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Lesson 09 Complex Numbers and Functions (EK 13) 

 

■ Overview 

Contents: complex numbers, analytic functions, complex series, complex integral. 

 

Applications: 

1) Evaluate complicated real and complex integrals (EK 16). 

2) Derive Fourier and Laplace transforms in closed form. 

3) Solve 2-D Laplace’s equation (EK 17, 18). 

 

 

Complex Numbers (EK13.1-2) 

� Representations 

1) Cartesian form: z=x+iy, where x=Re{z}, y=Im{z}, i= 1− ; a point in the complex plane. 

2) Polar form: z=reiθ, where r=|z|= 22 yx + = modulus of z, θ =Arg(z)= 





−

x
y1tan = 

argument (幅角) of z. Since tan-1 gives values between 
2
π

−  and 
2
π  (I and IV 

quadrants), 





−

x
y1tan  cannot tell the arguments of z and –z, ⇒ θ = 






−

x
y1tan +π, if x<0. 
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� Properties 

1) Addition/subtraction: Cartesian form is preferable. z1±z2=(x1±x2)+i(y1±y2). 

2) Multiplication/division: Polar form is preferable. z1z2= (r1r2) )( 21 θθ +ie , 
2

1

z
z =

2

1

r
r )( 21 θθ −ie . 

3) Complex conjugate: z*=(x–iy)= r θie− . The conjugate pairs z and z* can be used to express 

parameters in Cartesian and polar forms: 

x=
2

*zz + , y=
i
zz

2

*− , r = *zz ⋅ , θ =
2
1 Arg 








∗z
z . 

4) Integral powers: zn=rn θine  (proved by induction). 

Applications: expressing cos(nθ ), sin(nθ ) in terms of powers of cosθ, sinθ. 

E.g. cos(2θ )= { }θ2Re ie = { }2)sin(cosRe θθ i+ = cos2θ –sin2θ. 

5) Integral roots: n z = n r 



 +

n
ki πθ 2exp , k=0, 1, …, n−1 (multivalued function). 

Proof: Let z=r θie , w=Reiφ= n z  ⇒ wn=z, Rn φine =r θie , R= n r , φ =
n

kπθ 2+ , k=0, …, n-1. 

 

 

Analytic Functions (EK13.3) 

� Sets in the complex plane 

1) Neighborhood of a: {z, |z−a|<ρ} (open circular disk). 

2) Open set S: every point of S has a neighborhood only consisting of points belonging to S. 

E.g. |z|<1 is open, |z|≤1 is not open. 

3) Connected set S: any two of its points can be joined by a broken line (linear segments) 

within S. E.g. {|z|<1 and |z−3|<1} is NOT connected. 

4) Domain: an open connected set. 

 

� Complex functions 

w=f(z=x+iy)= u(x,y)+iv(x,y). A complex function w of single complex variable z is equivalent 
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to a pair of real functions u(x,y) and v(x,y), each depending on two real variables x, y. 

 

� Limit 

lzf
zz

=
→

)(lim
0

: for every real ε>0, we can find a real δ >0, such that | f(z)−l|<ε if 0<|z−z0|<δ. 

 

Unlike the limit of real functions: lxf
xx

=
→

)(lim
0

, where x can only approach x0 from left and 

right hand sides (1-D); z can approach z0 from infinitely many directions in the complex 

plane (2-D, draw a plot). The limit exists only if f(z) approaches the same l from all possible 

paths. 

 

� Continuous 

A function f(z) is continuous at z= z0, if )()(lim 0
0

zfzf
zz

=
→

. 

 

� Derivative 

f(z) is differentiable at z0, if the derivative (limit of difference quotient): 

z
zfzzfzf

z ∆
−∆+

=′
→∆

)()(lim)( 00

00       (9.1) 

approaches the same value as ∆z→0 along all paths. 

E.g. f(z)=z2. )(zf ′ =
z

zzz
z ∆

−∆+
→∆

22

0

)(lim =
z

zzz
z ∆

∆+∆
→∆

2

0

)()(2lim =2z, for all z ∈C. 

E.g. f(z)=z*. )(zf ′ =
z

zzz
z ∆

−∆+
→∆

**

0

)(lim =
z
z

z ∆
∆

→∆

*

0

)(lim =
yix
yix

z ∆+∆
∆−∆

→∆ 0
lim , whose value depends on 
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the path (see figure below). ⇒ The derivative does not exist for all z∈C. Unlike real 

functions, differentiability is a rather strict requirement for complex functions. 

 

For path I, ∆y=0, ∆z=∆x→0, causing a limit of 

+1. For path II, ∆x=0, ∆z=i∆y→0, causing a 

limit of -1. 

