Lesson 12 Taylor Series (EK 15.4)

■ Taylor theorem

Let f(z) is analytic in a domain D, and $z_0 \in D$; \Rightarrow (1) f(z) can be represented by a power series:

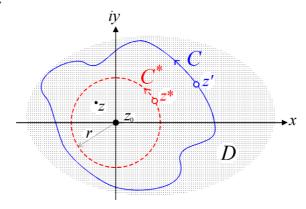
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \text{ , where } a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \oint_C \frac{f(z')}{(z' - z_0)^{n+1}} dz'$$
 (12.1)

for every point z in the largest open disk $|z-z_0| \le R$ within D, and $C \subset D$ is an arbitrary simple closed path enclosing z_0 . (2) The remainder $R_n(z) = f(z) - \sum_{m=0}^n a_m (z-z_0)^m$ is:

$$R_n(z) = \frac{(z - z_0)^{n+1}}{2\pi i} \oint_C \frac{f(z')}{(z' - z_0)^{n+1} (z' - z)} dz'$$
 (12.2)

<u>Proof</u>: Since f(z) is analytic in D, by Cauchy's integral formula [eq. (10.9)]: $f(z) = \frac{1}{2\pi i} \oint_C \frac{f(z')}{z' - z} dz', \text{ for every } z \text{ lies within } C(\subset D).$

Choose a circle C^* : $|z^*-z_0|=r>|z-z_0|$. Since the integrand $\frac{f(z')}{z'-z}$ is analytic in a doubly connected domain bounded by C and C^* , by Cauchy's integral theorem 4 [eq. (10.8)]: $\oint_C \frac{f(z')}{z'-z} dz' = \oint_{C^*} \frac{f(z^*)}{z^*-z} dz^* = 2\pi i \cdot f(z).$



$$\frac{1}{z^* - z} = \frac{1}{(z^* - z_0) \left(1 - \frac{z - z_0}{z^* - z_0}\right)} = \frac{p}{(z^* - z_0)}, \text{ where } p = \frac{1}{1 - q}, q = \frac{z - z_0}{z^* - z_0}, |q| < 1.$$

$$p = \frac{1}{1-q} = \sum_{m=0}^{\infty} q^m = (1+q+q^2+\ldots+q^n) + \left(\frac{q^{n+1}}{1-q}\right);$$

$$= \left[1 + \frac{z - z_0}{z^* - z_0} + \left(\frac{z - z_0}{z^* - z_0}\right)^2 + \dots + \left(\frac{z - z_0}{z^* - z_0}\right)^n\right] + \frac{(z - z_0)^{n+1}}{(z^* - z)(z^* - z_0)^n}.$$

$$\Rightarrow \oint_{C^*} \frac{f(z^*)}{z^* - z} dz^* = \oint_{C^*} f(z^*) \left(\frac{p}{z^* - z_0}\right) dz^* = \left[\oint_{C^*} \frac{f(z^*)}{z^* - z_0} dz^* + (z - z_0)\oint_{C^*} \frac{f(z^*)}{(z^* - z_0)^2} dz^* + \dots + (z - z_0)^n \oint_{C^*} \frac{f(z^*)}{(z^* - z_0)^{n+1}} dz^*\right] + \left((z - z_0)^{n+1} \oint_{C^*} \frac{f(z^*)}{(z^* - z)(z^* - z_0)^{n+1}} dz^*\right) = 2\pi i f(z).$$

$$\Rightarrow f(z) = \sum_{m=0}^n a_m (z - z_0)^m + R_n(z), \text{ where } a_m = \frac{1}{2\pi i} \oint_{C^*} \frac{f(z^*)}{(z^* - z_0)^{m+1}} dz^* = \frac{f^{(m)}(z_0)}{m!} \text{ [eq. (10.11)], and }$$

$$R_n(z) = \frac{(z - z_0)^{n+1}}{2\pi i} \oint_{C^*} \frac{f(z^*)}{(z^* - z)(z^* - z_0)^{n+1}} dz^*. \text{ (We still need to prove } a_m \text{ exists, and } |R_n(z)| \to 0.)$$

Since analytic functions have derivatives of all orders, $a_m = \frac{f^{(m)}(z_0)}{m!}$ exists for all m.

$$|R_n(z)| = \frac{|z - z_0|^{n+1}}{2\pi} \cdot \left| \oint_{C^*} \frac{f(z^*)}{(z^* - z)(z^* - z_0)^{n+1}} dz^* \right| \le \frac{|z - z_0|^{n+1}}{2\pi r^{n+1}} \cdot \oint_{C^*} \frac{|f(z^*)|}{|z^* - z|} dz^*. \text{ Since } f(z) \text{ is analytic }$$

