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Lesson 07 Laplace’s Equation 

 

■ Overview 

Laplace’s equation describes the “potential” in gravitation, electrostatics, and steady-state 

behavior of various physical phenomena. Its solutions are called harmonic functions. 

 

Physical meaning (SJF 31): Laplacian operator ∇2 is a multi-dimensional generalization of 

2nd-order derivative 2

2

dx
d . Its difference quotient representation, as implied by eq. (1.2), is: 

uxx+uyy=




∆
∆−+−∆+

→∆ 20

),(),(2),(lim yxuyxuyxu +




∆
∆−+−∆+

2

),(),(2),( yxuyxuyxu  

= [ ]),(),(4lim 20
yxuyxu −

∆
−

→∆
      (7.1) 

where 
4

),(),(),(),(),( ∆++∆−+∆++∆−
≡

yxuyxuyxxuyxuyxu  represents the average 

of neighboring points (2D). As a result, ∇2u = 0 implies that the function value at any point is 

equal to the average of its neighboring values (dynamic equilibrium, or steady-state). 

 

<Comment> 

1) ∇2u = 0 does not necessarily mean uxx=0 and uyy=0. 

2) Not all continuous functions satisfy ∇2u=0. E.g. u=x2y, ⇒ ∇2u=2y≠0. 

  

 

■ (∗) Three types of BCs for Laplace’s equation (similar with those in Lesson 3): 

1) Dirichlet: u is specified on the boundary surface S (curve C). E.g. Find the electrostatic 

potential within/outside a circle where the potential on the circular rim is specified. 

2) Neumann: outward normal derivative un= n
u

∂
∂  (physically, inward flux) is specified on 

S(C). E.g. Find steady-state temperature within a circle if the heat inflow varies around 
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the boundary C according to: 
r
u

∂
∂ =sinθ. 

 

<Comment> 

(a) Total flux across the boundary must vanish [in this case: ∫C nu
 

= ( )∫
π

θρθ
2 

0 
sin d =0]. 

Otherwise, gain or loss exists in the region of interest, and physical quantity varies 

with time (no longer steady-state). 

(b) Solutions to Neumann problems are not unique. E.g. {∇2u=0, ur(r=1,θ )=cos(2θ )} 

have solutions of the form: u(r,θ)=r2cos(2θ)+c, c is an arbitrary constant. Additional 

information (such as the value of u at some point) is required. 

3) Mixed: a mixture of the first two types. E.g. un+γ(u+g)=0 (Newton’s law of cooling). 

 

 

Laplace’s Equation in Cartesian Coordinate (EK 12.5) 

■ Problem: steady state temperature distribution on a rectangular plate. 

PDE: ut =α2(uxx+ uyy)=0 ⇒ uxx+ uyy=0, {0<x<a, 0<y<b} 

Four Dirichlet BCs: u(0, y)=0, u(a, y)=0, u(x,0)=0, u(x,b)=f(x). 
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■ Solving Cartesian Laplace’s equation by separation of variables: 

1) Separation of variables: 

Let u(x,y)=X(x)⋅Y(y), ⇒ 0=+′′ YXYX && , divide by XY, ⇒
Y
Y

X
X &&

−=
′′

= –k2<0 

⇒ 02 =+′′ XkX , 02 =− YkY&&  (one PDE → two ODEs) 

2) Solving the normal modes by homogeneous BCs: 

(i) To avoid trivial solution u(x,y)=0, homogeneous BCs of u(x,y) → BCs of X(x), Y(y): 

{u(0,y)=0, u(a,y)=0, u(x,0)=0} → {X(0)=0, X(a)=0, Y(0)=0} 

(ii) 02 =+′′ XkX , ⇒ X(x)=Acos(kx)+Bsin(kx); 

By BCs: (i) X(0)=0 ⇒ A=0; (ii) X(a) =0 ⇒ k = kn= a
nπ , n=1,2, …⇒ Xn(x)=sin(knx); 

