Lesson 09 Complex Numbers and Functions (EK 13)

Overview

Contents: complex numbers, analytic functions, complex series, complex integral.

Applications:

- 1) Evaluate complicated real and complex integrals (EK 16).
- 2) Derive Fourier and Laplace transforms in closed form.
- 3) Solve 2-D Laplace's equation (EK 17, 18).

Complex Numbers (EK13.1-2)

- Representations
- 1) Cartesian form: z=x+iy, where $x=\operatorname{Re}\{z\}$, $y=\operatorname{Im}\{z\}$, $i=\sqrt{-1}$; a point in the complex plane.
- 2) Polar form: $z = re^{i\theta}$, where $r = |z| = \sqrt{x^2 + y^2} = \text{modulus of } z$, $\theta = \operatorname{Arg}(z) = \tan^{-1}\left(\frac{y}{x}\right) =$

argument (幅角) of z. Since tan⁻¹ gives values between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ (I and IV quadrants), $\tan^{-1}\left(\frac{y}{x}\right)$ cannot tell the arguments of z and -z, $\Rightarrow \theta = \tan^{-1}\left(\frac{y}{x}\right) + \pi$, if x<0.

Properties

- 1) Addition/subtraction: Cartesian form is preferable. $z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)$.
- 2) Multiplication/division: Polar form is preferable. $z_1 z_2 = (r_1 r_2) e^{i(\theta_1 + \theta_2)}$, $\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 \theta_2)}$.
- 3) Complex conjugate: $z^*=(x-iy)=re^{-i\theta}$. The conjugate pairs *z* and *z** can be used to express parameters in Cartesian and polar forms:

$$x = \frac{z + z^*}{2}, y = \frac{z - z^*}{2i}, r = \sqrt{z \cdot z^*}, \theta = \frac{1}{2} \operatorname{Arg}\left(\frac{z}{z^*}\right).$$

- 4) Integral powers: $z^n = r^n e^{in\theta}$ (proved by induction). Applications: expressing $\cos(n\theta)$, $\sin(n\theta)$ in terms of powers of $\cos\theta$, $\sin\theta$. E.g. $\cos(2\theta) = \operatorname{Re}\left\{e^{i2\theta}\right\} = \operatorname{Re}\left\{(\cos\theta + i\sin\theta)^2\right\} = \cos^2\theta - \sin^2\theta$.
- 5) Integral roots: $\sqrt[n]{z} = \sqrt[n]{r} \exp\left[i\frac{\theta + 2k\pi}{n}\right], k=0, 1, ..., n-1$ (multivalued function).

Proof: Let
$$z=re^{i\theta}$$
, $w=Re^{i\phi}=\sqrt[n]{z} \implies w^n=z$, $R^ne^{in\phi}=re^{i\theta}$, $R=\sqrt[n]{r}$, $\phi=\frac{\theta+2k\pi}{n}$, $k=0, ..., n-1$.

Analytic Functions (EK13.3)

- Sets in the complex plane
- 1) Neighborhood of *a*: $\{z, |z-a| \le \rho\}$ (open circular disk).
- 2) Open set S: every point of S has a neighborhood only consisting of points belonging to S.
 E.g. |z|<1 is open, |z|≤1 is not open.
- 3) Connected set S: any two of its points can be joined by a broken line (linear segments) within S. E.g. $\{|z| \le 1 \text{ and } |z-3| \le 1\}$ is NOT connected.
- 4) **Domain**: an open connected set.
- Complex functions

w=f(z=x+iy)=u(x,y)+iv(x,y). A complex function w of single complex variable z is equivalent

to a pair of real functions u(x,y) and v(x,y), each depending on two real variables x, y.

■ Limit

 $\lim_{z \to z_0} f(z) = l: \text{ for every real } \varepsilon > 0, \text{ we can find a real } \delta > 0, \text{ such that } |f(z) - l| < \varepsilon \text{ if } 0 < |z - z_0| < \delta.$

Unlike the limit of real functions: $\lim_{x \to x_0} f(x) = l$, where *x* can only approach x_0 from left and right hand sides (1-D); *z* can approach z_0 from infinitely many directions in the complex plane (2-D, draw a plot). The limit exists only if f(z) approaches the same *l* from all possible paths.

Continuous

A function f(z) is continuous at $z = z_0$, if $\lim_{z \to z_0} f(z) = f(z_0)$.

