PDE & Complex Variables P6-1

Lesson 06 2-D Wave Equations

B [ntroduction
When the spatial dimension of the problem is greater than one, we encounter: (i) more BCs;
(i1) more complicated normal modes; (iii) non-Cartesian coordinates due to the geometry of

the problem. This lesson investigates these issues by 2-D wave equations.

Rectangular Membrane (EK 12.8)

m Problem: a rectangular membrane defined within {0<x<a, 0<y<b} with fixed rim and
pre-specified initial displacement ¢(x,y), and initial velocity y(x,y).

PDE: u, = ¢* (et Uyy), =T /p

Typel BCs: u=0 on the rectangular boundary

Two ICs: u(x,y,0)=@(x,y), ulx,y,0)=n(x,y)

<Comment>

The number of required BCs is equal to the sum of derivative orders of all spatial variables.
E.g. (1) uy requires 2 BCs: u(0,0)=£¢t), u(L,t)=g(f). (i) thyx requires 4 BCs: u(0,6)=f1),
unl0,0)=g(8), u(L,t)=h(t), ux(L,t)=k(t). (1i1) unt u,, requires 4 BCs: u(0,y,0)=ft), u(a,y,H)=g(?),

u(x,0,6=h(t), u(x,b,ty=k(r).

m Solving 2-D wave equations by separation of variables

1) Separation of variables:

Let u(x,y,/)=F(x.y)-1(¢), substitute it into the PDE, = FT =¢* (F,T+F,T); divide by
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5 7 F_+F ) . . .
cFT, = T = 7 2 = 2%, such that (i) both sides must be constant to satisfy the
c

2)

equality for arbitrary x, y, #; (i1) trivial solution u(x,y,f)=0 does not occur. =
(i) One ODE: T +w’T =0, where @=cA;

(i1) One PDE: F,+F} yyv%zF = 0 (2-D Helmholtz equation).

Apply separation of variable further: let F(x,y)=X(x)-Y(y),

X" " X"+klX =0
X Y

=——-F=kl,>
i} Y'+kY =0, k] = A’ —k;

Solving the normal modes by homogeneous BCs:

To avoid trivial solution u(x,y,f)=0, homogeneous BCs of u(x,y,f) - BCs of X(x), Y(¥):

{u(0,,0=0, u(a.y,)=0, u(x,0,0)=0, u(x,b,1)=0} — {X(0)=X(a)=0, Y(0)=Y(b)=0};

(i) X"+k2X =0 = X(x) = A-cos(k.x) +B-sin(k.x);

by BCs:  X(0)=0 = A=0; X(a)=0 = k= ke =t |, m=1,2, ... = Xyu(x)=sin(kmx);
a
(i) Y"+ kyzY =0 = Y(y) = C-cos(ky)+D-sin(k,y);
by BCs:  Y(0)=0 = C=0; Y(b)=0 = k= ka%, n=1.2, ... = Y,(y)=sin(k,y);

Fon e 0) =X () Yo(0)= sin(ls ) sin(ky, ).

(iii) The other ODE becomes: T+ @, T =0, Ow=cAm=crk.,, + k., =c7t|—+—

mn

= Toun(O)=Amnc0S(@pnt)+ BpnSIN( Ot
= the (m,n) normal mode is formulated as: t1,,(x,y,£)= Xon(x)- Yu(}): Tonn(2),

u, (x,y,t)=[A4_ cos(w, t)+B, sin(o, 1) sin(kx’mx)sin(ky,n y)

<Comment>

(6.1)

(@) umn(x,,t) are eigenfunctions, ki, ky,n, @m, are eigenvalues of the vibrating membrane.
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2

+ n_2 , which is NOT integral
b

2
Each mode vibrates with frequency vj,= O - € m_2
2 2\ a
times of the fundamental frequency v;;. = Drums sound differently with violins

(Lesson 2).

