PDE & Complex Variables P13-1

Laurent Series and Residue (EK 16)

Laurent Series (EK 16.1)
B Motivation
Singularities are routine for complex functions, for bounded entire functions must be constant

(Liouville’s theorem, Lesson 10). We have to represent complex functions by Laurent series

if there is singularity in the region of interest.
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B Laurent theorem
If f(z) is analytic in an open annulus D: Ry<|z—z|<R|,=~>

o0 0 b

f@)=2a,(z=2))" + ) —"—
; ’ nZ:I: (Z - Zo)
1 f(Z’) ' 1 ’ -1 4 '
a=—9¢ ——————dz', b~=——9¢ (Z'—z,)" f(2")dz 13.1
=) oy =l NCEEDRVICY (13.1)

for every point ze D, where Cc D is a simple closed path.
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Proof: Let C;, C; D are two concentric circles of radii 7, ,. By Cauchy’s integral formula

*

for doubly connected domain [eq. (10.10)]: fiz)= §; f(Z dz" - ’ ig f(z
i

-z Gz —z

g(2)+h(z) = (analytic part)+(principal part), for any ze D.

(1) Since z lies within C, and f(z) is analytic on Cj, by the proof of Taylor series in Lesson

= g(Z):ziﬂ'i§Cl i:(iz) dZ* :zan (Z - ZO) where an_L f(Z ) dZ* .

n=0 2721 G (Z Zo)n+1

<Comment>

JAED)

: . . 1
The proof of Taylor series consists of two steps: (i) j(z)=—.§f> .
2mCz —

dz" , which requires f{z)

. . . .. i) & f(z) , . .
is analytic everywhere inside C. (i1) j;C 7, dz = z ﬂgcmdz (z—z,)" , which

only requires f{z) is analytic on C. Here we simply use (ii).

(2) Since z lies outside (>, L _ = = e  lgI<I.

z —z : -z, P q’q z—z
- z —z - - —
z—z,)| 1- 0 0 0
L agrogy L) s pe 14 E B [FR) | Cma
l1-g 1-q) z-z, z-z, (z-2)z-z,)"

Tt ﬁﬂz(z*—zo)”ﬂz*)dz*} ((Z_ !

ﬁ G

= 27i-h(z)= §C2 f(z*)(z

jEWIED, J

(z-2")
n+l
= h(z)= Z ) + R (z) , where b,= Zim'i{)cz (2 —z)""' f(z)dz" , and R (z) =
O
n+l
- ! - § —2)" (@ )dz (We still need to prove b,, exists, and |Rn (z)| —0.)
27(z—z))"" VG (z=2")
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By the ML-inequality and the same procedure in proving Taylor theorem eq’s (12.1-2), we

. * 2 b 1 * * *
d lim|R =0, = h(z)= ) —*—, where b,=— —z)"" dz .
erive n1_1)2| . (z)| (2) ;(Z—Z ) where = jt;cz (z —zy)" f(z )dz

0

(3) By Cauchy’s integral theorem 4 [eq. (10.8)], a,= Lﬁf ["]dz" :Lft; ["]dz" ,
2m G 2mc

1 n *_ 1 " 4
bn_2_m§cz[ ldz —2—m_§c[ ldz", for any contour CcD.

Eq. (13.1) remains valid if we continuously move C; outward and C, inward until they reach

some singularity. = ROC of Laurent series is the open annulus D: R,<|z-zo|<R;.

singularity

Ssingularity

<Comment>

1) A function may have different power series because of different ROCs or different centers.

Eg — = () 32t if [z<1; (i) ) S UL o B =32 (1 (i)
Z

-z n=0 (1 - Zﬁl) Z =0 n=0

_—11 , if 0<|z—1|<o0.

2) A power series only has one closed function form. E.g. f(z)= —Zz_("”) . The series will
n=0

diverge if we substitute Z:% into it to evaluate f (%j . = Deriving the closed form of

o) st fio- = Y () = e f(lj .y
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Singularities and Zeros (EK 16.2)

1)
2)

3)

4)

5)

Definitions

A function f{z) has a singularity at z=z if f{z) is not analytic at z=z.

z=z, 1s an isolated singularity if it has a neighborhood without any other singularity.

E.g. tanz has isolated singularities at z= + 2n+1 .

E.g. tan(zfl) 1S not continuous/analytic for é =+ 2”; ! T, => z=% ﬁ = i% ,
+ % , .... For an arbitrarily small disk |z|[<g you can always find infinitely many

singularities within it, = z=0 is a non-isolated singularity (other sigularities are isolated).
If the Laurent series of f{z) centered at z=zy has nonzero coefficient(s) up to m-th order
(bn#0), = zo is a pole of order m of f{z), which can be removed by multiplying (z—zp)". It

is called a simple pole if m=1.

