PDE & Complex Variables P14-1

Integral by Residue Theorem (EK 16)

B [ntroduction
One of the most important applications of complex variables is evaluating difficult real and

complex integrals by residue theorem. Here we simply discuss those with standard formulae.

Integral of rational functions of cos9 & siné

1= F(cos6.sin0)d0 = SG) rn 3 Res[f (2)} (14.1)
0 C iz

l 2z, inside ¢ % z

zZ+z

2

where f(z)=F (

1 -1
zZ—Zz . .
Sy j, C: |z]=1 in counterclockwise sense.
1

0 T

- -1
z+z z—z dz

Proof: by change of variable: z=e'?, = cosd= 5 sind= YRR —=iz. As 6 changes
i

from 0 to 27, z traverses through the entire unit circle once in counterclockwise sense.

1 1 2
dé , wh , beR, |a|>|b|. = fiz)= , I=— dz,
where a, beR, |a|>|b| A2) a+b[(z+z‘l)/2] ” §Cg(z) 'z

where  g(z)= ! has two simple poles: z;= —£+\/(a b’ -1 ,
2
2" +(2a/b)z +1 b

a+bcosl

= —%—\/(a/b)2 -1 . Since z, lies outside the unit circle C, we only calculate

2 b 27

Res(z))= = =— 27 2\/622 — :\/az —

ib

Z1=2Z, 2Ja’-b*
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PDE & Complex Variables P14-2

Improper integral (f5#i77)
B Definition
Improper integral = .[ : f(x)dx exists, if the two limits: [;= al_i)rgo J. j f(x)dx and
L= lljl_r)gj-z f(x)dx exist simultaneously. If either /; or I, is divergent, we may try to evaluate
its Cauchy principal value

p.v. | - f(x)dr=lim [ f(x)dx (14.2)
Mostly, the principle value equals /= Ii f(x)dx (making the following formulas useful). In

some rare occasions, however, the principle value exists while / does not. E.g. p.V.J. xdx=
—00

lim(x2 / ZX =0, but /1= lim ’ xdx , and ]2=lljim Z xdx are divergent.

r—0 r a—»—mw

B [Improper integral of rational functions

If fix)= p(x)/q(x) is satisfied with: (1) g(x)=0 for all real x, (2) deg[g(x)]-deg[p(x)]22, =

pv. [ f(x)dx=27 Y Res[f(2)] (14.3)

UHP
where X is performed for all residues of singularities located in the upper half-plane (UHP).

¥

-R R &
Proof: Choose an “upper semi-circle” C as shown above. §;C f(2)dz= j _1; f (x)dx+.fs f(2)dz,

by the residue theorem eq. (13.2), =27 - { ZRes[f(z)]} . As R—o:

zinside C
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1) jRR F(x)dx— p.v. ji F(x)dx. 2) Since deg[q(x)]-deg[p(x)]>2, ]f(z)|=‘f;g)) | <%
for all points on S. By ML-inequality, I S (2)dz <Rﬂ ER—% —0. 3) ZRes[ f(2)]—
zinside C

z Res[ f(2)].

UHP

Note the condition g(x)=0 guarantees that f(x) has no singularity (residue) on the real axis.

1 1 i~ Az
E.g. = dx=— i =e*, zp=e 4,
& IO 1+ x* 2'[“’ 1+x* ’
isl ,-71 1 1 —13—7[
z3=e *, zy=e * ; where z;, z, fall on the UHP. By eq. (13.5), = Res(zl)—4—=Ze 4,
Z
3z N
Res(zz)—le 4 1—12711 le 4 +le il
4 2 4 4 2.2
<Comment>

Since the singularities of f{z), i.e. roots of ¢(z)=0, are always in complex conjugate pairs (it

TS €5), singularities in the lower half-plane (LHP) have the same influence on the integral:

pv. [ fx)dx=—27 ) Res[f(2)] (14.4)

LHP

which can be proven by a “lower semi-circle” contour.

B Fourier transform of rational functions
The Fourier transform of f(x) involves: /= J.j; f(x)e™dx , If fix)= p(x)/q(x) is satisfied with:
(1) g(x)#0 for all real x, (2) deg[g(x)]—deg[p(x)] 21, and (3) s>0;=
p.v. | C foetdx =27y Res[f(2)e™ ] (14.5)
UHP

Note we evaluate the residues of singularities of f{z)e” [not f{z)] located in the UHP.
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Proof: Choose the same “upper semi-circle” C as before. By the residue theorem eq. (13.2),

igcf(z)eiszdz = J:RR f(x)e™ dx+ L f(2)e dz =2 mi- Z Res[f(z)eisz ] .

zinside C
. M . i0 isz
Since deg[q(x)]—deg[p(x)]=1, }f(z)|<?. For any point z on S: z=Re"”, 6=[0,7], = |e"|=

= 0 = R WhereS=s-sinf>0 (s>0, sind>0). By ML-inequality,

isR(cos O+isin 6
ets ( i )

‘ [ f2)e=dz

M
<? € aR= Mme® —0, as R—o,

<Comment>

1) The €* term in eq. (14.5) provides the integrand with an exponential damping factor e
(if 6>0) over path S, therefore, we only need deg[g(x)]—deg[p(x)]=1.