Derivative

f(z) is **differentiable** at z_0 , if the derivative (limit of difference quotient):

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$
(9.1)

approaches the same value as $\Delta z \rightarrow 0$ along all paths.

E.g.
$$f(z)=z^2$$
. $f'(z) = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^2 - z^2}{\Delta z} = \lim_{\Delta z \to 0} \frac{2z(\Delta z) + (\Delta z)^2}{\Delta z} = 2z$, for all $z \in C$.
E.g. $f(z)=z^*$. $f'(z) = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^* - z^*}{\Delta z} = \lim_{\Delta z \to 0} \frac{(\Delta z)^*}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta x - i\Delta y}{\Delta x + i\Delta y}$, whose value depends on

the path (see figure below). \Rightarrow The derivative does not exist for all $z \in C$. Unlike real functions, differentiability is a rather strict requirement for complex functions.

For path I, $\Delta y=0$, $\Delta z=\Delta x \rightarrow 0$, causing a limit of +1. For path II, $\Delta x=0$, $\Delta z=i\Delta y \rightarrow 0$, causing a limit of -1.

Note we cannot let $\Delta x = \Delta y = 0$ simultaneously, which violates the definition of "limit".

f(z) is **analytic** in a domain *D*, if f(z) is **differentiable** at all points of *D*. f(z) is analytic at a point z_0 , if f(z) is analytic in a neighborhood of z_0 .

Cauchy-Riemann (CR) Equations (EK13.4)

■ f(z=x+iy)=u(x,y)+iv(x,y) is analytic \Leftrightarrow CR equations are satisfied:

$$\{u_x = v_y, \quad u_y = -v_x\}$$
 (9.2)

<u>Proof</u> (\Rightarrow): Analytic \Rightarrow differentiable, $f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$ has the same value for all possible paths $\Delta z \rightarrow 0$. We examine the two special paths L and II illustrated above:

all possible pairs
$$\Delta z \rightarrow 0$$
. We examine the two special pairs 1 and 11 mustrated above.

(i) For path I,
$$\Delta z = \Delta x \rightarrow 0$$
, $f'(z) = \lim_{\Delta x \rightarrow 0} \frac{[u(x + \Delta x, y) + iv(x + \Delta x, y)] - [u(x, y) + iv(x, y)]}{\Delta x} =$

 u_x+iv_x . (ii) For path II, $\Delta z=i\Delta y \rightarrow 0$, $\Rightarrow f'(z)=v_y-iu_y$. Equating their real and imaginary parts gives rise to eq. (9.2).

E.g.
$$f(z)=z^*=(x-iy), \{u=x, v=-y\}; u_x=1 \neq v_y=-1, \Rightarrow f(z)=z^* \text{ is not analytic.}$$

<Comment>

The relations derived during the proof of CR equations:

$$f'(z) = u_x + iv_x = v_y - iu_y$$
(9.3)

can be used to evaluate complex derivative.

■ Real and imaginary parts of an analytic function satisfy 2-D Laplace's equation.

<u>Proof</u>: f(z)=u(x,y)+iv(x,y) is analytic, by eq. (9.2), $\Rightarrow \{u_x=v_y, u_y=-v_x\}$. $\Rightarrow \{u_{xx}=v_{yx}, u_{yy}=-v_{xy}\}$; $u_{xx}+u_{yy}=\nabla^2 u=0$; Similarly, $\nabla^2 v=0$.

<Comment>

 $\nabla^2 u=0$, $\nabla^2 v=0$ does not guarantee that f(z)=u(x,y)+iv(x,y) is analytic.

Exponential Function (EK13.5)

■ Definition:

$$e^{z} \equiv e^{x}(\cos y + i \sin y), \text{ or } \sum_{n=0}^{\infty} z^{n}/n!$$
(9.4)

■ Properties:

- 1) e^z is analytic for all z. <u>Proof</u>: $u = e^x \cdot \cos(y)$, $v = e^x \cdot \sin(y)$, by eq. (9.2),
- 2) $\frac{d}{dz}e^{z} = e^{z}$. <u>Proof</u>: by eq. (9.3), $\frac{d}{dz}e^{z} = u_{x} + iv_{x} = u + iv = e^{z}$.
- 3) $e^{z_1+z_2} = e^{z_1} \cdot e^{z_2}$. Proof: let $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$, apply $e^{x_1+x_2} = e^{x_1}e^{x_2}$ and trigonometric equalities,
- 4) $e^{z+i2n\pi} = e^z$, hence the fundamental strip $(x, -\pi \le y \le \pi)$ is mapped onto the entire *w*-plane.