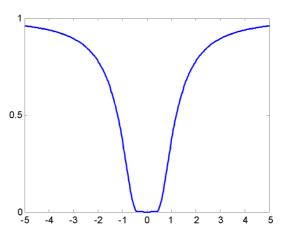
on
$$C^*$$
, and $z \neq z^* \Rightarrow \left| \frac{f(z^*)}{z-z^*} \right| \leq M$ on C^* . By ML -inequality, $|R_n(z)| \leq \frac{|z-z_0|^{n+1}}{2\pi r^{n+1}} \cdot M \cdot 2\pi r = 1$

$$Mr \left| \frac{z - z_0}{r} \right|^{n+1} \to 0$$
, as $n \to \infty$. \Rightarrow Taylor series does converge to $f(z)$.

<Comment>

- 1) Although we only need "f(z) is analytic **on** C^* " in proving $\oint_{C^*} \frac{f(z^*)}{z^*-z} dz^* = 2\pi i \cdot \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$, eq. (12.1) is true only if "f(z) is analytic **within** C^* " such that Cauchy's integral formula $\oint_{C^*} \frac{f(z^*)}{z^*-z} dz^* = 2\pi i \cdot f(z)$ is valid.
- 2) There are real functions that are differentiable for all orders but cannot be represented by Taylor series. **E.g.** $f(x) = \begin{cases} \exp(-1/x^2), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ is differentiable at x = 0, but $a_n = 0$ [$f^{(n)}(0) = 0$]

for all n, \Rightarrow no Taylor series.



- Taylor series of basic functions
- 1) Geometric series: $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \dots, \text{ for } |z| < 1.$ $\underline{\text{Proof:}} \ f^{(n)}(z) = \frac{n!}{(1-z)^{n+1}}, \text{ for } z_0 = 0, \ a_n = \frac{f^{(n)}(z_0)}{n!} = 1. \text{ The distance from the center } z_0 = 0 \text{ to}$ the nearest singularity z = 1 is $1, \Rightarrow \text{ROC: } \{|z| < 1\}.$

<Comment>

For points located on or outside unit circle (|z|=1), $\sum_{n=0}^{\infty} z^n$ cannot represent $\frac{1}{1-z}$ (divergent). **E.g.** z=-1, $\Rightarrow \sum_{n=0}^{\infty} (-1)^n$ is undetermined, while $\frac{1}{1-z}=\frac{1}{2}$. We have to find some Taylor series with different center, whose ROC contains the point of interest. **E.g.** z=-1, z=-

- 2) Exponential function: $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{2!} + \dots$, for all z. <u>Proof</u>: by eq. (12.1).
- 3) Trigonometric functions: $\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} = 1 \frac{z^2}{2!} + \frac{z^4}{4!} \dots$; $\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$ = $z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots$; for all z. Proof: by definitions of \cos , \sin , and 2).

- 4) Hyperbolic functions: $\cosh z = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!} = 1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \dots$; $\sinh z = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!} = z + \frac{z^3}{3!} + \frac{z^5}{5!} + \dots$; for all z. [Relation between cos() and cosh() becomes clear in series.]
- 5) Logarithm: $\operatorname{Ln}(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n} = z \frac{z^2}{2} + \frac{z^3}{3} \dots;$ Replacing z by -z, $\Rightarrow -\operatorname{Ln}(1-z)$ $= \sum_{n=1}^{\infty} \frac{z^n}{n} = z + \frac{z^2}{2} + \frac{z^3}{3} + \dots; \text{ for } |z| < 1.$
- How to obtain Taylor series
- 1) Evaluate *n*th-order derivatives [eq. (12.1)].
- 2) Rearrange f(z) to use geometric series. **E.g.** $\frac{1}{1+z^2} = \frac{1}{1-(-z^2)} = \sum_{n=0}^{\infty} (-z^2)^n = \dots$, for |z| < 1.
- 3) Termwise integration: **E.g.** $f(z) = \tan^{-1}z$, $f'(z) = (1+z^2)^{-1} = ..., f(z) = z \frac{z^3}{3} + \frac{z^5}{5} ...;$ for |z| < 1.
- 4) Partial fractions + binomial series. **E.g.** $\frac{2z^2 + 9z + 5}{z^3 + z^2 8z 12} = \frac{1}{(z+2)^2} + \frac{2}{z-3}$, for $z_0 = 1$,

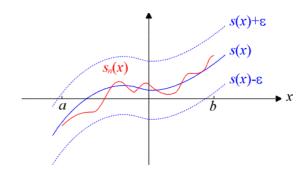
$$= \frac{1}{9[1+(z-1)/3]^2} - \frac{1}{1-(z-1)/2}, \text{ by the binomial series: } \frac{1}{(1+z)^m} = \sum_{n=0}^{\infty} {\binom{-m}{n}} z^n =$$

$$1-\binom{m}{1}z+\binom{m}{2}z^2-\ldots$$
, =... Note the ROC is the overlapped ones of the two series: $|z-1|<2$.