2) Damping factor vanishes at end points z= £R (6=0, 7; = 5=0), but they do not contribute
to the integral as long as they are bounded (|f{z=%R)|<0), which is guaranteed by g(x)=0.

3) An alternative to eq. (14.5) is:

pv. [ fx)edx=-2m ) Res[f(2)e™ ], if s<0 (14.6)

LHP

-sRsind

because e acts as a damping factor in the LHP (s<0, sin& <0, for &=[ 7,2 7]).

. . 1
E.g. Find Fourier transform of Ax)=———.
X +a
Ans: F(w)= I ; f —dx. —— has two simple poles at z;=ia, zz=—ia. Res(z1)=
- X" +a z°+a z,
= ’62 , Res(z2)= e' . (1) For &>0 (s=—w<0), use eq. (14.6): F(w)= —2mi-Res(z2)= Ze‘“‘";
i2a —i2a a

(2) For w<0 (s>0), use eq. (14.5): F(a))=27zi~Res(zl)=£e““’; = F(a))ZEe‘”‘”‘ .
a a

COS sX

To evaluate Ijo f (x){ . }dx , We can:

S sxX
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PDE & Complex Variables P14-5

1) Find p.v. j jo f(x)e*"dx by eq’s (14.5-6), then take real or imaginary part. This method is

valid only if f{x)eR.

isx —isx isx —isx

. . e . . .
2) Substitute cos(sx)zT , s1n(sx)=T, then evaluate residues of singularities
i

on both UHP and LHP. This method is valid even f{x)eC.

Eg | sinx =1 D‘” - e e’ dx}%(zl—lz). 1122711'-ZRes( ¢ )
1

- X+1i 209 x+1i = Xx+i P zZ+1

=0, = 27 ZReS( ¢ ) - 2giRes(-i)= 22 = =%
e e

or z+1i

Indented (ﬂ%’f) integral

B What happens if there is singularity on the integral path?
If f(z) has a real singularity z=a, we have to redefine the Cauchy principal value of the

improper integral as:

pv.[” f(dr= lim {[R f(dx+ | R f(x)dx} (14.7)

R—0,r—0

where there is an infinitesimal interval x=[a-r,a+r] excluded from the integral path.

To evaluate eq. (14.7) by the residue theorem (where a “closed” contour is required), we can

insert a semi-circle path Cy: z=a+re'® (6=[0,7]) to bridge the gap.

C,

=T a a-+r

bl

If z=a€R is a simple pole of f{z), its Laurent series becomes: f{z)= +g(z), where g(z) is
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analytic. = jcz f(2)dz= bljo” relieireiedHJr jcz g(2)dz= by ri+ jcz g(2)dz . Since |g(z)|<M
(analytic), j _ g(2)dz| SMmr—0, as r—>0. =

lim jc f(z)dz =ri-Res(a) (14.8)
<Comment>

1) It can be generalized to: linol j . 1(2)dz=(0,-0))i-Res(a), if Co: z=a+re'’, 0=[0, 0].

2) Eq. (14.8) is normally invalid if z=a is a higher order pole (except for odd functions about

a). E.g. if z=aeR is a 2nd-order pole of f{z), its Laurent series contains b(z—a)~,

. i0
contributing to IC f(z2)dz by b, j-o %a’@ —0, as r—0.
2 re

B Indented integral of rational functions with real simple poles

If f(x)Z% is satisfied with: (1) g(x)=0 for x=x,.., xy (m=1), (2) deg[g(x)]-deg[p(x)]>2, =
q(x

F=p.v.| " f(ody=27 Y Res(f(2)+7 Y Res[f(2)] (14.9)

UHP

a+r R

Proof: §C f(2)dz= I+ 1@3[_0 f(2)dz + lim js f(2)dz = 27 Y Res[f(2)]. (i) By eq.

UHP

(14.8), lin(}jc f(z)dz =ri-Res(a). (i1) By condition (2), 11ein30 j-S f(z)dz =0.
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© Sinx

E.g. Evaluate = j dx= J. ) (sinc x )dx .
o .

iz

Ans: Choose f(z)Ze
z

p.v. j: ex dx=mi-Res(0)=rm. = [Flm(m)=r.

