EE 201 Ordinary Differential Equations

Chapter 2
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T Solutions curves
® Direction field

® Autonomous ODEs
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Motivation

B For a general 1st-order ODE: y'(x) = f(x,y), it’s
helpful to know what a solution curve y(x) roughly
looks like without actually solving it in detail.

m Visualization is particularly useful for nonlinear
ODEs, for they are difficult to solve analytically.
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Direction field

B y'(x) means the slope of the solution curve y(x) at
position X.

m y'(x) = f(x,y) means the slope of y(x) at any position
(x,y) is specified by the given function f(x,y).

m Direction field is established by drawing a grid of
small arrows on the xy-plane, where the pointing
direction of the arrow at position (x,,Y,) is
determined by the value of f(x,,y,).
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E.g.y' = 0.2xy (Example 1) f
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B For the 1st quadrant, slope
function f(x,y) = 0.2xy > 0, all
the arrows point upward.

B As X oryincreases, magnitude
of slope increases, arrows are
increasingly steeper.

m For the 2nd quadrant, arrows

point downward and are
increasingly steeper as x
decreases or y increases.




Solution curves

A solution curve y(x) can be roughly sketched by

e Starting from the point (x,,y,) given by IC y(x,) =y,

e Extending y(x) by following the arrows of the

direction field.

m E.g. The family of
solution curves y(x) =
cxexp(0.1x2) to the ODE
y' = 0.2xy agree with
the direction field.
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E.g. v’ =sin(y) (Example 2)

m Q:lsitlinear or nonlinear?

m f(x,y) =sin(y) is independent of x, = all the points
on the same row (x,y,) have a common slope.

m sin(y) is periodic, arrows repeat themselves in a y-
interval of 2.

m E.g. The solid curve 33y’ =0

represents the solution

to y'(x) = sin(y) and IC
y(0) = -1.5.
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What's autonomous ODE?

m An ODE whose slope function y'(x) = f(y) does not
vary with the independent variable x “explicitly” [i.e.
after solving y(x), you can still see y'(x) generally
varying with x].

B Models of physical laws that do not change with
time are autonomous.

m E.g. RLC circuits with time-independent elements,
Torricelli’s law: v = \/(Zgh), Newton’s law: F = ma, ....
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E.8 P'(t) = P(a-bxP) (Example 3)
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Slope function f(P) = P(a-bxP) = 0 has
two solutions: P=0and P=a/b
(assuming a, b are positive constant).

P=0and P =a/b are equilibrium
solution to the autonomous ODE P’ =
P(a-bxP) (verify it).

For0< P<a/b, f(P) >0, solution curve

P(t) is monotonically increasing.

For P<0, or P>a/b, f(P) <0, P(t) is

monotonically decreasing.




Solution curves

A solution curve y(x) can be roughly sketched by
e Starting from (x,,y,) given by the IC: y(x,) = y,,

e y(x) is increasing or decreasing within the sub-region
R, bounded by equilibrium solutions if f(yeR.) >0 or

flyeR) <O. -
y(x) =0y R;
e y(x) must approachbut -~~~
never cross an \ (%o, 0) R
equilibrium solution y(x) =cy
(why?).
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E.g. Revisit P'(t) = P(a-bxP)

m Solution curve P(t) depends on the IC: P(0) = P,:
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E.g. v'(x) = (y-1)? (Example 5)

B One equilibrium solution y = 1 is derived by solving
f(y) = (y-1)* = 0.

m In either of the two sub-regions R; = {y<1}, R, =
{y>1}, y(x) must be increasing for f(y) > 0.

y This branch is; v y(0)=2>0, vy,
| | not a solutio i 1 y=1-1/(x-1) 4+
as 3
Increasing I | \ (0, 2)
| y=1
41 @ ———_——- - s B
| |
| | | ! | | | - L | l
| | | i | | | X I | i
|40, -1) + |
' asi |
increasing : i y(O) — _1 < O’ 1 i
LT ] .
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E.g. Draining a tank

ODE: h'(t) = -(A. /A )x\(2gh =\
O (t) = -(A/A,)xN(2gh) ‘

m Q: What does the direction field
look like?

