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Lesson 04 Nonhomogeneous PDEs and BCs 

 

■ Overview 

This lesson introduces two methods to solve PDEs with nonhomogeneous BCs or driving 

source, where separation of variables fails to deal with. 

 

(∗) Transformation of Nonhomogeneous BCs (SJF 6) 

■ Problem: heat flow in a rod with two ends kept at constant nonzero temperatures T1, T2. 

Homogeneous PDE: ut = α2 uxx, 

Nonhomogeneous BCs: u(0,t)=T1, u(L,t)=T2 

IC: u(x,0)=φ(x) 

 

Separation of variables fails, for nonhomogeneous BCs of u(x,t) cannot be transformed into 

BCs of X(x): {u(0,t)=X(0)T(t)=T1, u(L,t)=X(L)T(t)=T2} does not mean {X(0)=T1, X(L)=T2}. 

 

We can separate the solution into two parts: u(x,t)= f(x) (steady state) + U(x,t) (transient state), 

such that: 

1) f(x) is the solution to an ODE obtained by setting time derivative of the PDE as zero (e.g. 

)(xf ′′ =0 in this problem). The ODE’s BCs can be nonhomogeneous. 

2) U(x, t) is the solution to a new PDE with homogeneous BCs: {U(0,t)=0, U(L,t)=0}. 

 

The remaining conditions are found by examining the original PDE, BCs, and ICs: 

PDE: ut = α2uxx ⇒ ft +Ut =α2[ )(xf ′′ +Uxx]; by ft =0, )(xf ′′ =0, ⇒ new PDE: Ut = α2Uxx 

BCs: (1) u(0,t)=T1 ⇒ f(0)+U(0,t)=T1; by U(0,t)=0, ⇒ BC of ODE: f(0)=T1; 

(2) u(L,t)=T2 ⇒ f(L)+U(L,t)=T2, by U(L,t)=0, ⇒ BC of ODE: f(L)=T2; 

IC: u(x,0)=φ(x) ⇒ f(x)+U(x,0)=φ(x), ⇒ modified IC for new PDE: U(x,0)=φ(x)–f(x). 
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Now we have two sub-problems: 

1) ODE: )(xf ′′ =0, BCs: {f(0)=T1, f(L)=T2}; ⇒ solution f(x)= 1
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2) PDE: Ut =α2Uxx, homogeneous BCs: {U(0,t)=0, U(L,t)=0}; IC: U(x,0)=φ(x)–f(x) 

Fortunately, the new PDE happens to be homogeneous, we can apply separation of variables 

to solve it. 
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 can always be transformed into homogeneous ones (of new PDE), but the resulting new 

PDE may be nonhomogeneous and disable the use of separation of variables. 

2) For methods permitting nonhomogeneous BCs (like eigenfunction expansion or integral 

transforms), it is not necessary to perform preliminary transformation. 

 

 

Solving Nonhomogeneous PDEs by Eigenfunction Expansion 

■ Problem: heat flow in a rod in the presence of heat source: 

PDE: ut = α2uxx+ f(x,t), {0<x<L, t>0} 

BCs: 

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x  [as indicated before, linear nonhomogeneous BCs can 

always be transformed into homogeneous ones of a new PDE with a modified source f(x,t)]. 

IC: u(x,0)= φ(x) 

 

■ Idea 

Without the heat source f(x, t), separation of variables gives rise to the general solution (see 
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the cases in Lesson 3): u(x,t)= ( )∑
∞
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nnn tkxXA α , where An are constants to be 

determined by IC; kn and Xn(x) are eigenvalues and eigenfunctions of the Sturm-Liouville 

problem: 
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The time dependence ( )tknn
22exp α−  of normal modes is a result of a source-free system. In 

the presence of heat source f(x,t), the modal time dependence should be generalized to Tn(t), 

and the eigenfunction expansion of the solution becomes: 
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Our goal is solving Tn(t) for all n. 

 

 

■ Procedures 

For simplicity, we assume type-1 BCs: {u(0,t)=0, u(L,t)=0}: 

1) Solving Xn(x) by the homogeneous PDE and BCs: Xn(x)=sin(knx), kn= L
nπ  (Lesson 3). 

2) Expanding f(x,t) in terms of spatial eigenfunctions Xn(x): 

f(x, t)=∑
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where Fn(t) can be derived by orthogonality of {Xn(x)}: 

Fn(t) = ∫
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3) Substituting the eigenfunction expansions of u(x,t) and f(x,t) into the (original) 

nonhomogeneous PDE, and determining Tn(t) by IC: 

Substitute eq’s (4.2-3) into ut =α2uxx+ f(x,t), 

⇒ ∑
∞

=

′
1

)sin()(
n

nn xktT = ∑
∞

=

−
1

22 )sin()(
n

nnn xktTkα +∑
∞

=1

)sin()(
n

nn xktF , 



PDE & Complex Variables                P4-4 

Edited by: Shang-Da Yang 
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By IC: u(x,0) =∑
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⇒ For each n, we get an ODE + IC: 
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Solving eq. (4.5), we have: 

Tn(t)= An⋅ ( )tknn
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The solution: u(x,t) = ( )∑
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1) Transient state due to IC [~φ(x), An], which will decay to zero 

2) Steady state due to the source f(x,t), not necessarily comes to rest. 

 


