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Why higher-order ODEs?

m E.g. RLC circuit.

m By Kirchhoff voltage law, v (t) = Lxi'(t), i(t) = Cxv_ '(t):
v,(t) = Lxi'(t) + (1/C)xJi(t)dt + Rxi(t),
= i"(t) + P(t)xi'(t) + Q(t)xi(t) = g(t), a 2nd-order ODE,
where P(t) = R/L, Q(t) = 1/(LC), g(t) = v,'(t)/L.
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Why higher-order ODEs?

m E.g. Horizontal mass-spring (harmonic oscillator).

+«— F = -kx

VWWWWW -
! (www.chegg.com)

x=0

m By Hook’s and Newton’s laws:
F = -kxx(t) = mxx"(t),
= x"(t) + P(t)xx'(t) + Q(t)xx(t) = g(t), 2nd-order ODE,
where P(t) =0, Q(t) = k/m, g(t) = 0.
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3 Preliminary theory

® Initial-value problems (IVPs)

® Boundary-value problems (BVPs)

® Solution to linear homogeneous ODEs

® Solution to linear nonhomogeneous ODEs

® Seek a 2nd solution by reduction of order::.
@)
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Linear |VPs

mA general linear, nth-order ODE is:

m For a corresponding IVP, the function value and the
values of all of its derivatives up to the (n-1)th
order at some common position x = x, have to be

specified:
Y(Xo) :Yo’ Y'(XO) :Y1’ EXR y(n_l)(xo) :Yn—l
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Existence of a unique solution

THEOREM 4.1.1 Existence of a Unique Solution

Let a,(x), a,—i(x), . ... aj(x), ap(x) and g(x) be continuous on an interval /
and let a,(x) # 0 for every x in this interval. If x = xo 1s any point in this
interval, then a solution y(x) of the initial-value problem (1) exists on the
interval and is unique.
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2nd-order linear BVPs

B A general 2nd-order linear ODE is:
y"(x) + P(x) x y'(x) + Q(x) x y(x) = g(X)

m For a corresponding BVP, the linear combinations
of function values and its 1st-order derivatives at
different positions x = a, b have to be specified:

oy xy(@)+ B xy'(@) =

(2, x YD)+ 5, xy'(0) =7,

where a., ,, B, ,, Y1, are given constants (provided
that a; = §; = 0 is prohibited).
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3 types of solutions (1)

E.g. x"(t) + 16x(t) =0

B You can verify that x(t) = ¢, xcos(4t) + ¢, xsin(4t), for
any combination of constant coefficients c,, c,.

m Case 1: Let the two BCs be {x(0) =0, x(rt/2) = 0}.

m Substituting t = 0 into the general solution: c,xcos(0)
+ ¢,xsin(0) = ¢, = 0, = x(t) = ¢c,xsin(4t).

m Substituting t = /2 into x(t) = c,xsin(4t), =
c,xsin(2m) = 0, which is true for any choice of c,.

m [nfinitely many solutions: x(t) = c,xsin(4t).
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3 types of solutions (2)

B C,xsin(4t), no matter
what the value of ¢, is,
satisfies with the ODE
x"'(t) + 16x(t) = 0 and BCs
x(0) =0, x(rt/2) =

m Case 2: Let the two BCs be {x(0) = 0, x(rt/8) = 0}.

m x(0) = O still leads to ¢, = 0. Substituting t = /8 into

t) = sin(4t), = c,xsin(mt/2) = c, = 0.
X()C2X|() 2'(7T/) 2 —

Bg;;;; m Xx(t) =0is the unique (but trivial) solution to the BVPE%




3 types of solutions (3)

Case 3: Let the two BCs be {x(0) =0, x(n/2) = 1}.
m x(0) =0 still leads to ¢, = 0.

m Substituting t = /2 into x(t) = c,xsin(4t), =
c,xsin(2w) =0 =1, = a contradiction occurs.

m No solution to the BVP.

m Conclusion: BVPs essentially differ from IVPs. We
will revisit BVPs in Ch11.
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Linear homogeneous (LH) ODEs ..

