PDE & Complex Variables P9-1

Lesson 09 Complex Numbers and Functions (EK 13)

Overview

Contents: complex numbers, analytic functions, complex series, complex integral.

Applications:

1)
2)

3)

Evaluate complicated real and complex integrals (EK 16).
Derive Fourier and Laplace transforms in closed form.

Solve 2-D Laplace’s equation (EK 17, 18).

Complex Numbers (EK13.1-2)

1)

2)

Representations
Cartesian form: z=x+iy, where x=Re{z}, y=Im{z}, i=+/—1; a point in the complex plane.

Polar form: z=re'’, where r=lz]= /x> +y’ = modulus of z, O=Arg(z)= tan"l(ZJZ
X

argument (ﬂjﬁ ¥|) of z. Since tan™! gives values between —% and % (I and IV

quadrants), tan” (l) cannot tell the arguments of z and —z, = @=tan™' (lj +7, if x<0.
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PDE & Complex Variables P9-2

u
1)

2)

3)

4)

5)

Properties
Addition/subtraction: Cartesian form is preferable. z;+z,=(x12x2)+i(y11)2).
C g C .. . ; AR A
Multiplication/division: Polar form is preferable. z;zo= (rjry) e’ @ %) | “L="L o/%%)
Z, n

Complex conjugate: z¥=(x—iy)=re "’ . The conjugate pairs z and z* can be used to express

parameters in Cartesian and polar forms:

x=Z+Z ,yZZ_Z ,rZVz-z*,QzlArg Z* .
2i 2 z

2

n _in@

Integral powers: z'=r"e"” (proved by induction).
Applications: expressing cos(n8), sin(rn@) in terms of powers of cosé, siné.
E.g. cos(26)= Re{e’” }= Re{(cos 6 +isin )’ }= cos”H—sin’6.

Integral roots: 4z =%/r exp{i 0+2kr

}, k=0, 1, ..., n—1 (multivalued function).
n

0+ 2k

Proof: Let z=re'’, w=Re'*=4/z = w'=z, R" "’ =re"’ , R=Xr , ¢= , k=0, ..., n-1.

Analytic Functions (EK13.3)

1)

2)

3)

4)

Sets in the complex plane

Neighborhood of a: {z, |z—a|<p} (open circular disk).

Open set S: every point of S has a neighborhood only consisting of points belonging to S.
E.g. |z[<l is open, |z|<] is not open.

Connected set S: any two of its points can be joined by a broken line (linear segments)
within S. E.g. {|z|[<1 and |z-3|<1} is NOT connected.

Domain: an open connected set.

Complex functions

w=fz=x+iy)= u(x,y)+iv(x,y). A complex function w of single complex variable z is equivalent
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PDE & Complex Variables P9-3

to a pair of real functions u(x,y) and v(x,y), each depending on two real variables x, y.

B Limit

lim f(z) =1: for every real £>0, we can find a real >0, such that |f{z)—I|<¢ if 0<|z—z(|<F.
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Unlike the limit of real functions: lim f(x) =17, where x can only approach x, from left and

X=X,

right hand sides (1-D); z can approach z, from infinitely many directions in the complex

plane (2-D, draw a plot). The limit exists only if f{z) approaches the same / from all possible

paths.

B Continuous

A function f(z) is continuous at z= zo, if lim f(z) = f(z,).
Z—)ZO

B Derivative

f(z) 1s differentiable at z, if the derivative (limit of difference quotient):

f(zy+A2)= f(z,)
Az

f'(z) = lim ©.1)

approaches the same value as Az—0 along all paths.

— tim 22(Az) + (Az)’

Az—0

E.g. flo)==". ['(z)= lim

2 2
w =2z, for all z eC.
Az

(z+A2 —2 (A Ax—idy

, whose value depends on
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the path (see figure below). = The derivative does not exist for all zeC. Unlike real

functions, differentiability is a rather strict requirement for complex functions.

Y For path I, Ay=0, Az=Ax—0, causing a limit of

zZ+ Az .
+1. For path II, Ax=0, Az=iAy—0, causing a

limit of -1.

Note we cannot let Ax=Ay=0 simultaneously,

which violates the definition of “limit”.
f(z) is analytic in a domain D, if f{z) is differentiable at all points of D. f{(z) is analytic at a

point zo, if f{z) is analytic in a neighborhood of z.