Appendix 12A - Uniform Convergence (EK 15.5)

■ Definition

Let $s(z) = \sum_{m=0}^{\infty} f_m(z) = \lim_{n \to \infty} s_n(z)$, where $s_n(z) \equiv \sum_{m=0}^{n} f_m(z)$. We say s(z) is uniformly convergent in a region G, if for every $\varepsilon > 0$, we can find an N (independent of z), s.t. $|s(z) - s_n(z)| < \varepsilon$, for all n > N and all $z \in G$.



E.g. Geometric series $s(z) = \sum_{m=0}^{\infty} z^m$ is (1) uniformly convergent for $G: |z| \le r < 1$, but (2) not uniformly convergent for G: |z| < 1.

Proof: (1)
$$|s(z) - s_n(z)| = \left| \frac{1}{1-z} - \frac{1-z^{n+1}}{1-z} \right| = \frac{|z|^{n+1}}{|1-z|} \le \frac{r^{n+1}}{1-r}$$
. By letting $N > \frac{\ln \varepsilon (1-r)}{\ln r} - 1$

(independent of z), $|s(z) - s_n(z)| < \varepsilon$ for all n > N. (2) As z gets closer to 1, we need larger N such that $|s(z) - s_n(z)| = \frac{|z|^{n+1}}{|1-z|} < \varepsilon$, for all n > N. Since |1-z| can be infinitely small, no fixed N.

■ Power series is uniformly convergent

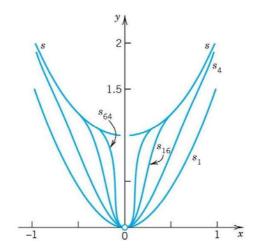
 $\sum_{m=0}^{\infty} a_m (z-z_0)^m \text{ with radius of convergence } R>0 \text{ is uniformly (and absolutely) convergent for all } |z-z_0| \le r < R.$

Proof: by Cauchy's convergence principle (EK 15.1).

- Properties of uniformly convergent series
- 1) Continuity: if $F(z) = \sum_{m=0}^{\infty} f_m(z)$ is uniformly convergent in a region G, and each term $f_m(z)$ is continuous at $z_1 \in G$, $\Rightarrow F(z)$ is continuous at z_1 .

E.g.
$$f_m(x) = \frac{x^2}{(1+x^2)^m}$$
 is continuous at $x=0$ for all m , but $F(x) = \begin{cases} 1+x^2, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ is

discontinuous at x=0, \Rightarrow The series is not uniformly convergent.



- 2) Termwise integration: If $F(z) = \sum_{m=0}^{\infty} f_m(z)$ is uniformly convergent in a region G, and G is some path in G. $\Rightarrow \int_C F(z)dz = \sum_{m=0}^{\infty} \int_C f_m(z)dz$. \Rightarrow Exchange the order of \int and Σ is valid. **E.g.** $u_m(x) = mxe^{-mx^2}$, $f_m(x) = u_m(x) u_{m-1}(x)$, $s_n(x) = \sum_{m=1}^{n} f_m(z) = u_n(x)$, $\Rightarrow F(x) = \lim_{n \to \infty} s_n(x) = 0$, For G = [0,1], $\int_0^1 F(x)dx = 0$, $\int_0^1 f_m(x)dx = \frac{e^{-m+1} e^{-m}}{2}$, $\Rightarrow \sum_{m=1}^{\infty} \left(\int_0^1 f_m(x)dx \right) = \frac{\left(e^0 e^{-1}\right) + \left(e^{-1} e^{-2}\right) + \dots}{2} = \frac{1}{2} \neq 0$, $\Rightarrow \sum_{m=0}^{\infty} f_m(z)$ is not uniformly convergent.
- 3) Termwise differentiation: If $F(z) = \sum_{m=0}^{\infty} f_m(z)$ is convergent, $f_m(z)$ is continuous, and $\sum_{m=0}^{\infty} f'_m(z)$ is uniformly convergent in a region G, $\Rightarrow F'(z) = \sum_{m=0}^{\infty} f'_m(z)$. \Rightarrow Exchange the order of (d/dz) and Σ is valid.
- 4) Absolutely convergent series are not necessarily uniformly convergent, while uniformly convergent series are also not necessarily absolutely convergent.