B A general 2nd-order linear homogeneous ODE is:
y"(x) + P(x) x y'(x) + Q(x) x y(x) =0

where there is no excitation [g(x) = 0].

m Apparently, y(x) = 0 is always a (trivial) solution.

m For simplicity, we will assume P(x) and Q(x) are
continuous within the interval of interest I.
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Superposition principle (LH ODEs)

m Lety,(x), y,(x) be solutions to y" + P(x)y' + Q(x)y =0,
l.e. (yl,z)" T P(X)(y1,2)' T Q(X)yLz = 0. = y(x) = cyy4(x)
+¢,Y,(x) (cq, C, are arbitrary constants) is a solution.

m Proof:y' =[c,y,(x) + ¢,y,(X)]' = ¢y, + ¢y, ¥ =
[C1y1(x) + Czyz(x)]" = C1y1" + Czyzu;
= y" + P(x)y' + Qx)y = [cyy," + ¢y, T+ P(x)[cyy,' +
Y, |+ Qlx)[cy; + ¢oy,] = ¢yly," + P(x)y," + Qx)y,] +
G, ly," + P(x)y,' + Q(x)y,] = ¢;x0 + ¢,x0 =0,

= y(x) is also a solution.
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m Two functions {f,(x), f,(x)} are linearly dependent on
an interval | if they are in proportional to each

other, i.e. f,(x) = cxf,(x), for every x in the interval I.
m {f (x), f,(x)} arelinearly independent if f;(x) # cxf,(x).

m E.g. {x, |x|} are linearly independent over (-o0,).
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If there are n functions...

m n functions {f,(x), f,(x), ..., f,(x)} are linearly
dependent on an interval | if there exist n constants
{c,, C,, ..., ¢ ;; not all zero} such that

c f (x) + c,f,(x) +... +c.f (x) =0forall xon I.

m |n other words, f.(x) (i=1, 2, ..., n) can be
represented by the linear combination of the
remaining n-1 functions in the set.
= f.(x) is a “redundant” member of the set.
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Example 5 (n = 4)

Let {f, = cos?x, f, = sin’x, f; = sec?x, f, = tan’x}.
m f(x) #cxf(x), foranyi#j.

m One can find a set of coefficients {c; =1,¢c,=1, ¢c5 =
-1, ¢, = 1} such that:

1xf,(x) + Ixf,(x) + (-1)xf,y(x) + 1xf,(x) = (cos?x + sin?x)

-sec?x +tan’x =1+ (-1) = 0 for x € (-o0,0)
m |nother words, f,(x) =f; —f,—f,, f,(x) =f; —f, =, ...

m {f, f, 1, f,}arelinearly dependent.




Linearly independent solutions .

m Two solutions {y,(x), y,(x)} of a 2nd-order linear
homogeneous ODE

y'(X) + P(x) x y'(x) +Q(x) x y(x) =0

are linearly independent if and only if their
Wronskian W(y,,y,) # O for every x, where

Yi Yo

/

Y1 Y;

m How to generalize W for a nth-order LH ODE?

Wy, Y,) =
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Why is Wronskian useful?

m {y,(x), y,(x)} are linearly independent if c;y, + ¢,y, =
O is true only when {c, =0, ¢, = 0}.

m Need two equations to solve c,, c,. Creating Eq. (2):

{Clyl(x) +C,Y,(x)=0---(), i Yo G 0
=
C,Y; (X) +C,Y,(x) =0---(2), Y. Yo | |G, 0

_W1,2 0 v, y, O
W 0 v, y; 0

m IfW=0, {c, =0, c, =0} are unique (trivial) solution.

m |If W=0, {c,, ¢c,} have infinitely many solutions.
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Fundamental set of solutions .

m According to the superposition principle, the
general (complementary) solution to a 2nd-order
linear homogeneous ODE is the linear combination
of two linearly independent solutions {y,(x), y,(x)}:

v.(X) = ¢,y,(x) + c,¥,(x), {c,, c,} are arbitrary const.
m Analogy: A 2D vector can be represented by the
linear combination of two orthogonal vectors {x,y}:
V =c X +Cy. y
Col----s Y
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Solution to LH IVP (1)

Let {y,(x), y,(x)} be linearly independent solutions to

y" +P(x)y' + Q(x)y = 0; =

o (y,)" +P()(y,,)' + QX)y; , = 0.

® W(y,y,) #0forall xin the interested interval I.

m Note: y,(x), y,(x) do not have to satisfy the two ICs:
y(Xo) = Yo V'(Xg) =Yy, where x, € I and {Y,, Y,} are
arbitrary constants.

m By the superposition principle, G(x) = c,y,(x) + c,y,(x)

satisfies the ODE for any coefficients {c,, c,}.




Solution to LH IVP (2)

m Since W(y,,y,) #0, the system of algebraic equations
{Clyl(xo) +C,¥,(%) =Y, :> {yl(xo) yz(Xo)} y {Cl} _ {Yo}
CYi(X) +CYo (%) =Y, [ Vi(X) Ya(Xo)] [C] LY

must give a unique combination of c,, ¢,, where

Yo Ya(X) ¥,(%) Y
Y Y2 (%) 1(%) Y

Wi,
Cio= ’ , W,
T W(Yi(%0), Y2 (%))

’ 2

m G(x) satisfies the ICs, for G(xg) = ¢,Y,(Xg) + C,¥,(Xg) =
Yor G'(Xo) = C1yl1(xo) t Czylz(xo) =Y.