(iii) 02 =− nnn YkY&&  ⇒ Yn(y)= An
ykne +Bn

ykne− ; 

By BC: Y(0)=0 ⇒ Bn = −An, ⇒ Yn(y)=An⋅sinh(kny) 

⇒ The n-th normal mode is un(x,y)= Xn(x)⋅Yn(y): 

 un(x,y) = An⋅ ( ) ( )ykxk nn sinhsin ⋅       (7.2) 

We have only one unknown coefficient An for each mode. The more homogeneous BCs, 

the fewer coefficients to be determined. 

3) Determining the exact solution by the nonhomogeneous BC (similar to the role of ICs in 

t-dependent PDEs): 

u(x,t)=∑
∞

=1
),(

n
n yxu = ( ) ( )ykxkA n

n
nn sinhsin

1
⋅∑

∞

=

    (7.3) 

Substitute the nonhomogeneous BC into eq. (7.3): u(x,b)= ( ) ( )∑
∞

=

⋅
1

sinsinh
n

nnn xkbkA =f(x). 

By Fourier sine series, ⇒ 

An = ∫ ⋅
⋅

a

n dxxkxf
abna

 

0 
)sin()(

)sinh(
2

π
    (7.4) 
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Laplace’s Equation in Polar Coordinates (EK 12.10, SJF 33, 34) 

� Overview 

In solving circular membrane problem, we have seen that ∇2 in polar coordinates leading to 

different ODEs and normal modes compared to ∇2 in Cartesian coordinates. In this 

subsection, we will examine the normal modes of Laplace’s equation with circular geometry, 

including interior, exterior, and annulus problems. 

 

 

■ (A) Interior problem (SJF 33): 

Find the electrostatic potential within a circle of radius ρ, given that the potential at boundary 

is specified. 

PDE: ∇2u= θθu
r

u
r

u rrr 2

11
++ =0 [eq. (6.5)], where ROI = {0<r<ρ, 0<θ<2π}. 

BC: u(ρ,θ )=g(θ ) [implicit BC: |u(0,θ )|<∞, periodic BC: u(r,θ +2nπ)= u(r,θ )]. 

 

 

1) Separation of variables: 

Let u(r,θ )=R(r)⋅Θ(θ ) ⇒ 011
2 =Θ+Θ′+Θ′′ &&R

r
R

r
R ; divide by 2r

RΘ , 

⇒ 
Θ
Θ

−=
′+′′ &&

R
RrRr 2

= k2≥0 (why? Because of BCs) 

⇒ (i) 022 =−′+′′ RkRrRr  (Euler’s eq.); (ii) 02 =Θ+Θ k&& . 

2) Solving the normal modes by periodic and implicit BCs: 

(i) 02 =Θ+Θ k&& , ⇒ Θ(θ)=c·cos(kθ)+d·sin(kθ); 
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Transformation of periodic BC: u(r,θ+2nπ)=u(r,θ) → Θ(θ+2nπ)=Θ(θ); 

⇒ k=kn=n=0, 1,... ⇒ 

Θn(θ) = c·cos(nθ)+d·sin(nθ)      (7.5) 

(ii) 022 =−′+′′ RnRrRr , ⇒  

Rn(r)=
( )





=+

=+

,...2,1 if ),/1(
;0 if ,ln

nrbar
nrba

nn       (7.6) 

Transformation of implicit BC: |u(0,θ)|<∞ → |R(0)|<∞; 

⇒ b=0 (for arbitrary n), Rn(r)=a·rn; for simplicity, we use Rn(r)=a ( )nr ρ  

⇒ The n-th normal mode: un(r,θ)=Rn(r)⋅Θn(θ), 

un(r,θ) = ( ) [ ])sin()cos( θθρ ndncr nn
n ⋅+⋅      (7.7) 

