PDE & Complex Variables P7-1

Laplace’s Equation

m Overview
Laplace’s equation describes the “potential” in gravitation, electrostatics, and steady-state

behavior of various physical phenomena. Its solutions are called harmonic functions.

Physical meaning (SJF 31): Laplacian operator V* is a multi-dimensional generalization of

2

2nd-order derivative —-. Its difference quotient representation, as implied by eq. (1.2), is:

dx
Ui, =lim u(x +A,y) = 2u(x, y) +u(x - A, y)  u(x,y+A)=2u(x,y) +u(x,y - A)
W AS0 A2 A2
~lim = [u(x, y)~ 7 (x, )] 1)
A0 A? ’ > .

u(x—Ay)+u(x+Ax,y)+u(x,y—A)+u(x,y+A)
4

where u(x,y)= represents the average

of neighboring points (2D). As a result, V2 = 0 implies that the function value at any point is

equal to the average of its neighboring values (dynamic equilibrium, or steady-state).

<Comment>
1) Vu =0 does not necessarily mean 1,=0 and u,,=0.

2) Not all continuous functions satisfy V?u=0. E.g. u=x"y, = V2u=2y=0.

m (*) Three types of BCs for Laplace’s equation (similar with those in Lesson 3):
1) Dirichlet: u is specified on the boundary surface S (curve C). E.g. Find the electrostatic

potential within/outside a circle where the potential on the circular rim is specified.

2) Neumann: outward normal derivative unZZ—u (physically, inward flux) is specified on
n

S(C). E.g. Find steady-state temperature within a circle if the heat inflow varies around
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the boundary C according to: ou =siné.

]
[
I
1
i
|
i
|
b
!
I
1
1
I
i
|
i
i
i

<Comment>
(a) Total flux across the boundary must vanish [in this case: J.Cun ZJOZE(sin 0)pd6 =0].

Otherwise, gain or loss exists in the region of interest, and physical quantity varies
with time (no longer steady-state).

(b) Solutions to Neumann problems are not unique. E.g. {V?u=0, u,(r=1,0)=cos(20)}
have solutions of the form: u(r,=r*cos(20)+c, ¢ is an arbitrary constant. Additional
information (such as the value of u at some point) is required.

3) Mixed: a mixture of the first two types. E.g. u,+/u+g)=0 (Newton’s law of cooling).

Laplace’s Equation in Cartesian Coordinate (EK 12.5)
m Problem: steady state temperature distribution on a rectangular plate.
PDE: ;=0 (txt 14,)=0 = tu+ 1,=0, {0<x<a, 0<y<b}

Four Dirichlet BCs: u(0, y)=0, u(a, y)=0, u(x,0)=0, u(x,b)=fx).

y
u = flx)

b

o
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)

2)

3)

Solving Cartesian Laplace’s equation by separation of variables:
Separation of variables:

, . . x" ¥,
Let u(x,y)=X(x)-Y(y), = X"Y + XY =0, divide by XV, :>7 = —?= —k*<0

=X"+k’X=0, Y—k?Y =0 (one PDE — two ODEs)
Solving the normal modes by homogeneous BCs:
(1) To avoid trivial solution u(x,y)=0, homogeneous BCs of u(x,y) — BCs of X(x), Y():
{u(0,0)=0, u(a,y)=0, u(x,0)=0} — {X(0)=0, X(a)=0, Y(0)=0}
(i) X"+k*X =0, = X(x)=Acos(kx)+Bsin(kx);
By BCs: (i) X(0)=0 = 4=0; (ii) X(a) =0 = k = k,=—, n=1,2, ...= X, (x)=sin(k,x);
a
(i)Y, - kY, =0 = Y,()=A,e"” +B,e ™ ;
By BC: Y(0)=0 = B, =—A4,, = Y,(y)=A,sinh(k,y)
= The n-th normal mode is u,(x,y)= X,(x)-Y.(y):
un(x,y) = A,-sin(k, x)-sinh(k, y) (7.2)
We have only one unknown coefficient 4, for each mode. The more homogeneous BCs,
the fewer coefticients to be determined.
Determining the exact solution by the nonhomogeneous BC (similar to the role of ICs in
t-dependent PDEs):
u(xﬁt): Zun (x9 y) = Z An Sin(knx) ’ Slnh(kny) (7'3)
n=1 n=1
Substitute the nonhomogeneous BC into eq. (7.3): u(x,b)ZZAn sinh(k,b)-sin(k,x)=Ax).

n=1

By Fourier sine series, =

~ Smh(mb/ j £(x)-sin(k, x)dx (7.4)
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Laplace’s Equation in Polar Coordinates (EK 12.10, SJF 33, 34)

B Overview

In solving circular membrane problem, we have seen that V* in polar coordinates leading to
different ODEs and normal modes compared to V* in Cartesian coordinates. In this
subsection, we will examine the normal modes of Laplace’s equation with circular geometry,

including interior, exterior, and annulus problems.

m (A) Interior problem (SJF 33):
Find the electrostatic potential within a circle of radius p, given that the potential at boundary

is specified.