B = G(x) is the unique solution to the (ODE + IC).
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Example 7

m ODE:y" -9y =0.

By (x) = e, y,(x) = e3*satisfy the LH ODE (verify).

®m Since

eBx

W (Y, Y,) =
BeSX

e—3x

. 3e—3x

=-3-3=-6%0

{y,(x), y,(x)} are linearly independent for x e (-00,0).

m General solution must be: y(x) = c,e3* + c,ex.
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Example 9

m ODE:y" -6y" + 11y

-6y =0.

By, (x) = e y,(x) = e, y;(x) = e satisfy the 3rd-order

LH ODE (verify).

B Since

WY1, Ys, Ys) =

{y]_) yz, y3} dare ||near

ex er
e*  2e*
e*  4e**

e3x

3e3x
9e3x

=2e £ 0

y independent for x € (-00,0).

m General solution must be: y(x) = c,e* + c2e2X+ C3e3x.
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Linear nonhomogeneous (LN) ODEs

B A 2nd-order linear nonhomogeneous ODE is:
y"(x) + P(x) x y'(x) +Q(x) x y(x) = g(X)
B [t can correspond to an IVP or BVP, depending the
given conditions:

o IVP:iftwo ICs Y(X,) =Y,, Y'(X,) =Y, are given;
e BVP: if two BCs

oy xy(@)+ pxy'(@) =y
(&) X y(b) + B, xy'(b) =y,

are specified.
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General solution to LN ODEs .

General solution is

y(x) = y.(x) +y,(x), where
® y (x) = cyy,(x) + c,y,(x) is the complementary solution

to the corresponding LH ODE with g(x) = 0; {c,, ¢,}
are determined by ICs or BCs;

® y,(x) is a particular solution to the original LN ODE
with g(x) # 0. It’s independent of ICs or BCs.

m Note: In the absence of IC or BC, y,(x) alone is a
solution to the LN ODE. It only refers to the “steady
state” of the system (Example 5, Sec. 2.3).
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y.(X) = c;y4(x) + c,y,(x) satisfies the LH ODE: (y,)" +

P(x)x(y.)' + Q(x)xy, = 0.

m y (x) satisfies the LN ODE: (y,)" + P(x)x(y,)" + Q(x)xy,
= g(x).

m Substituting y(x) = y.(x) + y,(x) into the LN ODE:

B (y +y,)" + PX)x(y. +y,)" + Qx)x(y. +Y,)
= [(yo)" + PO)x(y0)' + QUX)x(y )] + [(y,)" + Px)x(y,)" +
Q(x)xy,]

=0+ g(x) = 8(x), = (y. *+Y,) is a solution to LN
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Example 10

m ODE:y" -6y" +11y' - 6y = 3x.

By, (x) = e y,(x) = e, y;(x) = e satisfy the 3rd-order
LH ODE (Example 9).

m oy (x)= -(11/12) — x/2 is a particular solution. (verify)
B General solution must be:

y(x) = (c,e* + c,e?* + c,e3) — (11/12) — x/2.
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Superposition principle (LN ODEs) ..

m lety,(x), yp(x) be particular solutions to y" + P(x)y’
+ Q(x)y = 8, ,(x), i.e. (yp1,p2)" t P(X)(yp]_,pZ)l t Q(X)yp1,p2
=81 ,(X). = y,(x) = yp1(x) + y,(x) is a particular
solution to y" + P(x)y' + Q(x)y = g,(x) + g,(x).

B Proof: (y,)" = [yp1(X) + Yo (X)]" = (yp1)" + (yp2)s (vp)" =
[Yp1(X) + Y2 ()1 = (yp0)" + (vp2)";
= (y,)" + P(x)(y,)" + Qx)y, = [(yp)" + (y,,)"] +
POX)[(Yp1)" + (vp2) T+ QUX)Yps + Yol = [(yp)" + P(x)

(Vor) + QUX)ype] + [lyp2)™ + P(x) (yg,)" + Qix)yg,] = 81(X)

Ut T 82(X); = y,,(x) is a particular solution.
Photonics keab




Motivation of reduction of order .

m For a 2nd-order LH ODE: y" + P(x)y' + Q(x)y =0, we
need two linearly independent solutions y,(x), y,(x)
to expand the complementary solution y_(x).

m |f we have y,(x) already, a linearly independent
solution y,(x) can be found systematically by
assuming y(x) = u(x)xy,(x) and solving a linear
separable 1st-order ODE of w(x) = u'(x).