3) Determining the exact solution by the nonhomogeneous BC: 

u(r,θ )=∑
∞

=0
),(

n
n ru θ = [ ]∑

∞

=

+
0

)sin()cos()(
n

nn
n ndncr θθρ   (7.8) 

Substitute the nonhomogeneous BC into eq. (7.8): u(ρ,θ )= [ ]∑
∞

=

+
1

)sin()cos(1
n

nn
n ndnc θθ  

=g(θ ), by Fourier sine-cosine series, ⇒ 

 c0 = ∫
π

θθ
π

2 

0 
)(

2
1 dg ,  cn = ∫

π
θθθ

π
2 

0 
)cos()(1 dng ,  dn = ∫

π
θθθ

π
2 

0 
)sin()(1 dng  

 (7.9) 

 

 

<Comment> 

Solution u(r,θ) can also be regarded as superposition of “eigen-response”: 

1) Expand the BC g(θ) by Fourier series: g(θ)=∑
∞

=

+
1

)sin()cos(
n

nn ndnc θθ  

2) Find the solutions of PDE + “eigen-BCs”: 

 




=
=∇

)cos(or  )sin(),(
02

θθθρ nnu
u

, ⇒ eigen-response is: u(r,θ ) =
n

r








ρ

[sin(nθ ) or cos(nθ )]; 
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3) Superposition: ( ) [ ]∑
∞

=

+=
0

)sin()cos(),(
n

nn
n ndncrru θθρθ  

 

 

■ (B) Exterior problem (SJF 34): 

Find the electrostatic potential outside a circle of radius ρ with type1 BC. 

PDE: ∇2u= θθu
r

u
r

u rrr 2

11
++ = 0, ROI: {ρ<r<∞, 0<θ<2π} 

BC: u(ρ,θ )=g(θ ) [implicit BCs: |u(∞,θ )|<∞, and u(r,θ+2nπ)= u(r,θ )] 

 
As in solving the interior Dirichlet problem, separation of variables leads to eq’s (7.5-6): 

⇒ Θn(θ) = c·cos(nθ)+d·sin(nθ),   Rn(r)=
( )





=+

=+

,...2,1 if ),/1(
;0 if ,ln

nrbar
nrba

nn  

Transformation of implicit BC: {|u(∞,θ)|<∞ → |R(∞)|<∞}, ⇒{b=0 if n=0; a=0, if n=1, 2, …} 

⇒ Rn(r)= nr
b , for simplicity, we use Rn(r)=b ( )nrρ  [Rn(r)=a ( )nr ρ  in the interior problem]. 

⇒ The n-th normal mode: un(r,θ)=Rn(r)⋅Θn(θ), 

un(r,θ ) = ( )nrρ [ ])sin()cos( θθ ndnc nn ⋅+⋅      (7.10) 

u(r,θ )=∑
∞

=0
),(

n
n ru θ = [ ]∑

∞

=

+
0

)sin()cos()(
n

nn
n ndncr θθρ    (7.11) 

Substitute the nonhomogeneous BC into eq. (7.11): u(ρ,θ ) = [ ]∑
∞

=

+
1

)sin()cos(1
n

nn
n ndnc θθ = 

g(θ ); by Fourier sine-cosine series, ⇒ c0, cn, dn are determined by eq. (7.9). 
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■ (∗) (C) Annulus problem (SJF 34): 

Find the electrostatic potential between two circles of radii ρ1, ρ2 with type1 BCs. 

PDE: ∇2u= θθu
r

u
r

u rrr 2

11
++ = 0, {ρ1 < r <ρ2, 0<θ <2π} 

BCs: u(ρ1,θ )=g1(θ ), u(ρ2,θ )=g2(θ ) [periodic BC: u(r,θ+2nπ)= u(r,θ )]. 

