Measurement and Synthesis of Ultrafast Scalar and Vectorial Optical Arbitrary Waveforms

Shang-Da Yang (楊尚達)

Institute of Photonics Technologies, National Tsing Hua University(清華大學光電所) Hsinchu 30013, Taiwan CLEO-PR (2015/8/27)

Overview

Vectorial optical arbitrary waveform (V-OAW): Efield with transient amplitude, phase, polarization and 100% duty cycle.

Instantaneous frequency

Outline

3

- Background
- Scalar OAW measurement:
 Orthogonally probed DQ-SSI
- Vectorial OAW measurement:
 VECTOR

Conclusions

Part 1

4

Background

Scalar OAW measurement: Orthogonally probed DQ-SSI

Vectorial OAW measurement:
 VECTOR

Conclusions

Optical frequency comb

- How to generate?
- 1. f_{CEO} -locked pulse laser ($f_{rep} \sim 100 \text{ MHz}$)
- 2. Phase-modulated CW (PMCW) comb ($f_{rep} \sim 10 \text{ GHz}$)
- 3. High-Q cavity Kerr frequency comb (f_{rep} ~ 1 THz)

Group-of-line scalar pulse shaper

One pixel modulates multiple spectral lines,

ltrafast

 \Rightarrow the shaped waveform has a duty cycle < 100%.

■ One pixel only modulates one spectral line, ⇒ the shaped waveform may have 100% duty cycle.

Scalar Optical Arbitrary Waveform

- (Optical frequency comb) + (LBL scalar pulse shaper)
 → scalar OAW
- Waveform can fill the entire time axis
- Intensity repetition rate can be multiplied (temporal Talbot effect)

Application of scalar OAW

■ 31 GHz \rightarrow 496 GHz, delivered over 25 km fiber link, \Rightarrow radio-over-fiber communications

OE, 18, 24003 (2010)

Polarization pulse shaper

x- and y-polarizations are independently controlled

Application of vectorial fs pulse

■ Linear polarization (LP) transient sandwiched between circular polarization (CP) waveforms ⇒ isolated attosecond pulse generation

New J. Phys. 10, 025025 (2008)

11

Application of vectorial fs pulse

Selective plasmonic excitation with femtosecond time resolution and nanometer spatial resolution

PNAS, 107, 5329 (2010)

12

Vectorial OAW (V-OAW)

- (Optical frequency comb) + (polarization LBL pulse shaper) → V-OAW
- Waveform can fill the entire time axis
- Intensity repetition rate can be multiplied

Our goals

- Devise a practically useful method to fully characterize the time evolutions of amplitude, phase, and SOP with fs resolution
- Realize an integrated system for simultaneous measurement and synthesis of V-OAW

Part 2

15

Background

Scalar OAW measurement: Orthogonally probed DQ-SSI

Vectorial OAW measurement:
 VECTOR

Conclusions

How to model a scalar OAW?

- $A(\omega_n) = |A(\omega_n)| \times \exp[j\phi(\omega_n)], n = 0, \pm 1, \pm 2, ...$
- $|A(\omega_n)|$: spectral amplitude, easy to be measured
- φ(ω_n): nonlinear component of spectral phase,
 sufficient to determine the time-domain pulse
 shape

Measuring scalar OAW is difficult

Cannot create two isolated pulse replicas

17

FROG, SPIDER do not work!

DQ-SSI

- Need a "probe": 2 coherent spectral lines spaced by Ω (spectral shear) and have a controllable relative phase δ
 - Signal and probe are mixed for SFG

Ultrafast

otonics -ab

• Acquire three interferograms $\{S_{1,2,3}\}$ at $\{\delta_{1,2,3}\}$

Retrieve $\phi(\omega)$ from $S_{1,2,3}(\omega)$

■ $S_i(\omega) = B(\omega) + M(\omega) \times cos[\Delta \phi(\omega) + \delta_i]$ (i = 1, 2, 3),

where $\Delta\phi(\omega) \equiv \phi(\omega+\Omega) - \phi(\omega)$

Probe phase δ	0	90 °	180 °
Interferogram	S_1	S ₂	S ₃
Interferometric term/M(ω)	<mark>cos</mark> [Δφ(ω)]	- <mark>sin</mark> [Δφ(ω)]	- <mark>cos</mark> [Δφ(ω)]

