulses with a duration longer
than �140 fs. Note that broad PM bandwidth can
also be achieved by introducing a thermal gradient on
a standard (periodic) QPM grating [36]. However,
this scheme is subject to worse coupling stability,
has smaller attainable bandwidth, and is difficult to
produce specifically specified phase-matching curves.
The average efficiency of the curve in Fig. 6(b) is
reduced to �15 %�W; however, the spectral area
(available nonlinearity APM) is roughly equal to that
of Fig. 6(a). This proves that PM bandwidth broad-
ening by QPM period chirping does not sacrifice the
SHG efficiency for short pulses, though the efficiency
for continuous waves is indeed reduced. Although we
introduced primitive nonlinear strength apodization
by tuning the duty cycle of the chirped QPM gratings,
the ripple feature [as shown in Fig. 6(b)] persists
because (i) only a small portion of QPM grating is
apodized, and (ii) the maximum reduction of effective
nonlinear coefficient is limited by the minimum do-
main length achieved by poling technique [32]. As a

result, we still need spectral correction when using
A-PPLN waveguides in FROG measurement.

Since the PM bandwidth can be made even wider
by increasing the period modulation depth, the min-
imum measurable pulse duration �tmin is mainly lim-
ited by the GVD-induced input pulse broadening.
According to the Sellmeier equation of congruent
LiNbO3 [37], the extraordinary index of refraction
near 1.55-�m wavelength corresponds to a GVD
value of �0.1 fs�THz�mm at room temperature. As a
result, a 6-cm-long LiNbO3 waveguide has an accu-
mulated dispersion of �6 fs�THz, which can only
slightly broaden the �250-fs input pulses (spectral
width �1.38 THz) used in our experiments. Pulses
down to �50-fs duration at 1.55-�m wavelength
should still be measurable using an appropriately
designed 6-cm-long A-PPLN waveguide. However,
the minimum pulse duration would be longer for
pulses in the visible or near infrared because of the
larger GVD (e.g., 0.37 fs�THz�mm at 800-nm wave-
length).

4. Experimental Results

A. Autocorrelation Measurement

The experimental setup for autocorrelation measure-
ment is shown in Fig. 2, in which a PPLN or A-PPLN
waveguide is employed as the SHG crystal. We used
a passively mode-locked fiber laser to generate a 50-
MHz, �220-fs pulse train at 1545-nm wavelength. A
Fourier-transform pulse shaper [38] was used to ma-
nipulate the complex spectrum in some of the exper-
iments. A collinear Michelson interferometer split
and recombined each pulse to form a pulse pair with
a variable delay � with 0.67-fs resolution. The optical
beam was made TM polarized before being coupled
into the selected waveguide. The sample was heated
to 84 °C to shift the central phase-matching wave-
length to 1545 nm. The average SH power could be
measured by a photomultiplier tube along with a
lock-in amplifier down to the order of one femtowatt.
The typical data acquisition time for each fringe-
resolved autocorrelation trace is less than 3 minutes,
where the interferometric fringes and the signal
background can be subsequently removed by soft-
ware to yield the intensity autocorrelation function
G2���.

The record low-power intensity autocorrelation
measurement by chirped A-PPLN waveguide was
demonstrated in Ref. [17], where the energy per pulse
coupled into the waveguide (referring to the total of
those from both autocorrelator arms) was only 52 aJ,
corresponding to an unprecedented measurement
sensitivity of 3.2 � 10�7 mW2 (500 times better than
the previous record [14]). Here we experimentally
demonstrated that insufficient PM bandwidth could
distort the autocorrelation traces. Figure 7 illustrates
the deconvolved pulse duration �t (assuming sech2

intensity) versus crystal temperature T measured by
unchirped PPLN (circle) and chirped A-PPLN (cross)
waveguides, respectively. Pulse measurement by
PPLN shows strong temperature dependence, where