 

As in solving the interior Dirichlet problem, separation of variables leads to eq’s (7.5-6): 

⇒ Θn(θ) = c·cos(nθ)+d·sin(nθ),   Rn(r)=
( )





=+

=+

,...2,1 if ),/1(
;0 if ,ln

nrbar
nrba

nn  

Since the ROI is ρ1 < r <ρ2, neither a nor b should be zero, the general form of Rn(r) is used, 

and the general solution u(r,θ) becomes: 

u(r,θ )= ( ) [ ] [ ]{ }∑
∞

=

−− +++++
1

00 )sin()cos( ln
n

n
n

n
n

n
n

n
n nrdrcnrbrarba θθ   (7.12) 

Substitute the nonhomogeneous BCs into eq. (7.12): 

u(ρ1,θ )=[ ( )100 ln ρba + ]+ [ ] [ ]{ }∑
∞

=

−− +++
1

1111 )sin()cos( 
n

n
n

n
n

n
n

n
n ndcnba θρρθρρ = g1(θ ); 

u(ρ2,θ )=[ ( )200 ln ρba + ]+ [ ] [ ]{ }∑
∞

=

−− +++
1

2222 )sin()cos( 
n

n
n

n
n

n
n

n
n ndcnba θρρθρρ = g2(θ ); 

⇒ 
( )

( )








=+

=+

∫

∫
π

π

φφ
π

ρ

φφ
π

ρ

2 

0 2200

2 

0 1100

)(
2
1ln

)(
2
1ln

dgba

dgba
; used to solve a0, b0; 

⇒ 










=+

=+

∫

∫
−

−

π

π

φφφ
π

ρρ

φφφ
π

ρρ

2 

0 222

2 

0 111

)cos()(1

)cos()(1

dngba

dngba

n
n

n
n

n
n

n
n

; used to solve an, bn; 
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⇒ 










=+

=+

∫

∫
−

−

π

π

φφφ
π

ρρ

φφφ
π

ρρ

2 

0 222

2 

0 111

)sin()(1

)sin()(1

dngdc

dngdc

n
n

n
n

n
n

n
n

; used to solve cn, dn; 

 

For lack of implicit BCs to simplify the eigenfunctions Rn(r), we have four unknown 

coefficients {an, bn, cn, dn} for each mode. The more homogeneous/implicit BCs, the less 

unknown coefficients to be determined. 

 

E.g. Find the electrostatic potential in the dielectric region of a coaxial cable if the inner and 

outer conductors have constant potentials V1 and V2, respectively. 

PDE: ∇2u = 0, {ρ1<r<ρ2, 0<θ <2π} 

BCs: u(ρ1,θ )=V1, u(ρ2,θ )=V2 

(Method 1) Since the boundary potentials are independent of θ, the governing PDE can be 

reduced to an ODE: urr+(1/r)ur= 0. 

Let U(r)=ur, ⇒ )(rU ′ +
r
rU )( =0, ⇒ U(r)=

r
b , u(r)=a+b·ln(r). 

The coefficients a, b are determined by the BCs: a=
)ln(

)ln()ln(

12

1221

ρρ
ρρ VV − , b=

)ln( 12

12

ρρ
VV − . 

(Method 2) By the series solution formula eq. (7.12): 

( )

( )







==+

==+

∫
∫

π

π

φπρ

φπρ
2 

0 22200

2 

0 11100

)21(ln

)21(ln

VdVba

VdVba
⇒ a0 = )ln(

)ln()ln(

12

1221

ρρ
ρρ VV − , b0 = )ln( 12

12

ρρ
VV − ; 









==+

==+

∫
∫

−

−

π

π

φφπρρ

φφπρρ
2 

0 222

2 

0 111

0)cos()1(

0)cos()1(

dnVba

dnVba

n
n

n
n

n
n

n
n

⇒ {an =0, bn =0}; similarly, {cn =0, dn =0}. 
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Laplace’s Equation in Spherical Coordinates (EK. 12.10) 

■ Problem: Find the electrostatic potential of a sphere of radius ρ with prescribed surface 

potential f(φ) (assuming no θ -dependence for simplicity). 

