Lesson 02 Separation of Variables & D'Alembert's Solutions

Solving PDEs by Separation of Variables

- When to use?
- 1) PDE is linear and homogeneous (variable coefficients are OK).
- 2) BCs are also linear and homogeneous. **E.g.** { $\alpha \cdot u_x(0,t) + \beta \cdot u(0,t) = 0$, $\gamma \cdot u_x(L,t) + \delta \cdot u(L,t) = 0$ }.

■ How to use?

The basic idea lies on **superposition** of solutions to linear homogeneous PDEs. It consists of three steps:

- 1) Separation of variables: a PDE of *n* variables \Rightarrow *n* ODEs (usually Sturm-Liouville problems, EK 5.7, see Appendix 2A).
- 2) Solving the ODEs by BCs to get normal modes (solutions satisfying PDE and BCs).
- 3) Determining exact solution (expansion coefficients of modes) by ICs

■ Initial-boundary-value problem (IBVP): standing wave

A string of length *L* with two fixed ends, initial displacement $\phi(x)$, and initial velocity $\gamma(x)$ can be modeled as:

PDE: $u_{tt} = c^2 u_{xx}$

Two BCs: u(0,t)=0, u(L,t)=0

Two ICs: $u(x,0) = \phi(x), u_t(x,0) = \gamma(x)$

1) Separation of variables:

Let u(x,t)=X(x)T(t), substitute it into the PDE, $\Rightarrow X\ddot{T} = c^2 X'' T$; divide by $c^2 XT$, $\Rightarrow \frac{\ddot{T}}{c^2 T} = \frac{X''}{X} = a$ (both sides must be **constant** to maintain the equality for arbitrary *x*, *t*); $\Rightarrow X'' - aX = 0$, $\ddot{T} - c^2 aT = 0$ (one PDE \rightarrow two ODEs)

- 2) Solving the normal modes by BCs {u(0,t)=X(0)T(t)=0, and u(L,t)=X(L)T(t)=0}:
 - (1) If T(t)=0, $\Rightarrow u(x,t)=0$ becomes a trivial solution. As a result, {X(0)=0, X(L)=0}, i.e. BCs of $u(x,t) \rightarrow$ BCs of X(x). used in solving.
 - (2) If a=0, the ODE X'' aX = 0 is reduced to X'' = 0, $\Rightarrow X(x)=Ax+B$. By BCs in (1), $\Rightarrow X(x)=0$, u(x,t)=0 becomes a trivial solution. $\Rightarrow a\neq 0$.
 - (3) If $a=\mu^2 > 0$, the ODE becomes $X'' \mu^2 X = 0$, $\Rightarrow X(x) = Ae^{\mu x} + Be^{-\mu x}$. By BCs in (1), $\Rightarrow X(x) = 0$, u(x,t) = 0 becomes a trivial solution. $\Rightarrow a$ must be negative.
 - (4) Let $a = -k^2 < 0$, the ODE becomes $X'' + k^2 X = 0$, $\Rightarrow X(x) = A\cos(kx) + B\sin(kx)$. By (1), $\Rightarrow A = 0$, $k = k_n = \frac{n\pi}{L}$, n = 1, 2, ...(a and k are quantized); $\Rightarrow X_n(x) = \sin(k_n x)$; The other ODE becomes $\ddot{T} + \omega_n^2 T = 0$, $\omega_n = \frac{n\pi c}{L}$; $\Rightarrow T_n(t) = A_n \cos(\omega_n t) + B_n \sin(\omega_n t)$;

 \Rightarrow the *n*-th normal **mode** (a function satisfying PDE and BCs) is $u_n(x,t) = X_n(x) \cdot T_n(t)$,

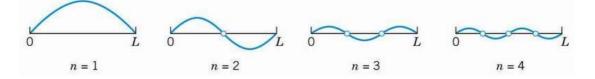
$$u_n(x,t) = [A_n \cos(\omega_n t) + B_n \sin(\omega_n t)] \cdot \sin(k_n x)$$
(2.1)

<Comment>

- (a) $u_n(x,t)$ are called eigenfunctions, and $\{k_n, \omega_n\}$ are eigenvalues of the vibrating string.
- (b) $u_1(x,t)$ is called fundamental mode; other modes with *n*>1 are overtones (泛音). Each mode $u_n(x,t)$ vibrates with a unique frequency:

$$v_n = \frac{\omega_n}{2\pi} = n v_1, \ v_1 = \frac{\sqrt{T/\rho}}{2L}$$
 (2.2)

where v_1 is the fundamental frequency. The spatial shape of mode remains unchanged (but amplitude varies) with time.