3
E.g. ,1 = 5 ! - , by long division, 1 +Z +7i+... has a simple
sinz z—(z7/3)+(z>/5)—... z 6 360

pole at z=0.

E.g. To find the order of pole of tan z at Z:%, we change the variable: u=z—%: fz)=

3
tan(u + zj =—tan u= — 1w w _ ... |, which has a simple pole at u=0, i.e. ==,
2 u 3 45 2

If the Laurent series of f{z) centered at z=z has infinitely many nonzero coefficients, zj is

an essential singularity of f{z).

o0

E.g. e'” =Z '1

n=0 N:Z

has an isolated essential singularity at z=0.

_sin(l/z) :l+ 1

E.g. tan(z™
g tan(-") cos(l/z) z 32°

+... has a non-isolated essential singularity at z=0.

If an analytic function f{z) has a property of fzo)= f(zo)=...= f "(z0)=0 (i.e. the first n
Taylor coefficients ap=a;=...=a,.1=0), = z=z is a zero of order n of f{z).
E.g. sinz has simple zeros (n=1) at z=0, +7, £27, ...; sin® z has second-order zeros at

these points.
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1)
2)

3)

4)

Properties

If f{z) is analytic except for a pole at z=zy, = |f(z)| >0 as z—>zj in any manner.
Picard’s theorem: If f{(z) is analytic except for an essential singularity at z=zp, = f{z) can
be equal to any complex number in an arbitrarily small neighborhood of z.

E.g. fliz)=e'": (i) if z=x=(+00—0"), fiz)—>0; (ii) if z= —x=(—0—0"), Az)—>0; (iii) For any
[M}:

given complex number ¢=c-¢"%, we can find some z=r¢'’, s.t. fiz)=exp

b

cos @ . 1
— {e ro=¢,, - sind _ a +2n77} . = r=[n¢)?+(a+2n7)*]2 , tanh=
r
—(a+2nrx) ) o . .
e The solution z can be made arbitrarily close to 0 (»—0) by increasing ».
nc,

If f(z) 1s analytic and has an nth-order zero at zy, = has an nth-order pole at z=z.

f(2)
The properties of flz) at large |z| can be investigated by: set z=I1/w, investigate
gw)=f(1/w)=f(z) in the neighborhood of w=0.

E.g. ¢ has an isolated essential singularity at oo, for ' has that at w=0.

Residue Integration (EK 16.3)

Evaluate contour integral by residue

To evaluate I= {>c f(z)dz for some arbitrary contour C:

1)

2)

If f{z) is analytic for every point on and within C, = /=0 by Cauchy’s integral theorem 1.

If f(z) has only one singularity at z=z, inside C, its “closest” Laurent series with ROC:

{0<|z—zo|<R} is: fiz)= Za (z—2z,)" +Z

1(z— Zo)n ’

I[=27i-Res f(z2) (13.2)

z=2z,
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where Res f(z)=b is called the residue of f{z) at zy. [eq. (10.9) is a special case.]

2m,if m=— 1

z-2z,

dz :27Zib1.

Proof: by §C(z—zo)'"dz:{ 1, §Cf(z)dz=bl§c

0, otherwise

1
z(1-2)

E.g. I= iﬁc f(z)dz , where f(z)= , C: |z|=% , in counterclockwise sense.

Since only one singularity z=0 lies inside C, = find the Laurent series centered at z=0: (1)
f(z)=l +l+22+..., for 0<|z|<I1, = bi=1. (2) flz)= —|:LZ+L3+..;| , for |z>1, = b=0. =
z z z

Choose series-1: b1=1, and /=2 7.

<Comment>

We always choose the closest Laurent series to evaluate residue, even when part of the

1

z(1-z)’

integral path C falls outside its ROC. E.g. Let f(z)= C: z= (%+ij+rei9,

00,2 ], which passes through ROCs of the two Laurent series and only encloses one

singularity z=0 if 17/4<r<5/4 .= I=27i for arbitrary ~17/4<r<5/4 .

(13.3)
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1)

2)

4)

5)

N
Proof: By Cauchy’s integral theorem 4 [eq. (10.6)], :>j3c f (z)dZZZiﬁc f(z)dz , where
k=1~ K

Cy 1s a circle that only encloses one singularity z;, and is separated from all the other

circles. By eq. (13.2), §Cvf(z)dz =27i- R:es[f(z)] , =

How to evaluate the residue of a singularity
If z=zp is (i) a pole of unknown order, (ii) essential singularity, (iii) non-isolated

singularity of f(z), = try to derive the (partial) Laurent series.