PDE: Viu=u,, +lu, +L2u€{9 =0 [eq. (6.5)], where ROI = {0<r<p, 0<6<27x}.
r r

BC: u(p,0)=g(8) [implicit BC: |u(0,8)|<co, periodic BC: u(r,0+2n7x)= u(r,0)].

8(0):
boundary
potential

1) Separation of variables:

RO

5
r

Let u(r,0)=R(r}0(0) = R'O+LR'®+ %R@ = 0; divide by
r r

2 pn 4 ®
— # = _% = k*>0 (why? Because of BCs)

= (i) »’R"+rR'—k’R=0 (Euler’seq.); (i) O+k°®@=0.
2) Solving the normal modes by periodic and implicit BCs:

(i) O+k’0=0,= O(O)=c-cos(kf)+d-sin(k6);
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Transformation of periodic BC: u(r,+2nn)=u(r,0) — O(6+2n1)=0(0);
= k=k,=n0, 1,... =
®,(0) = c:cos(n@)+d-sin(n ) (7.5)

(ii) ”’R"+rR'—=n’R=0,=

{a +b(Inr),if n=0;
Ru(r)y=

ar" +b(1/r"),if n=12,... (7.6)
Transformation of implicit BC: |u(0,8)|<co — |R(0)|<o;
= b=0 (for arbitrary n), R,(r)=a'r"; for simplicity, we use R,(r)=a (r/ p)"
= The n-th normal mode: u,(r,0)=R,(r)-O,(6),
ul(r,0)=(r/p)'[c, -cos(nf)+d, -sin(nb)] (7.7)

3) Determining the exact solution by the nonhomogeneous BC:
u(r,0)=> u,(r,0)=>(r/p)"[c, cos(n6) +d, sin(n6)] (7.8)
n=0 n=0
Substitute the nonhomogeneous BC into eq. (7.8): u(p,@)ZZI" [cn cos(n@)+d, sin(né?)]

n=l

=g(#), by Fourier sine-cosine series, =
1 (2= 1 2z 1 ¢2n i
coz—j 2(0)do, cnz—j 2(0)cos(n6)do, dnz—j 2(0)sin(n0)do
2770 Tdo Tdo

(7.9)

<Comment>

Solution u(r,0) can also be regarded as superposition of “eigen-response”:
1) Expand the BC g(#) by Fourier series: g(&)= ch cos(n@)+d, sin(nf)
n=1

2) Find the solutions of PDE + “eigen-BCs”:

2. _ n
Viu=0 ) , = eigen-response is: u(r,0) =£Lj [sin(n@) or cos(nb)];
u(p,0) = sin(nd) or cos(nd) P
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3) Superposition: u(r,0) = i(r/p)" [c, cos(n8) +d, sin(n6)]

n=0

m (B) Exterior problem (SJF 34):

Find the electrostatic potential outside a circle of radius p with typel BC.

1 1
PDE: Vu=u,, +—u, +—u,= 0, ROL {p<r<co, 0<6<27}
r r

BC: u(p,0)=g(8) [implicit BCs: |u(c,d)|<oo, and u(r,+2n )= u(r,0)]

V2u=0 g(0):

boundary
potential

As in solving the interior Dirichlet problem, separation of variables leads to eq’s (7.5-6):

. a+b(Inr),if n=0;
= 0,(0) =ccos(nd)+d-sin(nd), R, (r)= .
ar" +b(1/r"),if n=12,...
Transformation of implicit BC: {|u(o0,8)|<oo — |R(o0)[<c0}, ={b=0 if n=0; a=0, if n=1, 2, ...}
= Rn(r)zﬁn , for simplicity, we use R,(r)=b(p/r)" [Rir)=a(r/p)" in the interior problem].
r

= The n-th normal mode: u,(r,0)=R,(r)-O,(6),

u(r,0)=(p/r) [c,-cos(n@) +d, -sin(n0)] (7.10)
u(r,0)= iu (r,0)= i (p/r)"[c, cos(nB) +d, sin(n6)] (7.11)

Substitute the nonhomogeneous BC into eq. (7.11): u(p0,0) 221”[0,1 cos(n@)+d, sin(nH)]Z

n=l1

g(6); by Fourier sine-cosine series, = ¢, ¢, d, are determined by eq. (7.9).
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m (*) (C) Annulus problem (SJF 34):

Find the electrostatic potential between two circles of radii p;, p, with typel BCs.