(b) (*) Unlike 1-D vibrating string, different modes may have the same frequency
(degenerate modes). As a result, the spatial distribution corresponding to some
resonant frequency v, may change with relative coefficients A4,,,, By.

E.g. If a=b=1 = F»(x,y)=sin(7x)sin(2zy) and F>1(x,y)=sin(2zx)sin(zzy) have identical

resonant frequency: vj,= va=cs / 2 but different spatial profiles (see below left).
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The superposition of these two degenerate modes still vibrates at frequency of

c\/§/2 : u=tyytun= (4, cos ot + By, sin @t )F, (x,y) +(4,, cos ot + B,, sin ot )Fy,(x, y) ,

where a)zwr\/g. Assume Bi,= By1=0, r =A431/A12» = u o« (cosax) (E2 +rF21). The

nodal line (set of points where displacements are always zero) is the solution to:
(F12 +rF,, )=0, 1.e. (sinzx-sinzy)(coszy + r-cosmx) =0;
y =tcos ' (-r-cosm)/x, for|r| <1

= (see right figure T)
x=+cos™ (—(r"1 ) cos;zy)/;z', for|r| >1

3) Determining the exact solution by ICs:

Since 2-D wave equation is linear and homogeneous, we can expand the exact solution
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u(x,y,t) by a double series:

u(x,y,t)=i ium (x, y,1)

m=1 n=l

= i i [4, cos(w,,t)+B,, (sin a)mnt)]sin(kx’mx)sin(ky,n y) (6.2)

m=1 n=l

Substitute the IC into eq. (6.2):

(1) u(x,y,O)Zi iAmn sin(kxﬁmx)sin(ky,n y)=¢(x,y), by double Fourier sine series, =

m=1 n=l

o= 17 [obtn-sinle i, i ©3)

(i) w,(x,p,0)= i iana)mn sin(k, ,x)sin(k, ,y)=Hxy), =

m=l n=l
4

an =
abow,

I ob I :7 (x, ) Sin(kx,mX)Sin(ky,ny)dxdy (6.4)

Laplacian in Polar Coordinates (EK 12.9)

m Concept

In solving PDE problems, it is preferred to choose a coordinate system that can describe the
physical boundaries in a simple way. E.g. Choose polar coordinates to solve circular

membrane problem, where the boundary is easily described as: {r=constant}.

m V7 in polar coordinates
V? operator can be transformed from Cartesian into polar coordinates using chain rule. We

denote both u(x,y) and u(r,6) as u for simplicity, though the function forms are different.

2 .
By (i) r=vx’+)}, = 1 =———u="= c0s0; ru :y_3:s1n6?; (i) tan0=2, =
xP+yr T r r X
2 . .
- —-ycos @ —y —sind 2xy sin26
(tanH)XZ(seczﬁ)@x:—g}, = 6 =y—2=_2y: : Brx :_4)/: —;
X x r r r r
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U=,y gbk;

uxx:(urr x)x+(u Hex)x: [(ui‘)xr x+ U,r. xx]+ [(u 9)x 9x+u ngx]

2 2 2
X 2xy y y 2xy
= [ F 9B )t o | (U gt gob) Gt u pb J= U, — Uyt Uy U, Uy,
r r r r r
2 2 2
_ Ly 2xy X y 2xy 2
Similarly, uyy ==—u,, +—u,, +—ug ——u, ———u,. VU= untu,, =
r r r r r
1 1
2
Vu=u, +;ur +r—2u96, (6.5)

(*) Circular Membrane (EK 12.9)
m Problem: consider a circular membrane of radius p with fixed rim and pre-specified initial

displacement & velocity.

1 1
PDE: u, = cz(urr +;ur +r—2u59], {0<r<p, >0}

BC: u(r=p,6,t)=0

Two ICs: u(r,6,0)=fr), u(r,6,0)=g(r) (independent of &);

m Solving 2-D wave equation by separation of variables

1) Separation of variables:

T VU
2 == A,
c’T U

Let u(r,0,6)=U(r,0)-T(t) = UT =c*(V2,U)T ; divide by ¢*UT, =

such that (i) both sides must be constant to satisfy the equality for arbitrary r, 6, ¢; (ii)

trivial solution u(r,8,f)=0 does not occur. =

(i) one ODE: T+@’T =0, o= cA; (ii) one PDE: V2,U + AU =0.