PDE: ∇2u = urr+ ru
r
2 + φφu

r 2

1 + φ
φ u

r 2

cot = (r2ur)r+
φsin

1 (sinφ⋅uφ)φ =0; 

BC: u(ρ,φ)=f(φ) [implicit BCs: |u(r;φ=0,π)|<∞; |u(r=0,∞;φ)|<∞ for interior and exterior 

problems, respectively). 

 
■ Solving spherical Laplace’s equation by separation of variables: 

1) Separation of variables: 

 u(r,φ)=R(r)⋅Φ(φ) ⇒ 
R

RrRr ′+′′ 22

=
Φ

Φ′⋅+Φ ′′− )cot( φ =k. ⇒ 

(i) 022 =−′+′′ kRRrRr  (Euler’s equation); 

(ii) 0cot =Φ+Φ′⋅+Φ ′′ kφ  (after change of variable, ⇒ Legendre equation) 
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2) Solving the “modes” by implicit BCs: 

(i) Let cosφ =w, the ODE about Φ(φ) becomes: (1−w2) )(wΦ ′′ −2w )(wΦ′ + kΦ(w)=0. 

By implicit BC: |Φ(φ =0, π)|<∞, i.e. |Φ(w=±1)|<∞, we have discrete eigenvalues 

k=n(n+1), where n=0, 1, 2,…. 

Solutions to the Legendre equation: (1−w2) )(wΦ ′′ −2w )(wΦ′ +n(n+1)Φ(w)=0 are 

Legendre polynomials (EK 5.3): Φn(w)=Pn(w), ⇒ Φn(φ)=Pn(cosφ ). 

(ii) The ODE about R(r) becomes: 0)1(22 =+−′+′′ RnnRrRr . 

Let R(r)=rα, ⇒ α= n, −(n+1), Rn(r)=arn+br-(n+1) [b=0 for interior problems (r <ρ), 

a=0 for exterior problems (r>ρ)]. ⇒ The n-th normal mode: un(r,φ)=Rn(r)⋅Φn(φ), 

un(r,φ)= [anrn+ bnr -(n+1)]⋅Pn(cosφ)     (7.13) 

3) Solving the entire problem by nonhomogeneous BCs: 

(i) u(r,φ)=∑
∞

=0
)(cos)(

n
n

n
n Pra φρ , for interior problems (r <ρ); 

(ii) u(r,φ)=∑
∞

=

+

0

1 )(cos)(
n

n
n

n Prb φρ , for exterior problems (r >ρ); 

(iii) u(r,φ)= ( )∑
∞

=

+−+
0

)1( )(cos
n

n
n

n
n

n Prbra φ , for annulus problems (ρ1 <r <ρ2); 

In cases (i-ii), substitute nonhomogeneous BC into eq. (7.13): 
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u(ρ,φ) =∑
∞

=









0
)(cos

n
n

n

n P
b
a

φ = f(φ). By orthogonality of Legendre’s polynomials, ⇒ 









n

n

b
a

= ∫
+ π

φφφφ
 

0 
)sin()(cos)(

2
12 dPfn

n      (7.14) 

In case (iii), a system of equations has to be solved to get {an,bn} for each n. 

 

<Comment> 

1) In cases (i-ii), the solution can be derived by: (1) expand the BC f(φ) by Legendre’s 

polynomials: f(φ)= ∑
∞

=









0
)(cos

n
n

n

n P
b
a

φ , where coefficients 







n

n

b
a

 are determined by eq. 

(7.14). (2) Solve 




=
=∇

)(cos),(
02

φφρ nPu
u

, leading to u(r,φ)= ∑
∞

=
+ 









0
1

)(cos
)(
)(

n
nn

n

P
r

r
φ

ρ
ρ

. (3) By 

superposition, ⇒ u(r,φ)=∑
∞

=
+ 









0
1 )(cos

)(
)(

n
nn

n

n
n P

rb
ra

φ
ρ

ρ
. 