Cauchy-Riemann (CR) Equations (EK13.4)
B f(z=x+iy)=u(x,y)+iv(x,p) is analytic < CR equations are satisfied:

{u=vy, u= —v} 9.2)
f(z+Az)- f(2)
Az

Proof (=): Analytic = differentiable, f '(Z)ZLimO has the same value for

all possible paths Az—0. We examine the two special paths I and II illustrated above:

. NN ') = i [u(x + Ax, y) +iv(x + Ax, )] —[u(x, y) + iv(x, y)] _
(1) For path I, Az=Ax—0, f'(2) gg% A

uytivy. (ii) For path II, Az=iAy—0, = f"'(z)= v,—iu,. Equating their real and imaginary parts
gives rise to eq. (9.2).

E.g. f(z)=z =(x—iy), {u=x, v=—y}; u,=1# v,=—1, = f(z)=z  is not analytic.

<Comment>

The relations derived during the proof of CR equations:
f'@)=u, +iv.=v, —iu, (9.3)

can be used to evaluate complex derivative.
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B Real and imaginary parts of an analytic function satisfy 2-D Laplace’s equation.
Proof: f(z)=u(x,y)+iv(x,p) is analytic, by eq. (9.2), = {u=v,, u,==V}. = {Ue™= Vpx, Uyy= — Viy};

Ut Uy, = V2u=0; Similarly, V2=0.

<Comment>

V=0, V*v=0 does not guarantee that f(z)= u(x,y)+ iv(x,y) is analytic.

Exponential Function (EK13.5)

B Definition:

¢ = ¢'(cosy + i siny), or Zz” /n! 9.4)

n=0
B Properties:

1) ¢ is analytic for all z. Proof: u= e¢"-cos( y), v=¢"-sin( y), by eq. (9.2), ....

2) iez = ¢". Proof: by eq. (9.3), iezz Uyt ivi=ut iv= e,
dz dz

3) e =e” -e”. Proof: let zi=x|+iy1, z;=xytiys, apply e =e"e™ and trigonometric
equalities, ....

4) ™" =¢" hence the fundamental strip (x,-7<y<7) is mapped onto the entire w-plane.
p y pp P

¥

5) The left half-plane {x<0} is mapped onto the unit circle in the w-plane.
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Trigonometric Functions (EK13.6)

B Definition:

iz —iz iz —iz :
e“ +e : e’ —e sinz
coSz =——, sinz =————, tanz = 9.5)
2 2i cosz

<Comment>

Real functions sinx, cosx are unrelated to real function €.

B Properties:
1) cos z, sin z are analytic for all z, but (tan z) is not wherever cos z =0.

2) cosz = (cos x* cosh y)—i(sin x sinh y), sinz =(sin x-cosh y)+i(cos x-sinh y). Proof: by cosz

:%[ei(xﬂ'y) +e—i(x+iy) ]:

3) |cos z|2 = cos’x+sinh’y, [sin z|2 = sin’*x+sinh’y, not bounded by 1.

Proof: by |cos z|*= (cos x-cosh y)*+(sin x-sinh y)*; cosh?y=1+ sinh®y, = |cos z|*= cos™x(1+

sinh’y)+ sin’x-sinh’y=...

4) cosz=0, forz = 2n+l 7 ; sin z=0, for z = nz. Proof: by property 2.

5) icosz = —sin z, isin z= cos z. Proof: by eq. (9.5) and iez =¢.
dz dz dz

6) General formulas of real trigonometric functions remain valid for complex counterparts.

Logarithm Function (EK13.7)
B Definition:
Inverse of exponential function. w= In z < z=e". Let z=re'’, w=utiv, = re'? = ¢"""= ¢"e", =

e'=r, v=02nr. =>

Inz= Inr+i(6+2nx) (9.6)
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which is a multi-valued “function” [i.e. r¢'’ and re

z-plane, but are mapped onto different points in the w-plane. Strictly speaking, it is not a

i(60+2n7m)

function]. E.g. In(i)=In(1)+i(0.5+2n) .

The principal value of Inz is defined as:

Though (Lnz) is single-valued, the restriction of argument [—7<Arg(z)<z] makes the

function discontinuous (and non-analytic) when the variable z passes through a branch cut

Lnz=In|z|+iArg(z), —m<Arg(z)<m

(negative real axis).