B y(x) #cxy,(x) (linearly independent) if u(x) # const.
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Example 1 (Sec. 4.2)

E.g. v"(x) - y(x) = 0 (2nd-order LH ODE)

You can verify that v, (x) = e*is a solution.

Let y(x) = u(x)xeX, = y' = u'xeX + uxeX, y" = u"xeX +
2u'xe* + uxex

yv'—y=[(u" +2u'+u)—u]xeX=(u" + 2u')xe*=0, =
u"+2u'=0.

Letw=u', = w'+ 2w =0 (1st-order LH ODE).

It’s separable: -dw/(2w) = dx, w = c,e?*,

u(x) = Jwdx = -(c,/2)e**+¢,, y=-(c,/2)e* +c,ef, =

y, = e

£
5

“;-f%%@
O
e
2o
=




[ Complementary solutions
® Auxiliary equation

® Three types of solutions for 2nd-order LH
ODEs

® Two physical examples
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Motivation

m For 1st-order LH ODEs y'(x) + P(x)xy = 0, we have
learnt two methods to solve them:

® separation of variables (Sec. 2.2)

e Integrating factor (Sec. 2.3)

B For constant coefficient P(x) = -k, ODE y'(x) = kxy
has an intuitive solution:
v(x) = e™, for y'(x) oc y(x), self-consistent.

B Substituting y = e™ into y' = kxy gives me™* = ke™X,
— m =k, a 1st-order polynomial equation.

i Complementary solution is: y_(x) = cxeX.
otonics dma




2nd-order LH ODEs of constant coefficient

ODE :y" + Py' + Qy =0, where P and Q are constant.
B Assume y(x) = e™ for y"(x) oc y'(x) oc y(x).

m Substitutingy =e™ intoy" + Py' + Qy = 0 gives a
2nd-order polynomial equation (auxiliary equation)
m?+Pm+Q=0.

B There are three types of solutions:

® Case 1: Two distinct real roots m = {m,, m,}

® Case 2: One repeated root m = m;.

® Case 3: Two complex conjugate roots m = azjf3.
W icrafast N
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Case 1: Two distinct real roots .

B m={m, m,}, = {eMX, eMX} are solutions.

m The Wronskian is nonzero for x € (-00,00) if m; #m,:

W (emlx | emZX) _

mle m; X

mzemZX

=(m, —m,)e!™ ™ %0

m {eM™X e™X} are linearly independent solutions, =

Complementary solution is their linear combination:

V.(x) = c,e™* + c,em*

B When accessing the ICs or BCs, derivative is needed:

y'.(X) = c;m,eM* + c,m,em
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An VP example of Case 1

ODE:y"+4y'+3y =0
m [Cs:y(0)=2,vy'(0) =

m Auxiliary equation: m2 + 4m + 3 = 0, = two distinct
real roots {m; =-1, m, =-3}.

By (x) = e +ce =y (0)=c; +c,=2.

my' (x)=-c,e*-3c,e3, =y (0)=-c,-3c,=0.

m Solving the system of algebraic equations gives {c,
3, ¢, = -1}. = The unique solution of the IVP is:
y(x) = 3e*— g3
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Unique solution plot
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Case 2: One repeated real root (1) .

B m=m,;, = eM™Xis asolution.

m Reduction of order: given y,(x) = e™ is one solution
to the LH ODE, the 2nd solution linearly
independent of y,(x) can be found by assuming y(x)
= u(x)xy,(x), ... = y,(x) = xemx.

m Verify the linear independence by Wroskian:

emlx Xemlx
W (emlx, Xem1X) _ _ e2m1x -+ O

me™ (1+m,x)e™
1 1
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Case 2: One repeated real root (2)

m {eMX, xe™*} are linearly independent solutions, =

Complementary solution is their linear combination:

Y.(X) = (c; + c,x)xem:

B When accessing the ICs or BCs, derivative is needed:

y'(x) = [(c;my+c,) + (c;m,)x]xem:X

U ltrafast
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An VP example of Case 2

ODE:y"+2y'+y=0
m [Cs:y(0)=2,vy'(0) =

m Auxiliary equation: m?2+2m+ 1 =0, = one
repeated root {m, = -1}.

By (x)=(c; +cx)xe*, = vy (0)=c, =2.