Fig. 6. Measured phase-matching tuning curves of (a) unchirped
PPLN waveguide at 66 °C and (b) linearly chirped A-PPLN
waveguide at 84 °C. The central phase-matching wavelengths dif-
fer by �3 nm due to the 18 °C temperature difference. Note the
spectral areas in both cases are roughly the same.
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�t varies from 235 fs to 166 fs when temperature is
increased by 55 °C. In contrast, �t measured by
A-PPLN only varies by a few femtoseconds within the
similar temperature range. This is because a narrow
phase-matching response H��� cannot sense the en-
tire nonlinear polarization spectrum PNL���, which is
essential to retrieve accurate intensity autocorrela-
tion functions. As the central phase-matching wave-
length changes with crystal temperature, the narrow
H��� of PPLN “samples” different frequency compo-
nents of PNL���, from which different pulse informa-
tion and correlation widths are derived. Another
demonstration of the importance of adequate PM
bandwidth was obtained by measuring nonlinearly
chirped Gaussian pulses (created using the pulse
shaper) with fixed 9-nm power spectral width
(FWHM) and different cubic spectral phases: exp�j�
� ����9.2 nm�3
, where � describes the cubic phase
strength and �� 	 � � 1542 nm is the wavelength
detuning. Figure 8 indicates that the simulated de-
convolved pulse duration �t (assuming infinite PM
bandwidth and Gaussian intensity) grows with the
increase of �. Experimental data obtained by a broad-
band A-PPLN waveguide agree with this trend,
where �t (crosses) varies from 460 fs to 810 fs as �
increases from 0 to 2. Meanwhile, �t measured by
a narrowband PPLN waveguide (circles) is only
slightly changed �460 fs → 490 fs�. This result is a
manifestation of the fact that autocorrelation traces
acquired with very narrow PM bandwidth are theo-
retically completely insensitive to odd-order spectral
phase (cubic in our experiment). The deviation
between the results of simulation and A-PPLN
waveguide experiment at large chirp �� 	 2� could be
attributed to (i) an imperfect Gaussian spectrum gen-
erated by the shaper, (ii) a finite PM bandwidth, and
(iii) a nonflat phase-matching response of the
A-PPLN, whose ripples are no longer negligible in
measurement of highly chirped pulses.

B. Second Harmonic Generation Frequency-Resolved
Optical Gating

The setup of our SHG FROG experiments is shown in
Fig. 4, where a chirped A-PPLN waveguide with
����PM � 25 nm is used as the SHG crystal. We em-
ployed the same fiber laser and Fourier-transform
pulse shaper as those used in the autocorrelation
experiments to generate signal pulses at 1538-nm
wavelength. The pulse train was sent into a modified
collinear Michelson interferometer, giving rise to
pulse pairs with variable delay �. To remove the in-
terferometric fringes by hardware, we use a piezo-
electric transducer driven by �70-Vpp, �180-Hz
sinusoidal voltage to dither the fixed arm of the
Michelson interferometer by a small displacement dl
(amplitude �1.5 �m). In this way, the SH power
spectrum recorded at some delay �0 is actually the
average of many spectra with slightly different delays
�0 � d� �d� 	 2dl�c�. Contrary to the traditional soft-
ware approach [24], our delay dithering scheme can
implement low-pass filtering of interferometric traces
without recording and processing a huge amount of
data needed to resolve the dense fringes. The output
SH power spectrum from the A-PPLN waveguide was
recorded by spectrometer and intensified CCD cam-
era as a function of �, resulting in a fringe-suppressed
raw FROG trace ĨLPF��, ��. By moving the variable
arm of the Michelson interferometer at a constant
speed of 3 �m�s, and recording one spectrum for ev-
ery second, we obtained an effective delay resolution
�res 	 20 fs. Acquiring a raw FROG trace consisting of
128 spectra takes about 2 minutes. Subsequent soft-
ware processing deals with (i) background subtrac-
tion, (ii) frequency marginal correction [Eq. (14)], and
(iii) intensity and phase reconstruction by a commer-
cial software (Femtosoft FROG 3), which normally
takes less than one minute to converge.

