
 

 

Abstract  
 A new algorithm is proposed to accurately reconstruct 
the spectral phase from frequency-resolved optical gating 
(FROG) traces seriously distorted by crystal dispersion and 
rippled phase-matching spectrum for the fist time (to our 
best knowledge). 

I.  INTRODUCTION 
Self-referenced femtosecond pulse measurement 

techniques typically rely on crystal nonlinearity, such as 
second-harmonic generation (SHG), to achieve temporal 
gating or spectral shearing. Thin crystal is normally 
utilized to avoid (1) strong group velocity mismatch 
(GVM) walk-off [1], i.e. insufficient phase matching (PM) 
bandwidth, and (2) pulse distortion due to group velocity 
dispersion (GVD) [2]. GVM used to be dominant (except 
for few-cycle pulses), but has been overcome by using 
chirped quasi-phase matched (QPM) grating [3] or novel 
measurement technique [4,5]. As a result, GVD becomes 
the only limiting factor of the crystal thickness (thus 
conversion efficiency) in pulse measurement. For 
example, type-I BBO shorter than 40 m is needed to 
prevent 5-fs Ti/S laser pulses from broadening by 5%. In 
this contribution, we propose a modified algorithm to 
deal with frequency-resolved optical gating (FROG) 
traces [6] seriously distorted by GVD and rippled PM 
spectrum [3]. This is the first success (to our best 
knowledge) of eliminating the crystal thickness constraint 
imposed by GVD, which is promising in measuring weak 
few-cycle pulses.  

II.  THEORY 
The second-harmonic spectrum due to pulse replicas 

of individual spectrum E(ω') and time delay τ passing 
through a nonlinear crystal of length L is written as [7] 
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where deff(z) is the effective nonlinear coefficient, and 
2( , ') ( ) ( ') ( ')k k k k            is the wave 

vector mismatch. When GVD is weak, k reduces to a 
function of  and Eq. (1) is simplified to a transfer 
function relation 
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nonlinear polarization spectrum, and 
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contributed by the crystal. Standard SHG FROG 
algorithms work well under the conditions of negligible 
GVD and flat H(), which are violated if one uses a very 
long, chirped QPM grating [3]. We modify the traditional 
iterative algorithm in two aspects (Fig. 1). (1) The FROG 
trace is calculated by double integral [Eq. (1)], instead of 
the typical |F()|2. (2) The unknown spectral phase (') 
is expanded by an Nth-order polynomial around the 
fundamental central angular frequency ω0 
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The FROG error  (a function of 2, …, N) between the 
actual and calculated FROG traces is minimized by the 
steepest descent method [8]. This means the set of {n} is 
repeatedly updated by moving in opposite direction of the 
(numerically calculated) gradient of  by a proper 
distance in the (N-1)-dimensional space until  is small 
enough. Note that the spectral phase representation can be 
replaced by expansion of other orthogonal basis functions 
(e.g. sinusoidal functions) or even arbitrary function of 
finite samplings. 

 
Fig. 1. Flow chart of the modified phase retrieval algorithm in this work. 

III.  SIMULATION RESULTS 
Consider a Gaussian spectrum [shaded, Fig. 2(c)] 

centered at 1550 nm and supporting a transform-limited 
pulse width (defined by FWHM) of 75 fs. FROG traces 
due to pulses with different spectral phases and a 6-cm-
long aperiodically poled lithium niobate (A-PPLN) bulk 
[3] are calculated by Eq. (2). The linear poling period 
function Λ(z) between 20.28 m and 20.31 m of the A-
PPLN bulk adequately preserves the second-harmonic 
bandwidth, while the 6-cm thickness can considerably 
distort the fundamental pulse. As a proof of concept, we 
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tested two different spectral phases approximated by 
third-order polynomials, i.e. N=3 in Eq. (3). 
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Fig. 2. (a) The original (left half) and retrieved (right half) FROG traces. 
(b) The ideal FROG trace due to extremely short crystal. (c) The power 
spectrum (shaded) and spectral phases retrieved by standard (triangles) 
and modified (circles) algorithms, respectively. (d) Temporal intensities 
of assumed pulse (red solid) and those retrieved by standard (shaded) 
and modified (green dashed) algorithms. The pulse after the 6-cm A-
PPLN is shown for comparison (blue dotted).  

 
Figure 2 shows the simulation results of Pulse 1 with a 

third-order polynomial phase curve represented by 
=3.7910-4 ps3, =5.6410-3 ps2 [solid, Fig. 2(c)]. The 
temporal intensity of the fundamental pulse [red solid, 
Fig. 2(d)] is stretched by more than two times and 
seriously distorted after passing through the 6-cm-long 
A-PPLN [blue dotted, Fig. 2(d)]. The corresponding 
FROG trace [left half, Fig. 2(a)] largely differs from the 
ideal one [Fig. 2(b)] in the presence of strong GVD and 
rippled PM spectrum. Spectral phase reconstruction from 
the distorted FROG trace (after frequency marginal 
correction to alleviate the ripple of PM spectrum) by the 
standard algorithm gives very poor result [triangles, Fig. 
2(c)]. In contrast, our modified algorithm accurately 
retrieves the phase [circles, Fig. 2(c)] within 107 
iterations. The temporal intensity from the given power 
spectrum and retrieved spectral phase [green dashed, Fig. 
2(d)] agrees well with the assumed one [red solid, Fig. 
2(d)], corresponding to a small root-mean-square (rms) 
error of 1.5810-2 (calculated by normalizing the 
assumed curve to unit peak). 

 

  
Fig. 3. (a) The spectral intensity and phase of the fundamental field. (b) 
Time domain pulse shape of the fundamental field.  

 
Figure 3 shows the simulation results of Pulse 2 with a 

sinusoidal phase curve of amplitude π rad [solid, Fig. 
3(a)]. The specific phase function is of practical 

importance in ultrafast spectroscopy and can be used in 
testing the performance of polynomial expansion 
(considering typical tunable dispersion compensators can 
only handle the first few orders of spectral phases). The 
pulse shape is seriously distorted by the GVD [blue 
dotted, Fig. 3(b)], and one cannot expect reliable phase 
reconstruction by the standard FROG algorithm. The 
modified algorithm is hampered by local minimum in this 
case, giving an approximated third-order polynomial 
spectral phase [circles, Fig. 3(a)]. The corresponding 
temporal intensity [green dashed, Fig. 3(b)] resolves the 
main lobe and the first side lobe reasonably well, but 
exhibiting stronger oscillatory tail than the assumed one 
[red solid, Fig. 3(b)]. This is attributed to the fact that the 
sinusoidal phase cannot be well-approximated by a third-
order polynomial.   

IV.  CONCLUSIONS  
We have numerically demonstrated a modified FROG 

algorithm based on double integral-formulated SHG 
process and the steepest descent optimization, which can 
deal with FROG traces seriously distorted by GVD and 
rippled phase-matching spectrum. The spectral phase 
representation is currently limited to polynomials, but can 
readily be generalized to arbitrary curves at the cost of 
increased simulation complexity. This algorithm is 
promising in measuring low-power few-cycle pulses. 
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