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Abstract: We propose hyperfine aperiodic optical superlattice optimized by iterative domino 
algorithm to achieve arbitrary discrete and continuous phase-matching power spectra. This 
schmem can handle >105 unit blocks and improves the record overall efficiency by 9%. 
OCIS codes: (230.7405) Wavelength conversion devices; (230.4320) Nonlinear optical devices; (160.3730) lithium niobate 

 
1. Introduction 
Quasi-phase-matching (QPM) in ferroelectric materials has been widely used in plenty of wavelength conversion 
processes [1]. In applications of gas sensing using several absorption lines [2] and high-sensitivity ultrashort pulse 
measurement [3], one needs discrete phase-matching (PM) peaks at pre-specified positions and a continuous PM 
spectrum with broad bandwidth, respectively. There have been some techniques, such as aperiodic optical 
superlattice (AOS) optimized by simulated annealing (SA) [4] and nonperiodic optical superlattice (NOS) optimized 
by genetic algorithm (GA) [5], capable of achieving arbitrary discrete PM peaks. However, their performances 
(conversion efficiency, spectral fidelity, and complexity of target PM peaks) are subject to the limited number 
(~several thousands) of unit blocks or domains that can be practically optimized by SA or GA, and no continuous 
PM spectrum has been demonstrated accordingly. In this paper we propose a new scheme, hyperfine AOS (HAOS) 
optimized by iterative domino (ID) algorithm, which can optimize hundreds of thousands unit blocks in 15 minutes 
by typical PCs. The high computation efficiency enables the use of a very small unit block length (~0.1 μm, limited 
by the resolution of the photolithographic mask) and a large number of target PM peaks (~100), while all the 
domains are still made longer than the minimum domain size that can be reliably poled (~4 μm). As a result, the 
HAOS+ID scheme can realize arbitrary discrete PM peaks and continuous PM power spectra with unprecedented 
conversion efficiency (~25% and 9% higher than those of AOS and NOS, respectively) and nearly perfect spectral 
fidelity. We also numerically demonstrated that our scheme can arrive at a quasi-optimal solution, which can only be 
slightly improved by impractically long computation time. 

2. Theory 
Without loss of generality, we demonstrate the HAOS+ID scheme by investigating second-harmonic generation 
(SHG) in a congruent LiNbO3 bulk of length L. The crystal is divided into N unit blocks of the same length dx. If the 
pump is non-depleted, the conversion efficiency at fundamental wavelength λ is given by: 
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where ηnorm is the normalized efficiency in units of %/W, Δk (a function of λ) is the wave vector mismatch, and d(x) 
(taking values of +1 or -1) represents the spatial distribution of domain orientations. For HAOS (and AOS), the 
reduced effective nonlinear coefficient dR-eff can be rewritten as: 
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where δn (=1 or -1) and xn=n·dx denote the orientation and right boundary of the nth unit block, respectively; and 
zn(Δk) is a complex number contributed by the nth unit block at a fundamental wavelength λ corresponding to some 
wave vector mismatch Δk. When one of the N blocks (say the qth unit block) of the sample is inverted, i.e. 

qq δδ −=′ , 
the reduced effective nonlinear coefficient (thus the conversion efficiency) can be easily updated by: 

( )kzdd qeffReffR Δ−=′ −− 2 .                               (3) 
Eq. (3) enables our ID algorithm to efficiently optimize the domain orientations block by block, instead of all blocks 
at a time as performed in SA and GA [4,5]. A fitness function F is used in the ID algorithm to quantitatively 
estimate the appropriateness of a sample: 
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where )0(
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[5]. The ID algorithm is initialized by a “best” sample with N positively oriented blocks Sbest ={δn=1; n=1,…, N} and 
a trial sample Strial made by inverting the orientation of block-2 (δ2 = -1) while keeping the remaining blocks intact, 
corresponding to fitness values Fbest and Ftrial, respectively. Sbest is unchanged or replaced by Strail if Ftrial ≥ Fbest or 
Ftrial < Fbest occurs. This procedure applies from block-2 to block-N in the first iteration, and is repeated until there is 
no block inverted in a single iteration. The ID algorithm guarantees the optimal solution in terms of inverting one 
unit block at a time. However, our simulations showed that the probability of further improvement by inverting 2 (3) 
blocks at a time is only ~10-5 (~10-7). It will take impractically long time to get very nominal improvement. 

3.  Results 
In all of our simulations, we used L=1.89 cm, p=16 [Eq. (4)], and restricted all the domains longer than 4 μm. When 
there is only one target PM peak at 1550 nm, HAOS+ID gives a periodic QPM grating of period 18.9 μm as 
expectation. In designing five PM peaks distributed in V-shape as in [5], HAOS+ID with unit block length dx=0.1 
μm and N=189,000 (Fig. 1, solid) achieves both unprecedented overall efficiency (ηtot=94%) and nearly perfect 
spectral fidelity (Δη=5×10-5). The overall efficiency is 25% and 9% higher than those of AOS (dotted, ηtot=75%) 
and NOS (dashed, ηtot=86%), respectively. The minimum domain length is 8.9 μm, well above the limit of poling 
techniques [6,7]. In this design, the ID algorithm continues for 1,586 iterations, taking ~30 minutes by a typical PC 
(~14 times faster than NOS+GA). To demonstrate the uniqueness of HAOS+ID, we designed a grid of 101 PM 
peaks uniformly distributed within λ=1547-1572 nm by using dx=0.2 μm and N=94,500. Such a high complexity is 
intractable for the previous schemes. Fig. 2 (solid) shows that the resulting PM tuning curve is continuous, for the 
peak spacing (0.25 nm) is smaller than the width of individual peak (0.6 nm). The passband ripple Δηrip, defined as 
±0.5[max(ηα)−min(ηα)]/mean(ηα) for λα∈[1547,1572] nm, is only ±3.4%, smaller than that obtained by apodization 
(~±8%) [6]. Δηrip <±0.5% is feasible (Fig. 2, dashed) if using the state-of-the-art poling technique [7]. 

  
Fig. 1. The normalized conversion efficiency spectrum of three 
samples designed by AOS (dotted), NOS (dashed), and HAOS 
(solid), respectively. 

Fig. 2. The normalized conversion efficiency spectra of 101 equally-
spaced PM peaks with minimum domain length dmin of 4 μm (solid) 
and 0.1 μm (dashed). The shaded area represents the passband. 

4.  Conclusions  
We demonstrated that HAOS+ID can achieve arbitrary discrete PM peaks and continuous PM power spectra with 
unprecedented conversion efficiency and target complexity. The algorithm has high computation efficiency and can 
converge to a quasi-optimal solution. Experiment is ongoing and promising for each domain is longer than the limit 
of our poling technique [5]. This work is supported by NSC-Taiwan under grant 97-2221-E-007-028-MY3. 
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