, which only has a simple pole z=0 on the real axis. Res(0)=1,

_xz

B Indented integral of exponential functions ¢*, e

In evaluating improper integrals by residue theorem, semi-circles are not the only possible

integral contours. In the presence of exponential functions, we often use rectangular paths.

dx . flz)= has simple poles at z=————,
» coshx e +e”

E.g. Izj-w cosax .[ 2cosax e . i2n+)rx

- ¥t e

X

neN (roots of e+e“=0). Choose a rectangular contour C enclosing single pole z=i %:

.

y

_R+im (1 R+in

V) %;‘ (D)

X
-R 0‘ (D R

§ redz=[" fdc+ [ f@dz+[ 1T f@dz [ f2)dz= QrUHIDHIV)-
27 Res(i%j . As R—o0;

D: z=R+it, =[0,7], J.:m f(z)dz = J.O” f(R+it)idt (transform into real integral) =

ie'™ -j” e—ita’t —0 (the denominator of the integrand has e*—0). (IV): Similar

R i -R -
0 efe" +e e

with (ID), jRR f(2)dz —0.

X

III ) " _R R —R+im d _ -R . d _  _—ar R eiax d —
(ID): z=x+im, x=R—>-R. J‘Rm f(z)dz —IR f(x+im)dx =e I_Re = x| =

Edited by: Shang-Da Yang



PDE & Complex Variables P14-8

e (I). = (DHIDHIA+(IV)=(1+ ™) (I) = (1+e ™) (p.V. [ f(x)dx);

By eq. (13.5), Res(i%)Z lim L e'” )l 622‘ .= (1+e ™) (PV.[_Z f(x)dx):

z—(iz/2) _
/ PR

an

2 (P.V.'[O; f(x)dx)z 174[—ee‘2“” - coshi;[ﬂ/z) = Re[p-V-J-Z f(X)dx] )

2z
cosh(az/2)

(*) Inverse Laplace Transform

B Theorem:

Let F(s)=L{f(¢)}= I : f(p)e "dp, for all se region of convergence [ROC, Re(s)>ry] =

fiy=L" {F(s)}=% j " F(s)e"ds , for £0, r>ro. (14.10)
m =10
Proof: Let I——hmI F(s)e”dSZLhm [[ f(p)edpyds (if seROC). On the
Qi T-Hwdr=iT 271 Too rzT

path, s=rtiy, I—— lim | (”’y)t[[ f(p)e (”’y”’dp]ldy J-Oo e™ [[: e f(p)e™dp|dy=
72- —0

2721 T—w

rt

¢ [[“’ " G( y)dy]:e”.g(z), where G(y)zj”e-’f’ F(p)e™dp =F{e"fu(t)}, u(f) is a unit-step
Ty 0

function. = g(f)= e""AHu(?), I= €"g(t)= Atu(t)= f(£), for 0.

<Comment>

1) Inverse Fourier transform, F~' {F (a))}ZiJ: F(w)e'”dw , only involves with a complex
function of real variable w. Therefore, no need to employ complex integration.

2) ROC of F(s) is the point set where the improper integral I : f(p)e"dp gives a finite

number, = all singularities {s;} of F(s) are located outside the ROC, i.e. Re(sy)<ry.
3) Eq. (14.10) is valid if the integral path is within the ROC (i.e. 7>ry), = all singularities

are located to the left of a valid path, i.e. Re(sy)<r.
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B Evaluate £ {} by residue theorem

If F(s)=L {f(t)}Z%s)) for Re(s)>ry, and deg[q(s)]-deg[p(s)]=1, =
q(s

A= LHF(s)}= Y. Res[e"F(s)] (14.11)

allsingu. %

where X is performed for all singularities of e"F(s).

A
s=Re" T
S R/
5 :;'_:’9” Ar » s-plane
singularity |
o,
/'r'i T

Proof: Choose a specific closed path C (Bromwich contour), ii;cF (s)e*ds= J.rj_[TTF (s)e”ds

+ F(s)e"ds=2mi Y Res[e” F(s)]. As T—w (i.e. R—>w, Oy—>7/2):

s, inside ¢ 7K

(1) by eq. (14.10), J.rj;TF(s)e”ds —27m-ft); (2) On the path S, ]F(s)|£%; s=Re'®,

st

O=[600,27-6), = le”|=e®*%=e " | where S=—tcos0>0 (>0, cos6<0). By ML-inequality,

USF(s)e“ds‘ < % R aR=Mme® 0. (3) z Res[e”F(s)] — z Res[e‘”F(s)] =

sy inside € K Re(s)<r °F

> Res[e” F(s)].

allsingu. %

<Comment>

The condition deg[q(s)]—deg[p(s)]>1 is sufficient but not necessary for eq. (14.11).

st ~t st 2t 2t
Eg fimL')— 1= Res— & |=C Ref— ¢ |- ¢
(s+1(s-2) =L+ D(s=2)] 9 =2 (s+Ds-2*] 39
t teZt eZt

e
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