Note we cannot let ∆x=∆y=0 simultaneously, 

which violates the definition of “limit”. 

f(z) is analytic in a domain D, if f(z) is differentiable at all points of D. f(z) is analytic at a 

point z0, if f(z) is analytic in a neighborhood of z0. 

 

 

Cauchy-Riemann (CR) Equations (EK13.4) 

� f(z=x+iy)=u(x,y)+iv(x,y) is analytic ⇔ CR equations are satisfied: 

{ux= vy,  uy= −vx}        (9.2) 

Proof (⇒): Analytic ⇒ differentiable, )(zf ′ =
z

zfzzf
z ∆

−∆+
→∆

)()(lim
0

 has the same value for 

all possible paths ∆z→0. We examine the two special paths I and II illustrated above: 

(i) For path I, ∆z=∆x → 0, )(zf ′ =
x

yxivyxuyxxivyxxu
x ∆

+−∆++∆+
→∆

)],(),([)],(),([lim
0

= 

ux+ivx. (ii) For path II, ∆z=i∆y→0, ⇒ )(zf ′ = vy−iuy. Equating their real and imaginary parts 

gives rise to eq. (9.2). 

E.g. f(z)=z*=(x−iy), {u= x, v=−y}; ux=1≠ vy=−1, ⇒ f(z)=z* is not analytic. 

 

<Comment> 

The relations derived during the proof of CR equations: 

)(zf ′ = xx ivu + = yy iuv −       (9.3) 

can be used to evaluate complex derivative. 
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� Real and imaginary parts of an analytic function satisfy 2-D Laplace’s equation. 

Proof: f(z)=u(x,y)+iv(x,y) is analytic, by eq. (9.2), ⇒ {ux=vy, uy=−vx}. ⇒ {uxx= vyx, uyy=–vxy}; 

uxx+ uyy = ∇2u=0; Similarly, ∇2v=0. 

 

<Comment> 

∇2u=0, ∇2v=0 does not guarantee that f(z)= u(x,y)+ iv(x,y) is analytic. 

 

 

Exponential Function (EK13.5) 

� Definition: 

ez ≡ ex(cosy + i siny), or ∑
∞

=0
!

n

n nz        (9.4) 

 

� Properties: 

1) ez is analytic for all z. Proof: u= ex⋅cos( y), v= ex⋅sin( y), by eq. (9.2), …. 

2) ze
dz
d = ez. Proof: by eq. (9.3), ze

dz
d = ux+ ivx= u+ iv= ez. 

3) 21 zze + = 21 zz ee ⋅ . Proof: let z1=x1+iy1, z2=x2+iy2, apply 21 xxe + = 21 xx ee  and trigonometric 

equalities, …. 

4) πnize 2+ =ez, hence the fundamental strip (x,-π <y≤π) is mapped onto the entire w-plane. 

 

5) The left half-plane {x≤0} is mapped onto the unit circle in the w-plane. 
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Trigonometric Functions (EK13.6) 

� Definition: 

cos z ≡
2

iziz ee −+ , sin z ≡
i
ee iziz

2

−− , tan z ≡
z
z

cos
sin     (9.5) 

 

<Comment> 

Real functions sin x, cos x are unrelated to real function ex. 

 

� Properties: 

1) cos z, sin z are analytic for all z, but (tan z) is not wherever cos z =0. 

2) cos z = (cos x· cosh y)−i(sin x· sinh y), sin z =(sin x·cosh y)+i(cos x·sinh y). Proof: by cos z 

= [ ])()(

2
1 iyxiiyxi ee +−+ + =…. 

3) 2cos z = cos2x+sinh2y, 2sin z = sin2x+sinh2y, not bounded by 1. 

Proof: by |cos z|2= (cos x·cosh y)2+(sin x·sinh y)2; cosh2y=1+ sinh2y, ⇒ |cos z|2= cos2x(1+ 

sinh2y)+ sin2x·sinh2y=… 

4) cos z=0, for z = π
2

12 +n ; sin z=0, for z = nπ. Proof: by property 2. 

5) z
dz
d cos = −sin z, z

dz
d sin = cos z. Proof: by eq. (9.5) and ze

dz
d = ez. 

6) General formulas of real trigonometric functions remain valid for complex counterparts. 

 

 

Logarithm Function (EK13.7) 

� Definition: 

Inverse of exponential function. w= ln z ⇔ z=ew. Let z=reiθ, w=u+iv, ⇒ reiθ = eu+iv= eueiv, ⇒ 

eu=r, v=θ+2nπ. ⇒ 

zln = rln +i(θ +2nπ)       (9.6) 
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which is a multi-valued “function” [i.e. reiθ and rei(θ +2nπ) represent the same point in the 

z-plane, but are mapped onto different points in the w-plane. Strictly speaking, it is not a 

function]. E.g. ln(i)=ln(1)+i(0.5+2n)π. 