1)

2)

1y

Path-1

Arg(2) fall within (-]

branch cut Arg(z)=n {,_\
0 "X

Path-2

P9-7

represent the same point in the

Properties:
If z is negatively real (where real logarithm is undefined), Ln z = In |z|+ i 7.
.F:_'L’ _ I
z=0 ;
l Lnz _<--------- I_ _________
> > "X . " = .
TD z=() | 1]

The branch cut of (Ln z) depends on the choice of argument range.

E.g. if 0<Arg(z)<2ris used, branch cut becomes the positive real axis. In this case, (Ln z)

is continuous and analytic on the negative real axis.

Edited by: Shang-Da Yang



PDE & Complex Variables P9-8

3)

4)

5)

In(z,z,)=Inz,+Inz,, ln(ij =Inz,—Inz, . Proof: by z;=re", ...
%

dian :l, except for points on the branch cut. Proof: by u=Ln]z\=%ln(x2 + yz),
1z

tan ' (y/x),if x>0 —i
v=Arg{z} = /) ; by eq. (9.3), ian= uﬁ-iv;%:l.
tan”' (y/x)+z,if x<0 dz (x*+y7) =z
General powers:
Zc:eclnz; az:ezlna (98)

E.g. i'= ¢/ iz of 0H#22nm]_ (w242 o p
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Appendix 9A - Conformal Mapping (EK 17)

B Mapping
For each point z in the domain of definition D, function f{(z) assigns a point f(z) (image of z)

in the w-plane, = f defines a mapping of D in the z-plane onto the w-plane.

E.g. w=2". (i) Re" =(re'%y’= ("%, = {R=r", ¢=26} (lower left figure). (ii) ut iv=(x+iy)’=
{u=x"—", v=2xy}. A vertical line in the xy-plane (x=x,) is mapped onto a parabola in the
uv-plane: u=x; — (v’ / 4x}). A horizontal line (y=),) is mapped onto a parabola: u=

(v’ / 4y2)—y: (lower right figure).
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B Conformal mapping
Mapping defined by an analytic function preserves the included angle (% ¥|, magnitude and

sense) between any oriented curves.

ﬂzul
(z-plane) (w-plane)
Proof: Let curve C in the z-plane have a parametric representation: z(¢)=x(¢)+iy(f). The

tangential at z=zo=z(#p) makes an angle € with respect to the x-axis, where tané
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lim A =+ A0 =) e DG + A0 - ()] _y@) o
=0 Ax = x(t, + At)— x(t,) 40 [x(t, + At)— x(t,)/At]  x'(t,)

O=Arg {x'(t,) +iy'(t,)}= Arg {z'(t,)} (9A.1)

z=2(1,) C™ow(D)= £ (2(1)

C oz =kivi) | J(2)
wo=f(2,)

@ = Arg {(w'(t,)}
0 = Arg {2(t)}= tani' [y (1,)/x'(1,)] & =Arg{f'(z)}

Analytic function f{z) maps curve C onto its image C': w(r)= fz(¢))=u(£)+iv(¢) in the w-plane.
The tangential at wy=f{z() makes an angle ¢ with respect to the u-axis, where ¢ = Arg {w’(t0 )}.
By the chain rule, w'(t,)=1"(z,)-z'(t,) = Arg{w'(t,)}=Arg{f'(z,)}+Arg{z'(t,)},

$=5+6, S=Arg{f'(z,)} (9A.2)

Since o0 is only determined by the mapping function, f{z) rotates any oriented curve by the

same angle o, as long as  f'(z,)#0 (i.e. Arg {f’(zo)} exists).

E.g. lz)=¢", z=x+iy; w=Re'?, =(z)=¢"""= ¢"¢”, = {R=¢", ¢=y}. Vertical line x=a in the z-plane
is mapped onto a circle of radius e” in the w-plane. Horizontal line y=b is mapped onto a ray

of angle ¢=b. The included angles of {x=a, y=b} and {R=¢", ¢=b} are the same (900).

JJ
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1
1
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| Z
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]

Conformal mapping is historically important in solving 2-D Laplace’s equation. However, it

relies on symmetry of the problem, and gives way to the more powerful numerical methods.
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