PDE & Complex Variables P10-1

Lesson 10| Complex Integration (EK 14)

B Usefulness

1) Evaluate some difficult real integrals j ; f(x)dx .

2) Represent derivatives of analytic functions [eq. (10.9)].

Line Integral (EK 14.1)
B Definition

The line integral over curve C: {z(f)=x(¢)+iy(¢)} in the complex plane is defined as the limit of

partial sum (‘ﬁﬂﬁ]‘ H1):

[ /(2)dz=lims,, $=3 F(£,)Az, (10.1)

m=1
where z,, (m=0, 1, ..., n) are partition points of curve C, z,,.1<{ <z, AZy= Zm—Zm-1.

Z Cm

m-1 z

m

<Comment>

Work done by a force F =(Fy(x.p), Fy(x,y)) along a path C is: W= _[ f -dx , which can also be

evaluated by the limit of partial sum. In this case, F (fm)A)?m (inner product) is a real

number, while f{{,)-Az,, (complex product) is a complex number.

B Methods of evaluating line integrals

1) Partial integration: By eq. (10.1), if Az=x+iy)=u(x,y)+iv(x,y) is continuous (not necessarily
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2)

3)

analytic) along a piecewise smooth path C, =
J.C f(z)dz= IC (udx —vdy) +i IC (udy + vdx) (10.2)
Note: J.C udx ZJ.X'u(x, y(x))dx , where xo , x| are the real parts of end points of C: y(x).

Using parametric representation of the path: If C: {z(¢), a<t<b} is piecewise smooth, and

Az) is continuous on C, =

[ r@dz=[ sz (10.3)

Proof: jb fE@)2 @t = Tu(e)+iv(@e)]-[x'(6) + iy’ (1) lat =jc [+ iv]-[dx +idy]=

jc [udx — vdy]+ ijc [udy +vdx]=eq. (10.2) =jc f(2)dz .

E.g. If C is a counterclockwise circle of radius p centered at zo: {z(f)=zo+pe”, 0<t<27},

27 A . 2 2riif m=-1
=§ (z—z,)"dz = me™ . ipedt=ip ™V [ eV gr=4""" =
ft;C( ) J-O r e r J-O 0, otherwise
z—2z 7 = .
¢ 0 0, otherwise

By antiderivative: If f{z) is analytic in a simply connected domain D (EK14.2), there

exists an analytic antiderivative function F(z) (* #E}j§¢), such that F'(z)=f(z), and
jc f(2)dz=| f(2)dz =F(z1)~F(zo) (10.5)

for any integral path C within D. Eq. (10.5) depends only on end points zy, z; of the path

C (will be proved by Cauchy’s integral theorem in EK 14.2).

3 1+i 3 .
2dz=2 = a+i” _-2 +i 2 , for 2% is analytic everywhere.
0 3 3 3 3

0

1+i

E.g. Izj

E.g. I= j jizfldz along two paths C;, C; (see below).
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v

simply mlmected'r‘.-""': ;|

i — p X
... branch cut of (Ln z)

N Arg(a)=[0,.27)

branch cut of (Ln z) .
A]"g{:}:{.ﬂ,_?r] {/‘_} ”_,.-""f

Since z™' is analytic except for z=0 (check by CR equations), we can find a simply

connected domain D; containing path C; (=1, 2) in which z”' is analytic everywhere. By

eq. (10.5), I=In(z)|"; =In(i)~In(-i).
However, In(z) is multi-valued [eq. (9.6)], and so is ln(z)|j (problematic). If principle

value Ln(z) is used [eq. (9.7)], I= Ln(z)|ff = i[Arg(i)—Arg(-i)]. One has to properly define
the range of argument such that path C; does not cross the branch cut [i.e. Ln z =
In(|z|)+iArg(z) experiences no “jump” along C;].

For an arbitrary path C; in D,, define —7<Arg(z)<z (branch cut is negative real axis), =
11=i£—(—i %) = iz. For an arbitrary path C, in D,, define 0<Arg(z)<2x (branch cut is

" . T 3z .
positive real axis), = 12215—17 =—ir.

<Comment>
1) I;# I, for there is no simply connected domain D containing both C; and C>.
2) A singular point has profound impact on complex integral even the path does not pass

through it. = Singularity is the protagonist of complex functions.

B ML-inequality
If | (z)| <M everywhere on a path C of length L, =

UC f(z)dz‘ <ML (10.6)
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It is useful in proving integral theorems.