Edited by: Shang-Da Yang

- (c) The relation $v_n = nv_1$ implies that overtone frequencies of violin string are always integral times of fundamental frequency (harmonic resonance). However, this is not true in the case of drumhead (EK 12.8).
- (d) By eq. (2.2), frequency tuning can be done by changing tension *T*, mass density *ρ*, or string length *L*.
- 3) Determining the exact solution by ICs:

Since the PDE and BCs are linear and homogeneous, superposition of normal modes $u_n(x,t)$ still satisfies the same PDE and BCs. We can represent the exact solution u(x,t) by an infinite series:

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t) = \sum_{n=1}^{\infty} \left[A_n \cos(\omega_n t) + B_n \sin(\omega_n t) \right] \cdot \sin(k_n x)$$
(2.3)

Substitute the two ICs into eq. (2.3): $u(x,0) = \sum_{n=0}^{\infty} A_n \sin(k_n x) = \phi(x), \quad u_t(x,0) = \sum_{n=0}^{\infty} B_n \omega_n \sin(k_n x) = \gamma(x).$ By Fourier sine series (EK 11.3), \Rightarrow $A_n = \frac{2}{L} \int_0^L \phi(x) \cdot \sin(k_n x) dx, \quad B_n = \frac{2}{L \omega_n} \int_0^L \gamma(x) \cdot \sin(k_n x) dx \qquad (2.4)$

<Comment>

In addition to deriving the exact solution, we solve the normal modes $\{u_n(x,t)\}$ because of:

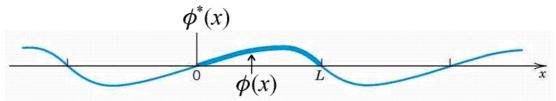
- 1) $\{u_n(x,t)\}$ forms a **complete**, and **orthogonal** set within the interval x=[0,L] (Appendix 2A). The completeness ensures that any solution u(x,t) can always be represented, and the orthogonality simplifies the determination of expanding coefficients $\{A_n, B_n\}$.
- 2) PDE and BCs (normal modes) fully describe the system characteristics, while ICs simply determine how the system is excited (excited modes and their relative weighting).
- 3) Knowledge about normal modes helps to determine initial excitation. **E.g.** If we want the string only vibrating with fundamental frequency v_1 , the initial displacement and velocity should be of the shape $X_1(x)$, leaving $A_n=B_n=0$ for all n>1.

• (*) Why $u_{tt} = c^2 u_{xx}$ is called "wave" equation?

For simplicity, let initial velocity $\gamma(x)=0$, $\Rightarrow \{B_n\}=0$, $u(x,t) = \sum_{n=1}^{\infty} A_n \cos(\omega_n t) \cdot \sin(k_n x)$. By the trigonometric formula $\cos \alpha \cdot \sin \beta = \frac{\sin(\beta - \alpha) + \sin(\beta + \alpha)}{2}$ and $\omega_n = ck_n$, we have:

$$u(x,t) = \frac{1}{2} \left\{ \sum_{n=1}^{\infty} A_n \sin[k_n(x-ct)] + A_n \sin[k_n(x+ct)] \right\} = \frac{1}{2} \left[\phi^*(x-ct) + \phi^*(x+ct) \right]$$
(2.5)

where ϕ^* is the "odd periodic expansion" of initial displacement $u(x,0) = \phi(x)$ with period 2*L*. (Since $\phi(x)$ is only defined for [0,L], $\phi(x\pm ct)$ could be undefined for $t\neq 0$.)



Eq. (2.5) means the initial displacement function $\phi(x)$ is equally decomposed into two parts, each propagates with velocity *c* but in opposite directions (for they are functions of $x\pm ct$). Their superposition determines the displacement at arbitrary time t, \Rightarrow wave behavior!

D'Alembert's Solution of Wave Equation

■ Initial value problem (IVP): traveling wave

Eq. (2.5) implies that the solutions to $u_{tt} = c^2 u_{xx}$ behave like a wave. This concept is more evident and complete when considering an infinite string (no "reflection" due to boundary) with nonzero initial velocity.

