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Lesson 02 Separation of Variables & D’Alembert’s Solutions 

 

Solving PDEs by Separation of Variables 

■ When to use? 

1) PDE is linear and homogeneous (variable coefficients are OK). 

2) BCs are also linear and homogeneous. E.g. {α⋅ ux(0,t)+β⋅ u(0,t)=0, γ⋅ux(L,t)+δ⋅ u(L,t)=0}. 

 

■ How to use? 

The basic idea lies on superposition of solutions to linear homogeneous PDEs. It consists of 

three steps: 

1) Separation of variables: a PDE of n variables ⇒ n ODEs (usually Sturm-Liouville 

problems, EK 5.7, see Appendix 2A). 

2) Solving the ODEs by BCs to get normal modes (solutions satisfying PDE and BCs). 

3) Determining exact solution (expansion coefficients of modes) by ICs 

 

 

■ Initial-boundary-value problem (IBVP): standing wave 

A string of length L with two fixed ends, initial displacement φ(x), and initial velocity γ(x) 

can be modeled as: 

PDE: utt = c2uxx 

Two BCs: u(0,t)=0, u(L,t)=0 

Two ICs: u(x,0)=φ(x), ut(x,0)=γ(x) 

1) Separation of variables: 

Let u(x,t)=X(x)T(t), substitute it into the PDE, ⇒ TXcTX  2 ′′=&& ; divide by c2XT, 

⇒
X
X

Tc
T ′′

=2

&&
= a (both sides must be constant to maintain the equality for arbitrary x, t); 
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⇒ 0=−′′ aXX , 02 =− aTcT&&  (one PDE → two ODEs) 

2) Solving the normal modes by BCs {u(0,t)=X(0)T(t)=0, and u(L,t)=X(L)T(t)=0}: 

(1) If T(t)=0, ⇒ u(x,t)=0 becomes a trivial solution. As a result, {X(0)=0, X(L)=0}, i.e. 

BCs of u(x,t) → BCs of X(x). used in solving. 

(2) If a=0, the ODE 0=−′′ aXX  is reduced to X ′′ =0, ⇒ X(x)=Ax+B. By BCs in (1), 

⇒ X(x)=0, u(x,t)=0 becomes a trivial solution. ⇒ a≠0. 

(3) If a=µ2>0, the ODE becomes 02 =−′′ XX µ , ⇒ X(x)=Aeµx+Be-µx. By BCs in (1), ⇒ 

X(x)=0, u(x,t)=0 becomes a trivial solution. ⇒ a must be negative. 

(4) Let a= –k2<0, the ODE becomes 02 =+′′ XkX , ⇒ X(x)=Acos(kx)+Bsin(kx). 

By (1), ⇒ A=0, k = kn= L
nπ , n=1, 2, …(a and k are quantized); ⇒ Xn(x)=sin(knx); 

The other ODE becomes 02 =+ TT nω&& , ωn= L
cn  π ; ⇒ Tn(t)=Ancos(ωnt)+ Bnsin(ωnt); 

⇒ the n-th normal mode (a function satisfying PDE and BCs) is un(x,t)= Xn(x)⋅ Tn(t), 

 [ ] ( )xktBtAtxu nnnnnn sin)sin()cos(),( ⋅+= ωω      (2.1)  

 

<Comment> 

(a) un(x,t) are called eigenfunctions, and {kn, ωn} are eigenvalues of the vibrating string. 

(b) u1(x,t) is called fundamental mode; other modes with n>1 are overtones (泛音). Each 

mode un(x,t) vibrates with a unique frequency: 

νn=
π

ω
2

n =nν1, ν1= L
T
2

ρ        (2.2) 

where ν1 is the fundamental frequency. The spatial shape of mode remains unchanged 

(but amplitude varies) with time. 
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(c) The relation νn=nν1 implies that overtone frequencies of violin string are always 

integral times of fundamental frequency (harmonic resonance). However, this is not 

true in the case of drumhead (EK 12.8). 

(d) By eq. (2.2), frequency tuning can be done by changing tension T, mass density ρ, or 

string length L. 

3) Determining the exact solution by ICs: 

Since the PDE and BCs are linear and homogeneous, superposition of normal modes 

un(x,t) still satisfies the same PDE and BCs. We can represent the exact solution u(x,t) by 

an infinite series: 

u(x,t)= ∑
∞

=1
),(

n
n txu = [ ] ( )∑

∞

=

⋅+
1

sin)sin()cos(
n

nnnnn xktBtA ωω    (2.3) 

Substitute the two ICs into eq. (2.3): u(x,0)= ( )xkA n
n

n sin
0

∑
∞

=

=φ(x), ut(x,0)= 

( )xkB nn
n

n sin
0

ω∑
∞

=

=γ(x). By Fourier sine series (EK 11.3), ⇒ 

An = ( )∫ ⋅
L

n dxxkx
L

 

0 
sin)(2 φ ,  Bn = ( )∫ ⋅

L

n
n

dxxkx
L

 

0 
sin)(2 γ

ω
   (2.4) 

 

<Comment> 

In addition to deriving the exact solution, we solve the normal modes {un(x,t)} because of: 

1) {un(x,t)} forms a complete, and orthogonal set within the interval x=[0,L] (Appendix 

2A). The completeness ensures that any solution u(x,t) can always be represented, and the 

orthogonality simplifies the determination of expanding coefficients {An, Bn}. 