By (x) = [(-c;+¢))-(c,)x]xe™, = y'(0) = -¢; + ¢, = 1.

m Solving the system of algebraic equations gives {c,
2, ¢, = 3}. = The unique solution of the IVP is:
v(x) = (2 + 3x)xe™

ultrafast -
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Unique solution plot

2\‘ /,’/y'(O) =1

0
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Case 3: Complex conjugate roots (1) .

m For m = atjp, Case 1 formula y (x) = c,e™* + c,e™
still applies, = y,(x) = e®xe*Px, y,(x) = e*xePx are
two linearly independent “complex” solutions.

m Lety, =(y; +V,)/2 = e(el*+ell)/2 = e®{[cos(Px]
+ jsin(PBx)] + [cos(Bx) - jsin(Bx)]}/2 = e**xcos(px),
where Euler’s formula el = cos0 + jsin0 is used.

m Similarly, y, = (y, - v,)/(2]) = e*X(elPx - edP)/(2j) =
e®*xsin(x).

m By the superposition principle (p12), {ys, y,} remain
Wiicsicar gclutlons to the LH ODE.
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Case 3: Complex conjugate roots (2) .

m The Wronskian W(y;, y,) is:
e” cos fX e” sin X
e”(crcos fx— Bsin px)  e™(asin fx+ £ cos X )

= {ys, Y4} are linearly independent.

£’ 0

m Complementary solution to the 2nd-order LH ODE
can also be the linear combination of {y;, y,}:
y.(X) = e*X[c,cos(Px) + c,sin(Bx)]
B When accessing the ICs or BCs, derivative is needed:

V' (X) = e*X[(c,;o+c,B)xcos(Px) + (c a-c, B)xsin(Px)] e
ggrafast i_\l; ‘*:: e‘: .
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Example 2

ODE: 4y" +4y'+ 17y =0

m [Cs:y(0)=-1,y'(0)=2

m Auxiliary equation: 4m? + 4m + 17 = 0, = m = o4;jf3
=(-1/2) £j(2).

m y_(x) = e¥?[c,cos(2x) + c,sin(2x)], = y.(0) = 1x[c,x1
+¢,x0] = ¢, =-1.

my' (x) =e¥?[(-c,/2 + 2c,)xcos(2x) + (-c,/2 - 2¢,)

xsin(2x)], = y'.(0) = 1x[(% + 2¢,)x1 + (-¢,/2 + 2)x0]

=+2c,=2,¢C,=%.
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Unique solution plot

m The IVP gives a unique solution:
y(x) = e*?[-1cos(2x) + %sin(2x)]

40 31 = y(x) behaves “damped
3 i
3 oscillation”, converging to
Ly [ Zero as X — .
/\\/A A
_1l \jb{\ | ®m Envelope decay depends on
2 A y(0)=-1 Re{m} = o (<0).
2l i | {m} = o (<0)
4 )’ Fringe oscillation depends
—3 =2 —1 1 2 3 4 5

on Im{m} = 3.
Ucrafast -
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Source-free RLC circuit

m ODE: i"(t) + (R/L)xi'(t) + 1/(LC)xi(t) = 0.
F C

~ | (
I\

T

m Auxiliary equation: m2+ (R/L)m + 1/(LC) =0, =

2
_RORYy 4
L VL) Lc

2

m =
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\w
Photonics Lab




Three types of natural response .

"~ TheGrautis | When | Soutions

Over-damped R?>4L/C c,eMX + c,em:x
Critically-damped R2=4L/C (c; + C,X)xem:X
Under-damped R2<4L/C  e™[c,cos(Bx) + c,sin(Bx)]

m |In Case 3 (under-damped), o = -R/(2L), = envelope

decays faster if R is larger.

U ltrafast
o,
Photonics Lab




Horizontal frictionless mass-spring .

m ODE: x"(t) + (k/m)x(t) = O.

(www.chegg.com)

x=0
m Auxiliary equation: m?2+k/m=0, => m=a+ jﬁ:ij\/%
m x_(t) = eX[c,cos(Bt) + c,sin(Bt)] = c,cos[V(k/m)t] +
czsin[\/(k/m)t] = oncos[\/(k/m)t+(|)], pure oscillation.

m Oscillation is faster if m is smaller or k is larger.

U lerafast
2 -
Photonics Lab




3 Particular solutions

® Vet
® Vet
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Method of undetermined coefficient

B A 2nd-order linear nonhomogeneous ODE of
constant coefficients is:
y" + Pxy' + Qxy = g(x)
m [f g(x) is one of the following forms:
(1) polynomial, (2) e**, (3) sin(x), cos([3x), or (4)
sums or products of (1-3), = particular solution y (x)
and driving source g(x) should be of the same form.

m It does not apply if g(x) = In(x), 1/x, tan(x), ...

U lerafast
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Example:

g(x) = polynomial f

mODE:y"+y' +2y=4x2+1

m g(x) is a 2nd-order polynomial, = an educated
guess is y (x) = Ax* + Bx + C. (Why?)