5) The left half-plane $\{x \le 0\}$ is mapped onto the unit circle in the *w*-plane.

Trigonometric Functions (EK13.6)

Definition:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \ \sin z = \frac{e^{iz} - e^{-iz}}{2i}, \ \tan z = \frac{\sin z}{\cos z}$$
(9.5)

<Comment>

Real functions $\sin x$, $\cos x$ are unrelated to real function e^x .

■ Properties:

- 1) $\cos z$, $\sin z$ are analytic for all z, but $(\tan z)$ is not wherever $\cos z = 0$.
- 2) $\cos z = (\cos x \cdot \cosh y) i(\sin x \cdot \sinh y), \sin z = (\sin x \cdot \cosh y) + i(\cos x \cdot \sinh y).$ <u>Proof</u>: by $\cos z = \frac{1}{2} \left[e^{i(x+iy)} + e^{-i(x+iy)} \right] = \dots$
- 3) $|\cos z|^2 = \cos^2 x + \sinh^2 y$, $|\sin z|^2 = \sin^2 x + \sinh^2 y$, not bounded by 1.

<u>Proof</u>: by $|\cos z|^2 = (\cos x \cdot \cosh y)^2 + (\sin x \cdot \sinh y)^2$; $\cosh^2 y = 1 + \sinh^2 y$, $\Rightarrow |\cos z|^2 = \cos^2 x (1 + \sinh^2 y) + \sin^2 x \cdot \sinh^2 y = \dots$

- 4) $\cos z=0$, for $z = \frac{2n+1}{2}\pi$; $\sin z=0$, for $z = n\pi$. <u>Proof</u>: by property 2.
- 5) $\frac{d}{dz}\cos z = -\sin z$, $\frac{d}{dz}\sin z = \cos z$. <u>Proof</u>: by eq. (9.5) and $\frac{d}{dz}e^z = e^z$.
- 6) General formulas of real trigonometric functions remain valid for complex counterparts.

Logarithm Function (EK13.7)

Definition:

Inverse of exponential function. $w = \ln z \Leftrightarrow z = e^w$. Let $z = re^{i\theta}$, w = u + iv, $\Rightarrow re^{i\theta} = e^{u + iv} = e^u e^{iv}$, $\Rightarrow e^u = r$, $v = \theta + 2n\pi$.

$$\ln z = \ln r + i(\theta + 2n\pi) \tag{9.6}$$

Edited by: Shang-Da Yang

which is a **multi-valued** "function" [i.e. $re^{i\theta}$ and $re^{i(\theta+2n\pi)}$ represent the same point in the *z*-plane, but are mapped onto different points in the *w*-plane. Strictly speaking, it is not a function]. **E.g.** $\ln(i)=\ln(1)+i(0.5+2n)\pi$.

The principal value of $\ln z$ is defined as:

$$\operatorname{Ln} z = \ln|z| + i\operatorname{Arg}(z), \quad -\pi < \operatorname{Arg}(z) \le \pi$$
(9.7)

Though (Ln z) is single-valued, the restriction of argument $[-\pi < \operatorname{Arg}(z) \le \pi]$ makes the function **discontinuous** (and non-analytic) when the variable z passes through a branch cut (negative real axis).

■ Properties:

1) If z is negatively real (where real logarithm is undefined), $\operatorname{Ln} z = \ln |z| + i\pi$.

2) The branch cut of (Ln z) depends on the choice of argument range.

E.g. if $0 \le \operatorname{Arg}(z) \le 2\pi$ is used, branch cut becomes the positive real axis. In this case, (Ln z) is continuous and analytic on the negative real axis.

PDE & Complex Variables

3)
$$\ln(z_1 z_2) = \ln z_1 + \ln z_2$$
, $\ln\left(\frac{z_1}{z_2}\right) = \ln z_1 - \ln z_2$. Proof: by $z_1 = r_1 e^{i\theta_1}$, ...