Cauchy’s Integral Theorem (EK14.2)

B Concepts
P e — i,
( J = ; ©ad S 4 ¥ a2 &P
I = \ [ =nalisy s & vV Ol ’ B W o ]
| ( { ( =iy \ \ \ } Bd’ Y B AN Ul ¥
\4 R / \ ) — y . U .4
x \\_‘_/ / \ / /' \j Tee—e e Teomes e
=il o Simply Simply Doubly Triply
Simple Simple Not simple Not simple connected connected connected connect
Closed path Simply and multiply connected domains
B Theorem 1

If f(z) is analytic in a simply connected domain D, =
§§C f(2)dz=0 (10.7)

for any simple closed path C in D.

Intuition: Analytic in D = antiderivative approach eq. (10.5) is valid (will be proven in

Theorem 3): IC f(2)dz=F(z1)—F(zo). Closed path C means z,=zy, = integral=0.
(*) Proof: (1) By eq. (10.2), I= §C f(2)dz= §C (udx —vdy) + i §C (udy +vdx) . (2) By Green’s

theorem in the plane (EK 10.4, i.e. a special case of Stoke’s theorem in EK 10.9):

Re{l}= ffc (udx —vdy) = ”(— v, —u, )dxdy , where vy, u, are continuous for f'(z) is
R

continuous in D. (3) By CR equations: u,=—v,, Re{/}= J.J. (O)dxdy =0. Similarly, Im{7}=0.
R

<Comment>

1) Inverse of Theorem 1 is not true. E.g. eq. (10.4).

2) (*) If fiz) is continuous in a simply connected domain D, and §C f(z)dz=0 for any
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simple closed path C in D, = f{z) is analytic (Morera theorem).

B Theorem 2

If f(z) is analytic in a simply connected domain D, = IC f(z)dz 1is independent of path C

but its end points.

2

Proof: For two arbitrary paths C;, C, with common endpoints z;, z,, Theorem 1 gives

§C f(2)dz= j S @)z j o S (2)dz=0,= j o S (@)dz=~ j o (2)dz= j LSz

B Theorem 3 [enable eq. (10.5)]

If f(z) is analytic in a simply connected domain D, = (1) antiderivative F(z)= J. :0 f(z"hdz'
exists; (2) F'(z)=fz); (3) F(z) is also analytic in D.

Note: Theorem 3 and Theorem 2 prove eq. (10.5).

(*) Proof: (1) By Theorem 2, line integral from fixed z, to arbitrary z (in D) is independent of

path, therefore, can be uniquely determined, = F(z)= j ’ f(z")dz" exists.
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.. vy _ o F(Z+AZ)=F(2) _
(2) By definition, F'(z) —g ~

lin OAZU fhdz' | f(z)dz}

lim—“zzw f(z )dz} Represent f(z) by integral form: f(z)= llm—U f (z)dz}

[F'(z)~ f (Z)|—llm [f () - f(2)]dz"],

by ML-inequality, < hm(L M - |AZ|J

[Az]

EH%) M , where M is defined as: | fih-f (z)| < M along the infinitesimal path z— z+Az.

"[Az] U

Since f{(z) is analytic, it must be continuous; = for any given >0, we can always find o, such
that |f(z') — f(z)| <g for all |z' - z| <o. By choosing |Az] <o, we have M=&-0, =
|F'(z) = f(2)| =0, and F'(z)=flz).

(3) For every point z in D, f(z) exists, = F'(z)=f(z) exists, = F{(z) is also analytic.

B Theorem 4
If f(z) is analytic in a multiply connected domain D defined by an outer contour C; and

multiple inner contours {C;, i=2,3,....,n} (all are in counterclockwise sense), =

§Cl f(Z)dZ:iiﬁq f(z)dz (10.8)

Proof: Introducing three inner cuts Cl, Cz, C; to divide the domain D into two simply

connected domains. Apply Theorem 1 to them; integral over cuts will be canceled, ...

2ri,if m=-1 . ) .
§ (z—zy)"dz = . , for arbitrary simple closed path C in
¢ 0, otherwise
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counterclockwise sense, which encircles zj.

(z—z0)" is analytic in a doubly connected domain D bounded by C and C* (a circle of

sufficiently small radius p centered at z;). By eq. (10.8), fi;c (z—zy)"dz= §C* (z—z))"dz=

eq. (10.4).

doubly connected s, C

Cauchy’s Integral Formula (EK 14.3)
B Formula
Let f{z) be analytic in a simply connected domain D. For any simple closed path C (not just

circles) in D that encloses a point zy, =

j;CMdz =27 f{zo) (10.9)

z-z,

Note: eq. (10.9) is a special case of residue integration formula [eq. (13.2)].

Proof: fiz)=zo)H Az)fz0)] = §§C A f(z, )[§C#dzj + §dez =

z—2z,
27 if(zo)+p. Whether p—0 (i.e. |p|—0)?

(*) By eq. (10.8), p=§ Mdz=§ *Mdz, where C*: |z—zo|=p is a circle
C  z-gz, c

z-2z,

f ()~ f(z)

z-z,

enclosed by C (see above figure). By ML-inequality, |p|<M-27xp, where <M.