B Substituting y') = (2Ax + B), y", = (2A) into the ODE:
(2A) + (2Ax + B) + 2(Ax2 + Bx + C)
= (2A)x2 + (2A+2B)x + (2A+B+2C) = 4x2 + 1,

(2A =4,
2A+2B =0,
2A+B+2C=1

/\

U lerafast
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Example: g(x) = e**

m ODE:y" - 5y' + 4y = 8e%

B g(x) is an exponential function, = an educated
guess is y (x) = Axe?*. (Why?)

m Substituting y' ) = (2Axe®), y" = (4Axe*) into the
ODE:
(4AxeX) — 5(2Axe?) + 4(Axe?*) = (AA-10A+4A)xe?x =
-2Axe2x = 8e2X
= -2A =8, A=-4,y(x) = -4e*X

m Note: y (x) does not necessarily satisfy ICs or BCs.

Ui -lf'S NOt the unique solution yet.

hotonics k=ab




Example 4: A glitch of the method (1)

m By slightly changing the g(x): y" - 5y' + 4y = 8¢
m An educated guess is y (x) = Ae.

m Substituting y', = (Ae¥), y", = (Ae*) into the ODE:
(AeX) — 5(AeX) + 4(Ae*) = 0 = 8eX, = no solution!

m Auxiliary equation to solve y(x) is: m?-5m + 4 =0,
= m; =1, m,=4; =y(x) =ceX+c,e™

m Bug: Ae*is already present in y(x)!

U lerafast
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Example 4: A glitch of the method (2)

m Try another guess: y (x) = Axe*. (Why?)
m Substituting y') = [A(1+x)e*], y", = [A(2+x)e*] into y"
- 5y' + 4y = 8e*:
[A(2+x)eX] — 5[A(1+x)e*] + 4(AxeX)
= (2A-5A)e* + (A-5A+4A)xex
= (-3A)e* + (0)xe* = 8eX,

= -3A =8, A=-8/3, y,(x) = (-8/3)xe”

U ltrafast
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Example: g(t) = sin(mt)

m ODE:y" + 2y' + 2y = -5xsin(2t)
m Educated guess: y(t) = Axcos(2t) + Bxsin(2t).

B Substituting y' ) = [-2AXsin(2t) + 2Bxcos(2t)], y", = [-
4Axcos(2t) — 4Bxsin(2t)] = -4y, into the ODE:
[-4Axcos(2t) — 4Bxsin(2t)] + 2[-2Axsin(2t) +
2Bxcos(2t)] + 2[Axcos(2t) + Bxsin(2t)]
= (-4A+4B+2A)xcos(2t) + (-4B-4A+2B)xsin(2t)
= (-2A+4B)xcos(2t) + (-4A-2B)xsin(2t) = -5xsin(2t),

—2A+4B =0, A=l 1.

= 3 1, Y, (X)=cos2t+=sin2t

ultrafast _ 4A_ ZB — _51 B - — 2
Lo 2
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Let the two associated ICs be: y(0) = 1, y'(0) = 2.

m Auxiliary equation to solve y(t) is: m? + 2m + 2 = 0,
—> m = -14j (Case 3), = vy.(t) = e[c,cos(t) + c,sin(t)].

my(t) =y +y, =e'cicos(t) + c,sin(t)] + [cos(2t) +

Yaxsin(2t)]

y(0)=c,+1=1,=c, =0;

y(t) = c,etsin(t) + [cos(2t) + Vaxsin(2t)],

y'(t) = c,e[-sin(t) + cos(t)] + [-2sin(2t) + cos(2t)],

y'(0)=c,+1=2,=¢c,=1;

Uil -y (t) = etsin(t) + [cos(2t) + Vaxsin(2t)]

Photonics Lab




Unique solution plot

y'(0) =2

y(0)=1

v (t),

transient N

Y y(t)

| //.L.w\.

g(tl)/S, ooy

ulttafast .
\\»
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Sinusoidally driven RLC circuit -

m ODE: i"(t) + (R/L)xi'(t) + 1/(LC)xi(t) = v'(t)/L.
&

L

(D) /"D RS

B Element values R, L, C determines natural (transient)

response i_(t).
®m Driving source determines the “shape” of steady
state i (t), while its amplitude and timing depends
Bg;:ga;;sm both the RLC circuit and the source.




Sinusoidally driven mass-spring

m ODE: x"(t) + (k/m)xx(t) = (F,/m)xsin(wt).

+«—F =-kx

MWWV = |—> Fesin(at

: (www.chegg.com)

x=0

B X (t) = Ajcos(w t+d), o, = \(k/m) is the natural freq.

m Substituting x(t) = Axcos(ot)+Bxsin(ot), x" ) = -®°x
into the ODE: '(szp + (ooo)zxp = (Fo/m)xsin(mt),

[(0g)?-®?]x[Axcos(mt)+Bxsin(wt)] = (Fo/m)xsin(mt),

Ui => A =0, B = Fo/{m([()*-0?]}.

photomcs




Resonance

B x(t) = x+x, = Agcos(m,t+d)+Bsin(wt), B oc [(my)*-w?] ™.