4) $\frac{d}{dz} \operatorname{Ln} z = \frac{1}{z}$, except for points on the branch cut. <u>Proof</u>: by $u = \operatorname{Ln}|z| = \frac{1}{2} \ln(x^2 + y^2)$,

$$v=\operatorname{Arg}\{z\} = \begin{cases} \tan^{-1}(y/x), \text{ if } x \ge 0\\ \tan^{-1}(y/x) + \pi, \text{ if } x < 0 \end{cases}; \text{ by eq. (9.3), } \frac{d}{dz}\operatorname{Ln} z = u_x + iv_x = \frac{x - iy}{(x^2 + y^2)} = \frac{1}{z}.$$

5) General powers:

$$z^{c} = e^{c \ln z}; \quad a^{z} = e^{z \ln a}$$
 (9.8)

E.g. $i^{i} = e^{i \ln i} = e^{i [0 + i(\pi/2 + 2n\pi)]} = e^{-(\pi/2 + 2n\pi)} \in R.$

Appendix 9A - Conformal Mapping (EK 17)

Mapping

For each point z in the domain of definition D, function f(z) assigns a point f(z) (image of z) in the w-plane, $\Rightarrow f$ defines a mapping of D in the z-plane onto the w-plane.

E.g. $w=z^2$. (i) $Re^{i\phi} = (re^{i\theta})^2 = (r^2e^{i2\theta}), \Rightarrow \{R=r^2, \phi=2\theta\}$ (lower left figure). (ii) $u+iv=(x+iy)^2 \Rightarrow \{u=x^2-y^2, v=2xy\}$. A vertical line in the *xy*-plane ($x=x_0$) is mapped onto a parabola in the *uv*-plane: $u=x_0^2 - (v^2/4x_0^2)$. A horizontal line ($y=y_0$) is mapped onto a parabola: $u=(v^2/4y_0^2) - y_0^2$ (lower right figure).

Conformal mapping

Mapping defined by an analytic function preserves the included angle (夾角, magnitude and sense) between any oriented curves.

<u>Proof</u>: Let curve C in the z-plane have a parametric representation: z(t)=x(t)+iy(t). The tangential at $z=z_0=z(t_0)$ makes an angle θ with respect to the x-axis, where $\tan \theta$

$$= \lim_{\Delta t \to 0} \frac{\Delta y = y(t_0 + \Delta t) - y(t_0)}{\Delta x = x(t_0 + \Delta t) - x(t_0)} = \lim_{\Delta t \to 0} \frac{\left[y(t_0 + \Delta t) - y(t_0)/\Delta t\right]}{\left[x(t_0 + \Delta t) - x(t_0)/\Delta t\right]} = \frac{y'(t_0)}{x'(t_0)}, \text{ i.e.}$$

$$\theta = \operatorname{Arg}\left\{x'(t_0) + iy'(t_0)\right\} = \operatorname{Arg}\left\{z'(t_0)\right\}$$
(9A.1)

Analytic function f(z) maps curve C onto its image $C^*: w(t) = f(z(t)) = u(t) + iv(t)$ in the w-plane. The tangential at $w_0 = f(z_0)$ makes an angle ϕ with respect to the u-axis, where $\phi = \operatorname{Arg} \{w'(t_0)\}$. By the chain rule, $w'(t_0) = f'(z_0) \cdot z'(t_0) \Rightarrow \operatorname{Arg} \{w'(t_0)\} = \operatorname{Arg} \{f'(z_0)\} + \operatorname{Arg} \{z'(t_0)\}$,

$$\phi = \delta + \theta, \quad \delta = \operatorname{Arg}\left\{f'(z_0)\right\} \tag{9A.2}$$

Since δ is only determined by the mapping function, f(z) rotates any oriented curve by the same angle δ , as long as $f'(z_0) \neq 0$ (i.e. Arg $\{f'(z_0)\}$ exists).

E.g. $f(z)=e^z$, z=x+iy; $w=Re^{i\phi}$, $=f(z)=e^{x+iy}=e^xe^{iy}$, $\Rightarrow \{R=e^x, \phi=y\}$. Vertical line x=a in the z-plane is mapped onto a circle of radius e^a in the w-plane. Horizontal line y=b is mapped onto a ray of angle $\phi=b$. The included angles of $\{x=a, y=b\}$ and $\{R=e^a, \phi=b\}$ are the same (90°).

Conformal mapping is historically important in solving 2-D Laplace's equation. However, it relies on symmetry of the problem, and gives way to the more powerful numerical methods.