2) PDE and BCs (normal modes) fully describe the system characteristics, while ICs simply 

determine how the system is excited (excited modes and their relative weighting). 

3) Knowledge about normal modes helps to determine initial excitation. E.g. If we want the 

string only vibrating with fundamental frequency ν1, the initial displacement and velocity 

should be of the shape X1(x), leaving An=Bn=0 for all n>1. 
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■ (∗) Why utt = c2uxx is called “wave” equation? 

For simplicity, let initial velocity γ(x)=0, ⇒ {Bn}=0, ( )∑
∞

=

⋅=
1

sin)cos(),(
n

nnn xktAtxu ω . By 

the trigonometric formula cosα⋅sinβ =
2

)sin()sin( αβαβ ++−  and ωn=ckn, we have: 

u(x,t)= [ ] [ ]






 ++−∑

∞

=1
)(sin)(sin

2
1

n
nnnn ctxkActxkA = [ ])()(

2
1 ctxctx ++− ∗∗ φφ   (2.5) 

where ∗φ  is the “odd periodic expansion” of initial displacement u(x,0)=φ(x) with period 2L. 

(Since φ(x) is only defined for [0,L], φ(x±ct) could be undefined for t≠0.) 

 
Eq. (2.5) means the initial displacement function φ(x) is equally decomposed into two parts, 

each propagates with velocity c but in opposite directions (for they are functions of x±ct). 

Their superposition determines the displacement at arbitrary time t, ⇒ wave behavior! 

 

 

D’Alembert’s Solution of Wave Equation 

■ Initial value problem (IVP): traveling wave 

Eq. (2.5) implies that the solutions to utt = c2uxx behave like a wave. This concept is more 

evident and complete when considering an infinite string (no “reflection” due to boundary) 

with nonzero initial velocity. 

PDE: utt = c2uxx 

No BC 

Two ICs: u(x,0)=φ(x), ut(x,0)=γ(x) 

Solving the IVP (SJF 17) 

1) Changing to canonical coordinates: (x,t) → (ξ,η) (Appendix 1A). Let ξ=x+ct, η=x−ct;  

utt = c2uxx is transformed into uξη=0 by chain rule: 
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( )ηξ
η

η
ξ

ξ
uuc

t
u

t
u

t
uut −=

∂
∂

⋅
∂
∂

+
∂
∂

⋅
∂
∂

=
∂
∂

= , 

( )ηηξηξξ
ηηξξ η

η
ξ

ξ
η

η
ξ

ξ
uuuc

t
u

t
u

t
u

t
u

cutt +−=



















∂
∂

⋅
∂

∂
+

∂
∂

⋅
∂

∂
−








∂
∂

⋅
∂

∂
+

∂
∂

⋅
∂

∂
= 22 , 

ηξ
η

η
ξ

ξ
uu

x
u

x
u

x
uux +=

∂
∂

⋅
∂
∂

+
∂
∂

⋅
∂
∂

=
∂
∂

= , 

ηηξηξξ
ηηξξ η

η
ξ

ξ
η

η
ξ

ξ
uuu

x
u

x
u

x
u

x
u

uxx ++=







∂
∂

⋅
∂

∂
+

∂
∂

⋅
∂

∂
+








∂
∂

⋅
∂

∂
+

∂
∂

⋅
∂

∂
= 2 , 

utt = c2uxx ⇒ c2(uξξ −2 uξη + uηη)= c2(uξξ +2 uξη + uηη), ⇒ uξη=0. 

2) Solving the equation in the ξη-domain by two integrations: (i) uη(ξ,η)=δ(η), where δ(η)  

is an arbitrary function of η. (ii) u(ξ,η)=∆(η)+ψ(ξ), where ∆(η)= ∫ ηηδ d)( ; ∆(η) and ψ(ξ) 

can be arbitrary functions of η and ξ, respectively. 

3) Transforming back to the xt-domain to get general solution: u(x,t)=∆(x−ct)+ψ(x+ct). This 

result means the solution must be the superposition of two moving waves with identical 

velocity c but in opposite directions. 