8 | ! T
l
T | [B]—> o0, '
— |
S af | resonance i
© l
-~ 1
an 2 B :/ -
- 1
(¢)) i
— 0
>
2 -2
Q
E -4
<
-6
Ucrafast - 0 0 2&)
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Method of variation of parameters (1) .

B A 2nd-order LN ODE of varying coefficients is:
y" + P(x)xy" + Q(x)xy = g(x)
m Lety(x)=c,y,(x) + c,y,(x), where W(y,,y,) #O0.
m For any type of g(x), lety, = u;(x)y;(x) + u,(x)y,(x):

Yp = wiy1 t yuuy + upyy + yous

1”‘ f—

m Substitutingy,, y',, y", into the LN ODE:

d ' ' ’ / T 11’
&[ylul + Y,U, ]+ PLyjup + yous J+[yiuy + yous, | = g(x)---(a)

U ltrafast
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Method of variation of parameters (2) .

B Two equations are needed to solve u,(x), u,(x).

B A convenient choice is having y,u; + y,u;, =0 such

/

that Eq. (a) reduces to Y;u; + y,u; = g(X).

0 {y1u1’+y2u; =0 i Yo | | W 0
oot 1! ! — X = !
Vi +Y,U; =9() |yr yr | luy | | g(x)
LW 000 We _ y000
W W W W
Vi Ys 0 v, y, 0
where W = , W, = , W, = .
Yi Vs a(x) vy; y;  9(x)
U trafast -
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Example 1 (Sec. 4.6)

m ODE:y" -4y' + 4y = (x+1)e®

m Auxiliary equation: m?-2m+4 =0, = m, =2 (Case

2), = {y,(x) = %%, y,(x) = xe®} are two linearly
independent solutions to y" - 4y' + 4y = 0.

= W(yl’ yz) —

0
W, =

U lerafast
iy SN
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(x+1)e*

er

Zemlx

(1+2x)e*

X€E

Xer

2X

(1+2x)e*

=@ :

=—(x+Dxe*, W, =(x+1e",

W
W




Example 1 (2)

mu', =-x2-X, = u; =-x3/3 =x%/2;
mu,=x+1=u,=x/2+x;
my = U (X)xy(X) + uy(x)xy,(x)
= (-x3/3 — x2/2)xeZ* + (x2/2 + x)x(xe?¥)
= [(x3/6)+(x*/2)]e**.
B Method of undetermined coefficients: guesses of
Yo(X) = Ae?*, (Ax+B)e?*, (Ax2+Bx+C)e?* give no
solution.

O x) = (Ax3+Bx%+Cx+D)e?* leads to the same solutlon
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Example 3 (Sec. 4.6)

m ODE:y"-y=1/x

m Auxiliary equation: m?-1=0, = {m;=1, m, = -1}
(Case 1), = {y,(x) = €%, y,(x) = e*} are two linearly
independent solutions to y" -y = 0.

e’ e
= W(ypyz): ) ) =2,
e’ —e
10 et e e* 0| ¢
1= = — , 2: _ :—,
I/x —e” X e 1/x X
, W,ooe W, e’
UIttafast \:> ul — — y u2 - = .
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1 X xe_t i Xet
yp(x)=u1y1+u2y2=§ € X XTdt —e " X det

ultrafast \
N
Photonics Lab

1re”
, => U (x)==—|—-dx
- = u() ==

25

20

15

10

Example 3 (2)

X t
e

1 ex e
—dt; u,(x) =
J, w0 =-2[




3 Systems of linear ODEs
® Systems of LH ODEs
® Systems of LN ODEs

U ltrafast ™
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Why systems of ODEs?

E.g. RL circuit. v, = Lxi'(t)
® i,=i,+iy...(1) |

e E=Ri, +Li,)" ..

® L,(iy)" = Ryiz + Ly 3) (3) CR

m Substitute (4) into (3): (-R,i, - Ryiz + E) = R,is + Ly(is)",

— o Rl . Rl + R2 i
ultrafast . |3 ___IZ_—I3+_.(5)
Photonicsoab L2 L2 L2




Example: System of LH ODEs (1) .