1 / \-\ L
m Q: ?
Q: Is it autonomous Nl

B Q: What's the equilibrium solution? |

B Q: What does a solution curve h(t)
look like if the IC is h(0) = H?

B Remark: Direction field and equilibrium solutions

are particularly useful for nonlinear ODEs.
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E.g. Falling bodies

m ODE: Vv'(t) =g—(k/m)v S —

m Q: What does the direction '* m%k"_r
field look like? 0

m Q:lsitautonomous? T

B Q: What's the equilibrium "“”‘““ggmd

solution?

m Q: What does a solution curve
v(t) look like if the IC is v(0) =
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3 Separable variables
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What's separable ODE?

B y'(x) = f(x,y) = g(x)xh(y).
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E.g. v'(X) = -x/y (Example 2)

Q: Is it autonomous or nonautonomous?
m Q:lsitlinear or nonlinear?
m dy/dx = -x/y, = yxdy = -xxdx;

B Integration for both sides of equality:

y? x2
J-}' dy = —J-Id:l: — E = D) + .

m Implicit form of the solutions: x? + y2 = ¢?
(concentric circles).
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E.g. Unique solution

m By imposing the IC: y(4) = -3, = ¢?2 =42 + (-3)%2 = 25.

B However, the solution y(x) is not a complete circle
of radius 5 but its lower half y = V(25-x2) (why?).
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E.g. An IVP (Example 4)

ODE: (e%V-y)(cosx)y' = eY(sin2x).
m [C:y(0)=0.

B Rearrangement:

e —y sin 2x
—dy =
ey COS X

m Integration for both sides of equality:

j (e[- j,-'f?_]) dy =2 f sin x dx
e¥ +

ye Y + e_i”]: —2cosx + c

dx, = (e¥-yeV)dy = 2(sinx)dx

m |C gives c = 4. But it’s simply an implicit solution.
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Contour line

m A function of two variables G(x,y) can be illustrated
in 3D like a topographic map (3 2/ B&]).

m G(x,y) = cis acontourline (% 3 %) obtained by
sectioning the 3D map with a plane z = c.
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Contour lines of the IVP

m Implicit solution (eY+yeY+eY) = -2(cosx) + 4

corresponds to a contour line

Family of

contour
2

lines AN
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E.g. An IVP (Example 5)

m ODE: y' = exp(-x?).
mC:y(3) =

fx d‘} f _
—dt = et
v, = f e dr
' 3

yx) — v(3) = jveﬁdr
3

vix) =5+ f e " dt.
3
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Error function: erf(x)

B A non-elementary function useful in probability.

2 x
B Definition: erf (x) = \/_joe dt
a (keisan.casio.com)
1.2
1.0 -
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O Complementary error function: erfc(x) = 1 - erf(x)
j e dt
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3 Linear equations
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What's linear, 1st-order ODE?

B y'(x) + P(x)xy = f(x).
m It's an homogeneous ODE when f(x) =

m |n physical models, f(x) usually refers to an external
driving force.

m E.g. The ODE of an RC circuit driven by a current
source | is =0

e
10
d'[ RC I C‘) R § C =9

*—_
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How to solve a linear, 1st-order ODE?

m y'(x) + P(x)xy = f(x).

m Multiply both sides of the equality by the
integrating factor ol "®%

[EIP(.I)JI g + P(X)FIP(IMI}J _ EIP(I)dxf(X)

dx 1
d
— | ,JPx)dx,,
[Py
_ ol PO y(X)=c +_.‘ejp(x)OIX x f (x)dx

—| P(x)dx —| P(x)dx (x)dx
Ueraae = Y (X) :@e Je +e Je UGIP X f(x)dx}
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E.g. An IVP (Example 5)

ODE:y'+y=x; = P(x) =1, f(x) = x.
m |C:y(0) = 4.