1 1
PDE: Vu=u,, +—u, +— =0, {p<r<p, 0<0<2x}
r r

BCs: u(p1,0)=g1(8), u(p,0)=22(80) [periodic BC: u(r,0+2n )= u(r,0)].

As in solving the interior Dirichlet problem, separation of variables leads to eq’s (7.5-6):

a+b(Inr),if n=0;

= 0,(0)=ccos(nd)+d-sin(nf), R,(r)=
) (n6) (6) ") {ar”+b(l/r"),ifn:1,2,...

Since the ROl is p; <7 <p, neither a nor b should be zero, the general form of R,(r) is used,

and the general solution u(r,6) becomes:

u(r,0)=a, + b, In(r)+ i {la" + 5,77 cosmo) +[e,r" + d " Jsin(n6)} (7.12)

n=l

Substitute the nonhomogeneous BCs into eq. (7.12):

u(p,0) ay + b, In(p) 1+ Y Ala, 0 +b,07" Jeos(n6) +[c, ot +d, " [sin(n )= £1(6);

u(p,0)=[ a, + b, In(p,) {[anp; +b,p," ]cos(n 0)+ [cnp;’ +d p," ]sin(n 49)}= 22(0);

5
S

by n(p) = [ &g

0
= ; used to solve ay, by;

a, +b, ln(pz) = i'[ozzgz (P)d¢

; o 1 2z
anpl +bnpl = _.[0 gl (¢) COS(”¢)d¢
- 4 ; used to solve ay, by;

a0t +b,pi = [ g.(@)cos(ng)dg
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. i, 1 p27 .
Cnpl + dnpl = _J-O gl (¢) Sln(n¢)d¢
- T ; used to solve ¢, dy;

n -n 1 2 .
.03 +d,p5" =—[ " g,(@)sin(ng)dg
T

For lack of implicit BCs to simplify the eigenfunctions R,(r), we have four unknown
coefficients {a,, b,, c,, d,} for each mode. The more homogeneous/implicit BCs, the less

unknown coefficients to be determined.

E.g. Find the electrostatic potential in the dielectric region of a coaxial cable if the inner and
outer conductors have constant potentials V; and V5, respectively.

PDE: VZu=0, {pi<r<p,, 0<0<27}

BCs: u(p1,0)=V1, u(p2,0)=V>

(Method 1) Since the boundary potentials are independent of &, the governing PDE can be

reduced to an ODE: u,,+(1/r)u,= 0

Y (r)

Let U(r)y=u,, = U'(r)+——= U(r)=é , u(r)y=a+b-In(r).
r

Viin(p,) -V, In(p,) b= =N

The coefficients a, b are determined by the BCs: a= ,
In(p,/p,) In(p,/p,)

(Method 2) By the series solution formula eq. (7.12):

a, +b,In(p,) (1/2::)] Vdg =V, L Vn(p)-n() , _ V-,
0— yobo=T——77—,
a, +b, ln( (1/2;2-)]‘ V,de =V, ln(pz/pl) ln(pz/pl)

a,0! +b,p" = ()] "V, cos(np)dg = 0
‘ = {a,=0, b,=0}; similarly, {c,=0, d,=0}.

2r
a,p} +b,p" = (1/m)| "V, cos(ng)dg = 0

Edited by: Shang-Da Yang



PDE & Complex Variables P7-9

F 3

I/l_

Vs
0

Laplace’s Equation in Spherical Coordinates (EK. 12.10)
m Problem: Find the electrostatic potential of a sphere of radius p with prescribed surface
potential f{#) (assuming no #-dependence for simplicity).

1 cot¢u¢: (Pu)t 1

N
PDE: V'u= urr+—ur+—2u¢¢+—2 -
r r r sin

p (singuy)y=0;

BC: u(p,d)=f(¢) [implicit BCs: |u(r;¢=0,7)|<0; |u(r=0,00;@)|<cc for interior and exterior

problems, respectively).

¢ (r,6,¢)

m Solving spherical Laplace’s equation by separation of variables:

1) Separation of variables:

r’R"+2rR' _ — (" +cotg- D)
@

=k =

u(r,§)=R(r)-®(¢) =

(i) r’R"+2rR'—kR =0 (Euler’s equation);

(i)D" +cotg - D'+ kD =0 (after change of variable, = Legendre equation)
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2) Solving the “modes” by implicit BCs:
(i) Let cosg=w, the ODE about ®(¢) becomes: (1-w?) ®"(w) —2w ®'(w) + kD(w)=0.
By implicit BC: |®(9=0, 7)<, i.e. |d(w==%1)|<co, we have discrete eigenvalues
, where n=0, 1, 2,....
Solutions to the Legendre equation: (1—w?)®"(w)—2w ®'(w) +n(nt+1)®(w)=0 are

Legendre polynomials (EK 5.3): ®@,(w)=P,(w), = ®@,(¢#)=P.(cosp).