If z=z is a simple pole of f(z), =

Res f(2)=lim(z —z,) /() (13.4)
Proof: fiz)= . blz ta,+a(z—z,))+a,(z—z,)" +..., (z—zo)2)=b1+ao(z—z0)+a1(z—z0)
—Zy
+..., = bit (z—20)[ aotai(z—zo)+...].
If z=z is a simple pole of P (z) where p(z¢)#0, g(z) has a simple zero at zy, =

Res 22) - PGo) (13.5)
= q(z)  q'(z,) '

Proof: If z=z is a simple zero of ¢(2), ¢(z)=q'(z,) (z—zo)t —— q"( 0) (z—z0)* +.. ., by eq. (13.4):
Res 22) _ lim(z—z,) P _ (z —Zo)p(Z) _ PG
=q(z) e ) (- 2)lg () H (2 2)g" () 2] q'(zy)

If z=z, is mth order pole of f(z), =
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_ 1 dm ey,
Res /(2)= g [z-z)" 1], (13.6)
Proof: f(z)ZL by T +..+ b + ian (z—2z2,)", g2)=(z—20)" A2)= byt bm-1(z—20)
zZ— ZO zZ— Z() n=0

+ ... +bi(z—z0)" " + Zan (z—2z,)"™ ; = by is the Taylor coefficient of the power (z—zo)""
n=0

(m—1)
of g(z), = blzg—(zo)

(m-1)!

E.g. Find the residues off(z)Z; at all poles. (1) z=0 is a simple pole. R_eos f(z)=

2(z+2)°
1i1r()12f(z)=1ing(z+2)3=é. (2) z=—2 is a 3rd order pole, by eq. (13.6), R_ezsf(z)z
1 d? ; 1
PRl GRENAC NEE

/8 -1/8  —-1/4 -1/2
+ - - :
z z+2 (z+2)* (z+2)°

Note: Partial fractions reveal all the residues: f{z)=

(*) E.g. Find the residue of f(z)=(cot z) at z=r.

Ans: Find the order first. Let u=z—x, cot z=cot u, = {order of pole z=x of cot z}={order of

cosu 1—@w*/2)+@*/4)—.. 1 u . .
—= . ; =———+..., = u=0 is a simple
simu u—(u /3)+w /S)—... u 3

cos(z) _ cos(7) -

pole u=0 of cot u}. cot u=

pole, = z=ris a simple pole of cot z. By eq. (13.4), Res— -
=7 sin(z) sin'(x)
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Appendix 13A - Residue at Infinity

If the contour C of §C f(z)dz encloses a non-isolated singularity or a large number of

isolated singularities of f(z), evaluating the “interior” residues becomes inefficient. Instead,

we can derive §C f(z)dz by evaluating “exterior” residues of isolated singularities zi, zy, , zy

outside C, and perhaps a residue at infinity:

singularities
enclosed by C

singularities
excluded by C

N
Creating an infinite contour Cs. By eq. (13.3): §C f(z)dz _§c f(z)dz=2m - Z Res[f(z)], =
© ol 22

§§C f(z)dz=§c f(z)dz—zm-iges[f(z)]. To evaluate §C f(2)dz, let Co: z=re'’, r—o0,

=z

!

0=[0,2 7] (counterclockwise). By change of variable w=1/z, C,, in the z-plane becomes C', in

the w-plane: w=pe'’=(1/r)e™®, p—0, ¢=[0,-27] (clockwise), fiz)=A1/w), = §C f(2)dz =

i‘;c' f(l/w)_dzw = it;cf(l—/zw)dw, since —C. only encloses one point w=0 in a
i’ w Cooow
counterclockwise sense, =2 7i- Reos{ AL éw)} , =
w= W
§§C f(z)dZZZM{ReOS[f(l—/ZW)}— ZRes[f(z)]} (13A.1)
W= w z;, outside C

<Comment>

Res f(l_/zw)

w=0

=Res f(z). Proof: Let Res f(z)=bi, = the Laurent series of f{z) centered at
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z=o0 as: flz)={...+ b +a, +a,(z—o)+...} =. By change of variable: w=l , flo)=f(1/w)=
z—00 z

b
{...+b1w+ a, +ﬂ+...}, = f(l—/zw):{...—i-—l+a—°+a—l3+..}, where b; is the residue at

w w w W2 w

w=0.

99 1/
ze'*"

E.g. Evaluate it;CTldz , C: |z]=3.
z7+

Ans: There are 101 singularities within C (z=0, and 100 points fall on the unit circle), and

99 1/z —99 w w
) ) ) : z w
none outside C, = use residue at infinity. Res T~ Res——— =Res
=0z 41 w=0 w(w " +1) w0 w(l+w

100) >

w

since w=0 is a simple pole, =lim
w01+ w

100

=1.= §C /(2)dz =27 Res f (2) =27,
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