PDE: $u_{tt} = c^2 u_{xx}$

No BC

Two ICs: $u(x,0) = \phi(x), u_t(x,0) = \gamma(x)$

Solving the IVP (SJF 17)

1) Changing to canonical coordinates: $(x,t) \rightarrow (\xi,\eta)$ (Appendix 1A). Let $\xi = x + ct$, $\eta = x - ct$; $u_{tt} = c^2 u_{xx}$ is transformed into $u_{\xi\eta} = 0$ by chain rule:

$$\begin{split} u_{t} &= \frac{\partial u}{\partial t} = \frac{\partial u}{\partial \xi} \cdot \frac{\partial \xi}{\partial t} + \frac{\partial u}{\partial \eta} \cdot \frac{\partial \eta}{\partial t} = c \left(u_{\xi} - u_{\eta} \right), \\ u_{u} &= c \left[\left(\frac{\partial u_{\xi}}{\partial \xi} \cdot \frac{\partial \xi}{\partial t} + \frac{\partial u_{\xi}}{\partial \eta} \cdot \frac{\partial \eta}{\partial t} \right) - \left(\frac{\partial u_{\eta}}{\partial \xi} \cdot \frac{\partial \xi}{\partial t} + \frac{\partial u_{\eta}}{\partial \eta} \cdot \frac{\partial \eta}{\partial t} \right) \right] = c^{2} \left(u_{\xi\xi} - 2u_{\xi\eta} + u_{\eta\eta} \right), \\ u_{x} &= \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} = u_{\xi} + u_{\eta}, \\ u_{xx} &= \left(\frac{\partial u_{\xi}}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial u_{\xi}}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} \right) + \left(\frac{\partial u_{\eta}}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial u_{\eta}}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} \right) = u_{\xi\xi} + 2u_{\xi\eta} + u_{\eta\eta}, \\ u_{u} &= c^{2} u_{xx} \Rightarrow c^{2} (u_{\xi\xi} - 2u_{\xi\eta} + u_{\eta\eta}) = c^{2} (u_{\xi\xi} + 2u_{\xi\eta} + u_{\eta\eta}), \Rightarrow u_{\xi\eta} = 0. \end{split}$$

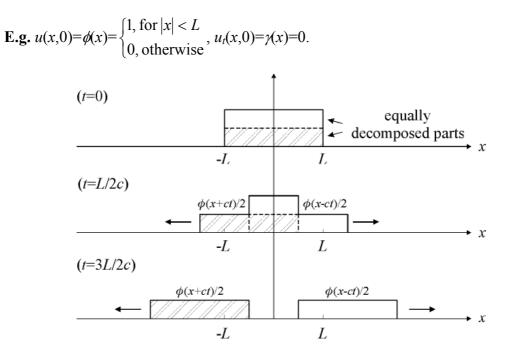
- 2) Solving the equation in the ξη-domain by two integrations: (i) u_η(ξ,η)=δ(η), where δ(η) is an arbitrary function of η. (ii) u(ξ,η)=Δ(η)+ψ(ξ), where Δ(η)=∫δ(η)dη; Δ(η) and ψ(ξ) can be arbitrary functions of η and ξ, respectively.
- 3) Transforming back to the *xt*-domain to get general solution: $u(x,t)=\Delta(x-ct)+\psi(x+ct)$. This result means the solution must be the superposition of two moving waves with identical velocity *c* but in opposite directions.
- 4) Applying ICs to get the exact solution: (i) $u(x,0) = \phi(x)$, $\Rightarrow \Delta(x) + \psi(x) = \phi(x)$; (ii) $u_t(x,0) = \gamma(x)$: by $u_t(x,t) = \frac{d\Delta}{dx'} \frac{\partial x'}{\partial t} \Big|_{x'=x-ct} + \frac{d\psi}{dx'} \frac{\partial x'}{\partial t} \Big|_{x'=x+ct} = -c\Delta'(x-ct) + c\psi'(x+ct)$, $\Rightarrow -\Delta'(x) + \psi'(x) = \frac{\gamma(x)}{c}$. By integration from x_0 to x, $\Rightarrow -\Delta(x) + \psi(x) = \frac{1}{c} \left[\int_{x_0}^x \gamma(x') dx' \right] + K$. Solve (i-ii), $\Rightarrow \Delta(x) = \frac{\phi(x)}{2} - \frac{1}{2c} \left[\int_{x_0}^x \gamma(x') dx' \right] - \frac{K}{2}$, $\psi(x) = \frac{\phi(x)}{2} + \frac{1}{2c} \left[\int_{x_0}^x \gamma(x') dx' \right] + \frac{K}{2}$. The exact

solution is of the form (D'Alembert solution):

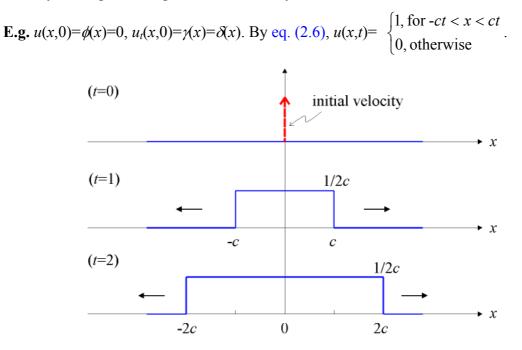
$$u(x,t) = \frac{\phi(x-ct) + \phi(x+ct)}{2} + \frac{1}{2c} \left[\int_{x-ct}^{x+ct} \gamma(x') dx' \right]$$
(2.6)

<Comment>

1) The first term of eq. (2.6) is the same as eq. (2.5) (decomposed traveling waves).