■
$$B(\omega) = [S_1(\omega) + S_3(\omega)]/2,$$

$$\Delta \phi(\omega) = \tan^{-1}[(B-S_2)/(S_1-B)],$$

$$\int_{\text{hotonics Lab}} \phi(\omega) = \int \Delta \phi(\omega') d\omega'$$

Orthogonally probed DQ-SSI setup

All optical, free of optical or RF reference,

⇒ can measure Kerr frequency comb (f_{rep} ~ THz)

Experiment: Temporal Talbot effect

- Alternating {0,90°} phases are accurately retrieved
- Intensity repetition rate is doubled (20→40 GHz) w/n power penalty

OL, **39**, 1901 (2014)

22

Part 3

23

Background

- Scalar OAW measurement:
 Orthogonally probed DQ-SSI
- Vectorial OAW measurement:
 VECTOR

Conclusions

How to model a V-OAW?

- $\vec{A}(\omega) = \vec{x} |A_x(\omega)| \times \exp[j\phi_x(\omega)] + \vec{y} |A_y| \times \exp[j\phi_y + \tau_{xy}\omega + \theta]$
- |A_x|, |A_y|: spectral magnitudes
- ϕ_x, ϕ_y : nonlinear components of spectral phase
- τ_{xy} : relative delay between x- and y-polarizations
- θ: relative constant phase between x- and ypolarizations
- The total phase of y-polarization: $\phi_{y,tot} = \phi_y + \tau_{xy}\omega + \theta$

How to determine a V-OAW?

Measuring the x- and y-polarized pulse shapes is insufficient;

for τ_{xy} and θ have a profound impact on SOP.

New J. Phys. 10, 025025 (2008)

4-step method

- Steps 1 & 2: Two scalar OAW measurements $\rightarrow \{\phi_x, \phi_y\}$
- Step 3: Compensate $\phi_{x,y}$, intensity X-correlation $\rightarrow \tau_{xy}$
- Step 4: Single- λ phase-scanning interferometry $\rightarrow \theta$

Cons: complicated, need interferometric stability

OE, 20, 27062 (2012)

Single- λ polarimeter

θ_1	θ2	Power
90 °	0 °	I ₀
90°	-45°	I_{45}
-45°	-45°	ا ₉₀
-45°	0 °	I _{RHC}

The Stokes vector is

Ultrafast

Photonics Lab

$$\mathbf{S} = \begin{bmatrix} S_{0} \\ S_{1} \\ S_{2} \\ S_{2} \\ S_{3} \end{bmatrix} = \begin{bmatrix} I_{0} + I_{90} \\ I_{0} - I_{90} \\ 2I_{45} - S_{0} \\ 2I_{45} - S_{0} \\ 2I_{RHC} - S_{0} \end{bmatrix} = \begin{bmatrix} I_{x} + I_{y} \\ I_{x} - I_{y} \\ 2I_{x}I_{y} \cos \Delta \phi_{xy} \\ 2I_{x}I_{y} \sin \Delta \phi_{xy} \end{bmatrix}$$

λ -parallel polarimeter (WPP)

Add a spectral disperser and a PD array ...

In this case, one can get $\{I_x(\omega), I_y(\omega), \Delta \phi_{xy}(\omega)\}$, where $I_{x,y}(\omega) = |A_{x,y}(\omega)|^2$, $\Delta \phi_{xy}(\omega) = \phi_{y,tot}(\omega) - \phi_x(\omega)$

VECTOR method

Step 1 (DQ-SSI): Acquire $\{S_{1,2,3}(\omega)\}, \rightarrow \phi_x(\omega), \rightarrow the x-polarized OAW.$

Step 2 (WPP): Acquire $\{I_{0,45,90,RHC}(\omega)\}, \rightarrow \Delta \phi_{xy}(\omega), \rightarrow \phi_{y,tot}(\omega), \rightarrow the y-polarized OAW, and <math>\tau_{xy}, \theta$.

OE, 22, 28838 (2014)

Experiment: 100% duty cycle

Verification of VECTOR accuracy

Experiment: Temporal Talbot effect

Conclusions

VECTOR is

- 1. OAW compatible (no need of isolated pulse replicas)
- 2. Free of optical or RF reference, \Rightarrow applicable to Kerr frequency comb of high (>100 GHz) repetition rate
- 3. Non-iterative
- 4. Non-ambiguous
- 5. Robust against interferometric perturbation
- 6. Integrated system for measurement and synthesis