2) For interior problem, the solution at the spherical center is: u(r=0,φ)=a0 ⋅1⋅P0(cosφ)= a0 , 

by eq. (7.14), = ∫
π

φφφ
 

0 
)sin()(

2
1 df , which is the average of the boundary function f(φ) 

weighted by φφ d
2

sin . 

3) For exterior problem with constant BC: f(φ)=V0, eq. (7.14) gives bn=0, except for 

b0= ∫
π

φφφ
 

0 00 )sin()(cos
2
1 dPV =V0, ⇒ the solution u(r,φ)=

r
V ρ0 ∝

r
1 , which dies off as r→

∞. This is in opposite to its 2-D polar (or 3-D cylindrical) counterpart, where the exterior 

solution due to a constant BC is a constant: u(r,θ)=V0 [eq’s (7.9), (7.11)]. 

4) For exterior problem, the solution in the far-field (r>>ρ, i.e. 
r
ρ <<1) is approximated by: 

u(r,φ)≈
r

b ρ0 . ⇒ The spherical BC (source) is approximated by a point source located at 

the center of strength b0= ∫
π

φφφ
 

0 
)sin()(

2
1 df . 
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Appendix 7A − Poisson integral formula for Polar Laplace’s Equation 

 

Eq. (7.8) can be simplified as: u(r,θ ) = c0+ [ ]∑
∞

=

+
1

)sin()cos()(
n

nn
n ndncr θθρ , by eq. (7.9), 

= 





 ∫

π
φφ

π
2 

0 
)(

2
1 dg + ∑ ∫∫

∞

=




 +

1

2 

0 

2 

0 
)sin()sin()()cos()cos()()(1

n

n dnngdnngr φθφφφθφφρ
π

ππ
 

=























−








+∫ ∑

∞

=

π
φφφθ

ρπ
2 

0 
1

)()](cos[21
2
1 dgnr

n

n

= ( )























+








+∫ ∑

∞

=

−π φθ φφ
ρπ

2 

0 
1

)( )(..1
2
1 dgccer

n

in
n

 

=












































+








+∫ ∑

∞

=

−−−π φθφθ φφ
ρρπ

2 

0 
1

)()( )(1
2
1 dgerer

n

n
i

n
i , by geometric series (等比級數), 

=
















−

+
−

+∫ −−

−−

−

−π

φθ

φθ

φθ

φθ

φφ
ρρπ

2 

0 )(

)(

)(

)(

)(1
2
1 dg

re
re

re
re

i

i

i

i

, by quotient of complex numbers, ⇒ 

Poisson integral formula: 

u(r,θ ) =
















+−−

−
∫

π
φφ

φθρρ
ρ

π
2 

0 22

22

)(
)cos(22

1 dg
rr

r    (7A.1) 

The potential u at observation point (r,θ ) is the weighted average of the boundary potential 

g(θ ), where the weighting kernel is: 

K(r,θ ;φ)= 2

22

2 d
r

π
ρ −        (7A.2) 

d=[ρ2−2rρcos(θ−φ)+r2]1/2 is the distance between observation point (r,θ ) and source point 

(ρ,φ). 
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<Comment> 

1) If we observe the circle center: r=0, d=ρ, K(r,θ ;φ)=
π2
1 , u(0,θ) = ∫

π
φφ

π
2 

0 
)(

2
1 dg  





= ∫

π

πρ
φρφ

2 

0 2
)( dg . ⇒ The solution is the average of BC weighted by arc length. 

2) If we observe the circular rim: r=ρ, d≥0, K(ρ,θ;φ)=0, except for d=0 (θ =φ). ⇒ 

K(ρ,θ;φ)~δ(φ−θ), u(ρ,θ) ~ ∫ −
π

φθφδφ
2 

0 
)()( dg =g(θ), ⇒ satisfying the specified BC. 