Since f(z) is analytic, = continuous, lim f(z)= f(zp), 1.e. |z—zo|<0, = |f(z)—fz0)|<e&. For an
Z*)ZO
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f(2) - f(z)

zZ—2Z,

<% -MonC*. = |PIEM2 mp
Yo,

arbitrarily small & we can choose p<d, such that

‘£ 270 =27e—0, as e—>0.
yo,

z22+1

cz%_

E.g. Evaluate l=j; dz for the four contours shown below (in counterclockwise sense).

2 2 ’
z - 1z Al . Circles (a-b) only enclose z=zy=1, = f(z)= e
z2—=1 (z+D(z-1) z+1

, =27 f(1)=27i.

2
z +11 , =2 7i-f(—1)= —27i. Circle (d) encloses no

Circle (c) only encloses z= zp=—1, = f(z)=

2
z

S is analytic inside circle (d), [=0.
(z+1)(z-1)

singularity, =

<Comment>
If f(z) is analytic in a doubly connected domain D bounded by two counterclockwise contours

Cl, C25 =

f(zo)zziﬂib /(2) dz-§ /() dz} (10.10)

Gz-z, Gz-2z,

Proof: Introducing two inner cuts. Used in proving Laurent’s theorem (EK 16.1).
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Derivatives of Analytic Functions (EK 14.4)
B Analytic = differentiable for all orders
If f(z) is analytic in a simply connected domain D, its n-th order derivative f ")(zo) exists and

can be evaluated by a complex line integral over a simple closed path C in D that encloses z:

G =g D (10.11)

c (Z Z )n+1

Proof: For n=1, f’(zO)ZAlzirr}) f(Z°+AAZZ)_f(Z°); represent f(zo+Az), flzo) by eq. (10.9):

_ 1 GO A CI R I ! f(2) ap
A gT027[1AZ iﬁcz—(zo+Az)d i;Cz z, } gg})%zibc(z—zo—Az)(z—zo)d ’

f(2)

by ML-inequality, = 1 § >dz . For n>1, prove by induction.
2 (z-2z,)

<Comment>

1) Evaluation of f“ (x,) involves with real function values in the vicinity of xo, while

evaluation of £ (z,) can involve with complex function values far from z.
2) The differentiability of a real function f{x) implies nothing about the differentiability of
f'(x), f"(2), ...etc. E.g. ix)= x'"° is differentiable for all xeR, butf’(x)Z%x’Z/3 is

singular at x=0.

B (*) Cauchy’s inequality

If f{z) is analytic on and within a circle C of radius » and center z, and |f(z)|<M on C, =

TAEN L v (10.12)

Edited by: Shang-Da Yang



PDE & Complex Variables P10-10

A<M

/~ flz) is analytic

!
, by ML-inequality, < M
2 r

Proof: By eq. (10.11), 27r...

n+l

PN f(2)
A )(Zo)‘—2—§cﬁdz

!
T )n+1

Cauchy’s inequality will be used to set an upper bound for the coefficients of Taylor series

representation of a complex function (EK 15.4).

B Liouville’s theorem

If f{(z) is analytic and |f{z)|<K (bounded) in the entire complex plane,= f{z) is constant.

Proof: By eq. (10.12),

K . .
f(z, )| S7 for arbitrary zo and r. By letting r—oo,

f'(z9)| <0,

f '(zo)| =0, i.e. f(z) is a constant.

<Comment>
1) Bounded, differentiable real functions are not necessarily constant. E.g. (sin x).
2) Slight deviation of an analytic function from constant implies the existence of singularity

somewhere in the complex plane, = singularity is almost inevitable!

B (*) Fundamental theory of algebra
If p(z)=a,z"+ Api2" .+ ayzrag, n>1, a,#0 (polynomial of order ) = p(z)=0 has at least one
root (actually 7 roots in total).

Proof: By contradiction. p(z) is unbounded and entire (i.e. analytic everywhere). Assume
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p(2)#0 for all z (no root), = f(z)=1/p(z) is entire but bounded. By Liouville’s theorem, =

f(z)=constant, = p(z)=constant, violating n>1, a,#0.

B (*) Gauss mean-value property

Let f(z) is analytic in a simply connected domain D. If we take a circular contour C(cD):

=zotre'®, 6=[0,27], by eq. (10.9), f(zo)——§ ACIE (Z) - j fz, +7€)dO, = fizo) is

the mean-value of f{z) on circle C with arbitrary radius 7 (as long as Cc D).

B (*) Maximum/minimum modulus principle
If f(z) is analytic on and within a simple closed path C, = the maximum and minimum of
[f(z)| for the region R (union of C and its interior) must occur on C.

Proof: By Gauss mean-value principle.
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