L

()
v

.y
-

(ii) The ODE about R(r) becomes: 7°R"+2rR' —n(n+1)R=0.
Let R(r)=r", = o= n, —(n+1), R.(r)=ar"+br™" [b=0 for interior problems (r <p),
a=0 for exterior problems (7>p)]. = The n-th normal mode: u,(r,¢)=R,(r)- D.(9),
un(r, @)= [an"+ b "V]-P,(cos ) (7.13)

3) Solving the entire problem by nonhomogeneous BCs:

(1) u(r,p)= i a,(r/p)" P, (cos@), for interior problems (r <p);

n=0

(i1) u(r,@9)= an (p/r)""' P,(cos @), for exterior problems (r>p);

n=0

(iii) u(r,@)=> (anr" +b Y )Pn (cos @) , for annulus problems (p; <r <p,);

n=0

In cases (i-i1), substitute nonhomogeneous BC into eq. (7.13):
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u(p,@) = z (a" ]Pn (cos @)= f(¢). By orthogonality of Legendre’s polynomials, =

n=0 n

b 2

n

(“" j _2ntl [ £ (@)P, (cos p)sin(g)dg (7.14)

In case (iii), a system of equations has to be solved to get {a,,b,} for each n.

<Comment>

1) In cases (i-ii), the solution can be derived by: (1) expand the BC f{¢) by Legendre’s

n

polynomials: f(¢)=Z(Z" an (cos@), where coefficients (Z"j are determined by eq.
n=0

n

Viu=0 . _ [ ey
(7.14). (2) Solve {u(p’ 5= P (cosg)” leading to u(r,d) ;Lp et }P,, (cosg) . (3) By
superposition, = u(r,¢)=i[ba”( (r;p) ),:1 }Pn (cos@).
n=0 n ,0 r

2) For interior problem, the solution at the spherical center is: u(r=0,d)=ao-1-Po(cosd)= ao,

by eq. (7.14), Z%j: f(@)sin(p)d¢ , which is the average of the boundary function f{¢)

sin ¢

weighted by Td¢ .

3) For exterior problem with constant BC: f{@)=V), eq. (7.14) gives b,=0, except for

Vop

bozé j 0” V, P, (cos §)sin(¢)d¢ =Vs, = the solution u(r,d)= oL which dies off as r—
r

oo. This is in opposite to its 2-D polar (or 3-D cylindrical) counterpart, where the exterior

solution due to a constant BC is a constant: u(r,0)=V, [eq’s (7.9), (7.11)].
4) For exterior problem, the solution in the far-field (r=>>p, i.e. P <<1) is approximated by:
r

b
u(r,¢)z07p. = The spherical BC (source) is approximated by a point source located at

the center of strength bOZ%Ioﬁ f(@)sin(p)de .
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Appendix 7A - Poisson integral formula for Polar Laplace’s Equation

Eq. (7.8) can be simplified as: u(r,0) = co+ Y (r/ p)"[c, cos(n@) +d, sin(n )], by eq. (7.9),

n=l1

(1 208 |+ L3l oY | [ e@rcostn cosnods + [ e(@sining)sinn6g

2790

n=l1

R L 2

ZL{J'OM 1+ Z{Lei(g‘f”)J +[Le‘i(9"”)) H g(¢)d¢} , by geometric series (ZT5RED),
7 p

n=l p
1 |p2r re'?? re” :
= E{J.O {1+ @ + PR g(@)dg: , by quotient of complex numbers, =

Poisson integral formula:

_ L por
u(r,6) 27 {-[0 {pz —2rpcos(6—¢@)+r’ }g(¢)d¢} (7A.D

The potential u at observation point (r,8) is the weighted average of the boundary potential

g(0), where the weighting kernel is:

2 2
p-—r

K(,0;0)=

(r,0;9) n d?

(7A.2)

d=[p"—2rpcos(6-@)+r*]"* is the distance between observation point (r,6) and source point

(0. 9).
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<Comment>

1) If we observe the circle center: r=0, d=p, K(r,é?;(é):L, u(0,60) - L _[ i g(p)dg
2r 2790

{: .[02” g(9) _g)d ¢] = The solution is the average of BC weighted by arc length.
7P
2) If we observe the circular rim: r=p, d>0, K(p,60,¢)=0, except for d=0 (0=¢). =

K(p,6.9)~X¢—0), u(p,0) ~I02” 2(9)o(p — 0)dp=g(6), = satisfying the specified BC.
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