SHG FROG by use of a chirped A-PPLN waveguide
was demonstrated to be able to accurately measure

Fig. 7. Deconvolved pulse duration �t versus crystal temperature
T, for unchirped PPLN (circle) and chirped A-PPLN (cross) wave-
guides.

Fig. 8. Deconvolved pulse duration �t versus cubic spectral phase
coefficient � of a Gaussian spectrum for both PPLN (circle) and
A-PPLN (cross) waveguides. The squares show the simulation re-
sults.
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nearly chirp-free or dispersion stretched pulses at
record low power levels, where the corresponding
measurement sensitivity is 2.7 � 10�6 mW2 [18].
Here we further tested the reliability of our A-PPLN
waveguide scheme by measuring pulses where the
spectral phases were known beforehand. The re-
quired signal pulses were created in two different
approaches. First, as reported in Ref. [18], we used a
5-meter-long section of single mode fiber (SMF) to
broaden the pulse duration by GVD. The retrieved
spectral phase profile was in good agreement with
that predicted by the fiber dispersion specification. In
the second approach, first reported here, we applied a
Fourier-transform pulse shaper to impose different
cubic spectral phases upon the original pulse train.
Figure 9 illustrates the retrieved pulses without
[Figs. 9(a)–9(b)] and with [Figs. 9(c)–9(f)] cubic phase
modulation in the frequency domain and time do-
main, respectively. Measurement of modulation-free
pulses shows a nearly flat spectral phase [Fig. 9(a)].
In the presence of phase modulation, the retrieved
spectral phase profiles in Figs. 9(c) and 9(e) exhibit
evident cubic dependence on the wavelength (as well
as unimportant linear components). The fitted cubic
coefficients are in good agreement with those im-
posed by the pulse shaper: 0.93 � 10�2 ps3�1.19
� 10�2 ps3� and 1.90 � 10�2 ps3�2.13 � 10�2 ps3�, re-
spectively. The broadening of the main pulse lobe and
the asymmetric oscillatory tails of the temporal in-
tensity profiles shown in Figs. 9(d) and 9(f) are also

clear signatures of the cubic phase modulation.
These measurements directly show that our A-PPLN
waveguide scheme can correctly reconstruct the com-
plex field of the unknown pulse with extremely low
power requirement.

5. Conclusion

We have examined the theories of SHG, intensity
autocorrelation, and interferometric FROG in the
presence of different PM bandwidths. Specifically,
the analytical form of distorted intensity autocorre-
lation traces due to a �-like phase-matching spectrum
is proposed for the first time to our knowledge. Ex-
perimental intensity autocorrelation and FROG mea-
surement results using A-PPLN waveguides show
good data integrity and unprecedented sensitivities
of 3.2 � 10�7 mW2 and 2.7 � 10�6 mW2, respectively.
Further enhancements to our scheme may also be
anticipated. For example, apodization of the nonlin-
ear coefficient magnitude |deff�z�| in QPM grating
design may improve spectral resolution and dynamic
range in FROG measurements by suppressing the
ripple of the phase-matching spectrum [39]. Fiber-
pigtailed reverse proton exchange waveguide devices
[3,35,39] can achieve even better measurement sen-
sitivity because of the enhanced coupling and nonlin-
ear conversion efficiencies as well as improved
coupling stability (longer integration time in detec-
tion). Asymmetric Y-junction waveguide devices [40]
that are designed to exploit mode sorting to spatially
separate the second-harmonic field components aris-
ing due to the (desired) products of fields from those
arising from the (undesired) self-squared terms
should be able to realize a noncollinear SHG func-
tionality. If successful, this would eliminate the un-
desired interferometric fringes (even without delay
dithering) and the undesired background signal both
in intensity autocorrelation and FROG. We antici-
pate that the unparalleled ultrashort pulse measure-
ment sensitivity provided by A-PPLN waveguides
will substantially contribute to scientific instrumen-
tation, low-power telecommunication signal monitor-
ing, and “optical function generators” when used in
conjunction with the pulse shaping techniques.
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