Apply separation of variable further: let U(r,0)=R(r)-©(6), and V>, is substituted by eq.
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(6.5), = (R” +1R'j® + %R@" + A*RO =0, divide by @,
r r

»R"+rR ., , e , P’R"+71R' +(Ar* —k;)R = 0, (Bessel's eq.)
( R MrJ:_ :{@)uk;@:o
2) Solving the normal modes by periodic & homogeneous BCs:
(i) O"+k,0=0,= O(8)=A-sin(ks0)+B-cos(ks-0)
Transformation of the periodic BC: u(r,0+2nx,t)=u(r,6,t) — O(+2n1)=0(0),
= 0,1, 2, ..., ©,(0)=A4-sin(mb)+B-cos(mb)oc cos(mB+@)— cos(mf), if the
position of =0 is properly defined.
(ii) ODE about R(r) becomes: r>R"+rR'+(A*r> —m’)R =0, which can be solved by
the Frobenius (series) method (EK 5.4-6).

=R(r)=C-Ju(Ar)+ D-Y,(Ar), where J,,(x), Y,,(x) are Bessel functions of 1st, 2nd types.

0.5

T

T

Bessel functions of the 1st type

T

S
9

[TTT T LT

/ 10 =
Bessel functions of the 2nd type

By the implicit BC: |u(0,6,f)|<oc0 — |R(0)|<o0, = D=0 [for Y,,(0)—> —0], R(r)=Ju(Ar).

By the homogeneous BC: u(p,6,t)=0 — R(p)=0, = J(1p)=0, A9 4u—= %o , where
P

Oy 18 the n-th node of J,,(x), n=1, 2, ......= Ruu(r)=Ju (/lmnr) ;

(iii) ODE about 7(f) becomes: T +@>, T =0, @py=CApn =—";

= Tun()=Amn-cOS( @pnt)+ Buyy-SIn( @pnt),
= the (m,n) normal mode is formulated as: (7, 6,£)= Ryun(7): O ) T,un(2),

u,, (r,6,t)=4,, cos(w,,t)+B,, sin(w,,1)]-J,(4,,r)cos(mb) (6.6)

mn mn
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<Comment>

(a) Run(r) has n—1 concentric nodal circles in 0<r<p, which are determined by:

a a
Amir=—""r=a, ., n'=1,2,...,(n-1); = r,=| = |p<p.
p amn

(b) umn(r,6f) are eigenfunctions, A, @, are eigenvalues of the vibrating membrane.

Each mode vibrates at frequency:

Vinn = a)mn = camn (67)
2 2mp

Y0 038<, = The larger dimension (p), the
2mp p

The fundamental frequency vy =

lower frequency.
(c) Since the nodes a,, of J,,(r) are irregularly spaced, = V;,, are not integral times of v,
the sound of a drum is different from that of a violin [eq. (2.2)].
3) Determining the exact solution by ICs:

Expand the exact solution u(r,6,f) by a double series:

u(r,0)= i i u,, (r,0,1)

m=0 n=1

m=0 n=1

Consider #-independent vibrations = m=0,

u(r,t)= Z A,, cosm,,t+ B,, sinw,,t ) J (/”Lo,lr) (6.9)

n=1

where the displacement peak always occurs at the circle center »=0.

Substitute ICs into eq. (6.9):

(1) u(r,0)= Z A4,,J, ( On ]Zf(r), by Fourier-Bessel series (EK 5.8), =
P

Ao = ZJ—(on j 1 (r)J, ( ; rjdr (6.10)

(i1) ulr,0)= z By, 40,7 [ =
e,

n=1

rj =g(r), =
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P6-8
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