= {X'(t) -3y()=0---(1)
2x(t) - y'(t) =0---(2)

m Just like elimination of variables in solving systems
of algebraic equations, trying to eliminate y(t):

%(1) — X'(t) — 3y'(t) = 0---(3)
(3—-3x(2)=x"-3y'-3(2x—-y)=x"-6x=0---(4)

m Auxiliary equation: m?-6=0, => m = +V6 (Case 1),
= X (t) = c,e-(¥O)t + c_elVo),

U lerafast
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Example: System of LH ODEs (2) .

m Eliminating x(t):

£2)=2x() - y'() = 0-(5)
2x(1)-(3) =2(x"-3y)-(2x'-y")=y" -6y =0---(6)
m Auxiliary equation: m?-6=0, => m = +V6 (Case 1),
=y (t) = c,e"V6)t + ¢, elV6t,
m {c, C,, C;, C;} are not arbitrary: Substitute x_, y. into
Eq. (1): x'. — 3y, = [-V6c,e-¥8)t + VB e (V6)t] - 3[c e VoIt
+ ¢,e(V6)] = (-V6c,-3c,)e Vo)t + (\6c,-3c,)e (V6)t = O,
= {c5 = -(\/6/3)c1, Cp = (\/6/3)c2}, where {c,, c,} are ...
P Metermined by ICs or BCs.




Example 2: System of LN ODEs (1) .

. {x'—4x+ y' =t%---(1)
X'+X+y =0---(2)

B For convenience, use operator D" to symbolize nth-
order derivative d"/dt":

Dx - 4x + D2y = (D-4)x + D2y =t2 ...(1)
Dx+x+ Dy=(D+1)x+Dy=0...(2)

m Eliminating x(t) by (D+1)x(1) — (D-4)x(2):
(D+1)x[(D-4)x + D2y] — (D-4)x[(D+1)x + Dy] = (D+1)t?,
(D3+D2-D?+4D)y = (D3+4D)y = 2t + t2,
=vy"+4y' =12+ 2t ...(3).

U lerafast
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Example 2 (2)

m Auxiliary equation of Eq. (3) is: m3*+4m =0, => m =
0, £j2, = y(t) = ¢; + c,cos(2t) + c;sin(2t) (why?)

m Since the driving source is t* + 2t, substituting y,(t) =
At3 + Bt2 + Ct + D into Eq. (3):
v'" + 4y' = 6A + 4(3At2+2Bt+C) = 12At2 + 8Bt +
(6A+4C) =t2 + 2t, = {12A =1, 8B = 2, 6A+4C = 0},
= {A=1/12,B=%,C=-1/8, D is arbitrary}.

B = y(t) =y +y, = C; +C,c0s(2t) + c3sin(2t) + t3/12
+t2/4 —t/8 (why is D missing?)

Ucrafast -

Photonics Lab\\




Example 2 (3)

m Eliminating y(t) by (1)-Dx(2):
[(D-4)x + D?y] — Dx[(D+1)x + Dy] = t* -0,
(D-4-D?-D)x = -(D?+4)x = t?, = x" + 4x = -t2 ...(4).

m Auxiliary equation of Eq. (4) is: m?2+4m =0, => m =
1j2, = x(t) = c,cos(2t) + c.sin(2t)

m Since the driving source is -t%, substituting x(t) = At?
+ Bt + Cinto Eq. (4):
X" +4x = 2A + 4(At? + Bt + C) = 4At? + 4Bt + (2A+4C)
=12, = {4A = -1, 4B = 0, 2A+4C = 0},

Ut = {A =%, B=0,C=1/8}, x,(t) =-t?/4 + 1/8.

Photonics Lab




Example 2 (4)

B x(t) = x.+x, = c,4cos(2t) + cssin(2t) - t2/4 + 1/8

m {c,C,, C3 C,4 Cc}are not arbitrary: Substitute x(t), y(t)
into Eq. (2):
X'+ x+y' = [-2¢,sin(2t) + 2c.cos(2t) - t/2] + [c,cos(2t)
+ ccsin(2t) - t2/4 + 1/8] + [-2¢,sin(2t) + 2c;c0s(2t) +
t2/4 +t/2 — 1/8] = (2cc+cy+2c5)xcos(2t) + (-2¢,+Cc-
2¢,)xsin(2t) + [(-Va+%)t? + (-%5+74)t + (1/8-1/8)] = 0,
N {Zc5 +¢, +2¢, =0, {c4 =—(4c, +2¢,)/5

—-2c,+¢,—2¢,=0, |c,=(2¢c,—4c,)/5

4c., +2C 2¢c., —4c, . t2 1
Uiafast . = X(t) =——2—¢C 2 3s5in2t——+=
photonics Lab 4 8
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What're the differences between IVPs and BVPs?

m What are linearly independent functions {f,, ..., f }?
How to test the linear independence?

m Fora LN ODE, y(x) =y (x) +y,(x). What are the
meanings of y_and y, respectively?

m For a 2nd-order LN ODE of constant coefficients,
how to find y. and y,? What are the features of y_
andy,?

m What does resonance mean in a mass-spring?

U ltrafast
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