 

The principal value of zln  is defined as: 

Ln z = zln + i Arg(z),  −π<Arg(z)≤π     (9.7) 

Though (Ln z) is single-valued, the restriction of argument [−π<Arg(z)≤π] makes the 

function discontinuous (and non-analytic) when the variable z passes through a branch cut 

(negative real axis). 

 
 

 

� Properties: 

1) If z is negatively real (where real logarithm is undefined), Ln z = ln |z|+ iπ . 

 

2) The branch cut of (Ln z) depends on the choice of argument range. 

E.g. if 0≤Arg(z)<2π is used, branch cut becomes the positive real axis. In this case, (Ln z) 

is continuous and analytic on the negative real axis. 
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3) ( )21ln zz = 1ln z + 2ln z , 








2

1ln
z
z = 1ln z − 2ln z . Proof: by z1= 1

1
θier , … 

4) z
dz
d Ln  =

z
1 , except for points on the branch cut. Proof: by u=Ln|z|= ( )22ln

2
1 yx + , 

v=Arg{z} = 






<+

≥
−

−

0 if ,)/(tan
0 if ),/(tan

1

1

xxy
xxy

π
; by eq. (9.3), z

dz
d Ln = ux+ivx=

)( 22 yx
iyx

+
− =

z
1 . 

5) General powers: 

cz = zce ln ;  za = aze ln        (9.8) 

 E.g. ii= ei ln i= ei [0+i(π/2+2nπ)]= e−(π/2+2nπ)∈R. 
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Appendix 9A − Conformal Mapping (EK 17) 

 

� Mapping 

For each point z in the domain of definition D, function f(z) assigns a point f(z) (image of z) 

in the w-plane, ⇒ f defines a mapping of D in the z-plane onto the w-plane. 

 

E.g. w=z2. (i) Reiφ =(reiθ)2= (r2ei2θ), ⇒ {R=r2, φ=2θ } (lower left figure). (ii) u+ iv=(x+iy)2⇒ 

{u=x2−y2, v=2xy}. A vertical line in the xy-plane (x=x0) is mapped onto a parabola in the 

uv-plane: u= )4( 2
0

22
0 xvx − . A horizontal line (y=y0) is mapped onto a parabola: u= 

2
0

2
0

2 )4( yyv −  (lower right figure). 

 

 

� Conformal mapping 

Mapping defined by an analytic function preserves the included angle (夾角, magnitude and 

sense) between any oriented curves. 

 

Proof: Let curve C in the z-plane have a parametric representation: z(t)=x(t)+iy(t). The 

tangential at z=z0=z(t0) makes an angle θ with respect to the x-axis, where tanθ 
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=
)()(
)()(

lim
00

00

0 txttxx
tyttyy

t −∆+=∆
−∆+=∆

→∆
=

[ ]
[ ]ttxttx

ttytty
t ∆−∆+

∆−∆+
→∆ )()(

)()(
lim

00

00

0
=

)(
)(

0

0

tx
ty

′
′

, i.e. 

θ =Arg{ })()( 00 tyitx ′+′ = Arg{ })( 0tz′      (9A.1) 

 

Analytic function f(z) maps curve C onto its image C*: w(t)= f(z(t))=u(t)+iv(t) in the w-plane. 

The tangential at w0=f(z0) makes an angle φ with respect to the u-axis, where φ = Arg{ })( 0tw′ . 

By the chain rule, )( 0tw′ = )()( 00 tzzf ′⋅′  ⇒ Arg{ })( 0tw′ =Arg{ })( 0zf ′ +Arg{ })( 0tz′ ,  

φ =δ+θ,  δ=Arg{ })( 0zf ′        (9A.2) 

Since δ is only determined by the mapping function, f(z) rotates any oriented curve by the 

same angle δ, as long as )( 0zf ′ ≠0 (i.e. Arg{ })( 0zf ′  exists).  

 

E.g. f(z)=ez, z=x+iy; w=Reiφ, =f(z)=ex+iy= exeiy, ⇒ {R=ex, φ=y}. Vertical line x=a in the z-plane 

is mapped onto a circle of radius ea in the w-plane. Horizontal line y=b is mapped onto a ray 

of angle φ=b. The included angles of {x=a, y=b} and {R=ea, φ=b} are the same (90o). 

 

Conformal mapping is historically important in solving 2-D Laplace’s equation. However, it 

relies on symmetry of the problem, and gives way to the more powerful numerical methods. 