2) The second term of eq. (2.6) indicates that displacement u(x₀,t₀) is contributed by the velocity distribution of string particles within a finite range x₀−ct₀ ≤ x ≤ x₀+ct₀ at t=0. In other words, string particle velocity will expand its "range of influence" with wave velocity c along the string omni-directionally.



3) Since it is usually very difficult to find general solutions, the above procedure is rarely used in solving PDEs.

Appendix 2A – Sturm-Liouville (SL) Problem (EK 5.7)

Definition

Many important functions in engineering, such as Legendre polynomials, Bessel functions, are solutions to a type of linear, homogeneous, 2^{nd} -order ODE:

$$[p(x)y'(x)]' + [q(x) + \lambda r(x)]y(x) = 0$$
(2A.1)

with (linear, homogeneous) BCs:

$$k_1 y(a) + k_2 y'(a) = 0 \tag{2A.2}$$

$$l_1 y(b) + l_2 y'(b) = 0 (2A.3)$$

in the region of interest (ROI): $a \le x \le b$, where r(x) > 0, and λ used to be unspecified (need to be solved). Eq's (2A.1-2) describe an eigenvalue problem, whose solutions are eigenfunctions $\{y_i(x)\}$ and eigenvalues $\{\lambda_i\}$.

Singular problem: if p(a)=0, eq. (2A.2) is replaced by: |y(a)|, $|y'(a)| <\infty$. If p(b)=0, eq. (2A.3) is replaced by: |y(b)|, $|y'(b)| <\infty$.

Orthogonality of eigenfunctions

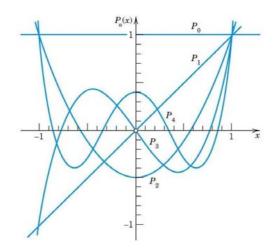
If p(x), q(x), r(x), p'(x) of eq. (2A.1) are real-valued and continuous within the ROI, and $y_m(x)$, $y_n(x)$ are eigenfunctions of the problem corresponding to different eigenvalues λ_m , λ_n ; \Rightarrow (1) all eigenvalues are real, (2) $y_m(x)$, $y_n(x)$ must be **orthogonal** on the ROI with respect to the weight function r(x), i.e.

$$\int_{a}^{b} y_{m}(x)y_{n}(x)r(x)dx = 0$$
(2A.3)

E.g. $y''(x) + \lambda y(x) = 0$, BCs: $\{y(0)=0, y(\pi)=0\}$. $\Rightarrow p(x)=1, q(x)=0, r(x)=1$. $\Rightarrow y_n(x)=\sin(nx)$

are eigenfunctions with eigenvalues $\lambda = n$. $\sin(mx)$, $\sin(nx)$ are orthogonal in the interval $0 \le x \le \pi$ with respect to the weight function r(x)=1, i.e. $\int_0^{\pi} \sin(mx) \sin(nx) dx = 0$.

E.g. Legendre's equation: $[(1-x^2)y'(x)]' + \lambda y(x) = 0, \Rightarrow p(x)=1-x^2, q(x)=0, r(x)=1$. For the ROI $-1 \le x \le 1$, p(1)=p(-1)=0, \Rightarrow singular problem, BCs are replaced by $|y(\pm 1)| \le \infty$. By the Frobenius method, we derive Legendre polynomials $P_n(x)$ as eigenfunctions $y_n(x)$ with eigenvalues $\lambda = n(n+1)$. $\Rightarrow P_m(x), P_n(x)$ are orthogonal in the interval $-1 \le x \le 1$ with respect to the weight function r(x)=1, i.e. $\int_{-1}^{1} P_m(x) P_n(x) dx = 0$.



<Comment>

The importance of SL problem (arising from performing separation of variables for the PDE) lies on: (1) each eigenfunction satisfies the separated ODE and corresponding BCs, thus only ICs need to be taken account afterwards; (2) eigenfunctions form a "complete" set, and any function in the ROI can be represented by their superposition; (3) eigenfunctions are "orthogonal", facilitating the determination of expansion coefficients.