4) Applying ICs to get the exact solution: (i) u(x,0)=φ(x), ⇒ ∆(x)+ψ(x)=φ(x); (ii) ut(x,0)= 

γ(x): by ut(x,t)=
ctxxt

x
xd

d
−=′∂

′∂
′

∆ +
ctxxt

x
xd

d
+=′∂

′∂
′

ψ = )( ctxc −∆′− + )( ctxc +′ψ , ⇒ − )(x∆′ + 

)(xψ ′ =
c
x)(γ . By integration from x0 to x, ⇒ –∆(x)+ψ(x)= [ ]∫ ′′

x

xo
xdx

c
 

 
)(1 γ +K. Solve (i-ii), 

⇒ ∆(x)=
2

)(xφ − [ ]∫ ′′
x

xo
xdx

c
 

 
)(

2
1 γ −

2
K , ψ(x)=

2
)(xφ + [ ]∫ ′′

x

xo
xdx

c
 

 
)(

2
1 γ +

2
K . The exact 

solution is of the form (D’Alembert solution): 

u(x,t)= [ ]∫
+

−
′′+

++− ctx

ctx
xdx

c
ctxctx  

 
)(

2
1

2
)()( γφφ       (2.6) 

 

<Comment> 

1) The first term of eq. (2.6) is the same as eq. (2.5) (decomposed traveling waves). 
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E.g. u(x,0)=φ(x)=


 <

otherwise ,0
for  ,1 Lx

, ut(x,0)=γ(x)=0. 

 

2) The second term of eq. (2.6) indicates that displacement u(x0,t0) is contributed by the 

velocity distribution of string particles within a finite range x0−ct0 ≤ x≤ x0+ct0 at t=0. In 

other words, string particle velocity will expand its “range of influence” with wave 

velocity c along the string omni-directionally. 

E.g. u(x,0)=φ(x)=0, ut(x,0)=γ(x)=δ(x). By eq. (2.6), u(x,t)= 


 <<

otherwise ,0
for  ,1 ctx-ct

. 

 

3) Since it is usually very difficult to find general solutions, the above procedure is rarely 

used in solving PDEs. 
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Appendix 2A − Sturm-Liouville (SL) Problem (EK 5.7) 

 

� Definition 

Many important functions in engineering, such as Legendre polynomials, Bessel functions, 

are solutions to a type of linear, homogeneous, 2nd-order ODE: 

[ ] [ ] 0)()()()()( =++′′ xyxrxqxyxp λ      (2A.1) 

with (linear, homogeneous) BCs: 

0)()( 21 =′+ aykayk       (2A.2) 

0)()( 21 =′+ bylbyl        (2A.3) 

in the region of interest (ROI): a≤x≤b, where r(x)>0, and λ used to be unspecified (need to be 

solved). Eq’s (2A.1-2) describe an eigenvalue problem, whose solutions are eigenfunctions 

{yi(x)} and eigenvalues {λi}. 

 

Singular problem: if p(a)=0, eq. (2A.2) is replaced by: |y(a)|, )(ay′ <∞. If p(b)=0, eq. (2A.3) 

is replaced by: |y(b)|, )(by′ <∞. 

 

� Orthogonality of eigenfunctions 

If p(x), q(x), r(x), )(xp′ of eq. (2A.1) are real-valued and continuous within the ROI, and 

ym(x), yn(x) are eigenfunctions of the problem corresponding to different eigenvalues λm, λn; 

⇒ (1) all eigenvalues are real, (2) ym(x), yn(x) must be orthogonal on the ROI with respect to 

the weight function r(x), i.e. 

∫ =
b

a nm dxxrxyxy
 

 
0)()()(       (2A.3) 

 

E.g. 0)()( =+′′ xyxy λ , BCs: {y(0)=0, y(π)=0}. ⇒ p(x)=1, q(x)=0, r(x)=1. ⇒ yn(x)=sin(nx) 
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are eigenfunctions with eigenvalues λ=n. sin(mx), sin(nx) are orthogonal in the interval 

0≤x≤π with respect to the weight function r(x)=1, i.e. ∫ =
π 

0 
0)sin()sin( dxnxmx . 

 

E.g. Legendre’s equation: [ ] 0)()()1( 2 =+
′′− xyxyx λ , ⇒ p(x)=1−x2, q(x)=0, r(x)=1. For the 

ROI −1≤x≤1, p(1)= p(-1)=0, ⇒ singular problem, BCs are replaced by |y(±1)|<∞. By the 

Frobenius method, we derive Legendre polynomials Pn(x) as eigenfunctions yn(x) with 

eigenvalues λ=n(n+1). ⇒ Pm(x), Pn(x) are orthogonal in the interval −1≤x≤1 with respect to 

the weight function r(x)=1, i.e. ∫−
=

1 

1 
0)()( dxxPxP nm . 

 

 

<Comment> 

The importance of SL problem (arising from performing separation of variables for the PDE) 

lies on: (1) each eigenfunction satisfies the separated ODE and corresponding BCs, thus only 

ICs need to be taken account afterwards; (2) eigenfunctions form a “complete” set, and any 

function in the ROI can be represented by their superposition; (3) eigenfunctions are 

“orthogonal”, facilitating the determination of expansion coefficients. 