Unique solution to ODE+IC

:eX e
41

m Integrating factor: /"%

:i[exy]:exx; e’y = xe* —e*+c of
dx |

=y = x—1+{ce™

m |ICgivesc=>5.

4l ¢ = 0

m All possible solutions to the ~— '_'2\ ——

ODE converges to x-1, = ce™ Steady-state term: y = x-1

Uinfese S 3 transient term.

hotonics k=ab



E.g. An IVP (Example 2)

ODE:y' -3y =6; = P(x) =-3, f(x) = 6.
m [C:y(0)=0.

= Integrating factor: ejp(x)dx _ o Unizue solution to ODE+IC

d [—3x ]_6 _3x., 2 / ' T\
ke (PTTT
= ey =-2e"+c; A JJJ _x
= y =[~2}+[ce”] —2| Z y="2

m |ICgivesc=2. —31

m Solutions diverge fromy=- -1 I 2 3 4

U 2, = ce3*is NOT transient.
ltrafast "o

Photonics Lab




3 A numerical method

® Euler’s method
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Motivation

B Sometimes (quite often actually), the given IVP
cannot be solved by any analytical method.

m E.g. ODE: y' = 0.1Vy + 0.4x2, IC: y(2) = 4.
m Q:lsthe ODE linear or nonlinear?

m Q:lsit autonomous or not?
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Euler’'s method

m ODE: y'(x) = f(x,y); IC: y(Xg) = Yo
B Linearization of the solution curve y(x) at (x,,Y,):
y(x) & L(x) = yq + f(Xo,Yo) X (X-Xo)

Y4 solution curve m Asa FESU|t, Y1= y(Xl) ~ L(Xl)

=Yg + f(Xg,Yg)xh, where h =
X1-Xq is the step size.

B Recursive relation:
Yne1 = Yo + hxf(x,,y,)

B [t's quantitative realizatio
of direction field (Sec. 2.1y




E.g. An IVP (Example 1)

m ODE:y' = 0.1y + 0.4x%; IC: (X,,Y,) = (2,4)

m Slope function f(x,y) = O.1\/y + 0.4x?
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Vol R Y, + h><[0.1\/yn +0.4(x,)?]

For h=0.1:
V, ~ 4 +0.1x[0.1V4 + 0.4(2)?] =
4.18;

Y, ~4.18 + 0.1x[0.1V4.18 +
0.4(2.1)2] = 4.3768, ...
y(2.5) =y = 5.0768.




Impact of step size (Example 1) .

B For h=0.05,y(2.5) =y;,= 5.0997 [vs. y(2.5) = y; =

5.0768]
|~ P / / b )
6.5 -/’, /, /] /
|~ P b = /
T~ ~ P ¥
st -~ i g
g P & 7
gl ® b
|~ P " Z
asf " P P /
IC:(2,4)
|~ P e o
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E.g. An IVP (Example 2)

m ODE:y'=0.2xy; IC: (Xy,Y,) = (1,1)
m Analytic solution is: y(x) = exp[0.1(x?-1)]
m Relative error g, = | [y, -y(x,)]/y(x,)|

m Forh=0.1;

X, Vi Actual value Abs. error % Rel. error
1.00 1.0000 1.0000 0.0000 0.00
1.10 1.0200 1.0212 0.0012 0.12
1.20 1.0424 1.0450 0.0025 0.24
1.30 1.0675 1.0714 0.0040 0.37
1.40 1.0952 1.1008 0.0055 0.50
1.50 1.1259 1.1331 0.0073 0.64

m For h=0.05,¢ =0.32% at x, = 1.5.
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Choice of step size

m Trade-off: A smaller h gives a more precise y(x) at
the cost of heavier computation load.

m Q: How to choose h?

y A _ .
solution curve

(X1, y(x1))

| (x]:' .)/l)
slope = f(xp, yo)
|
———] |
|
A
O I
ulttafast . ! ! "
S, . . _ X
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m ODE: y'=f(x,y) = 0.2xy; = y(x) = cxexp(0.1x2)
m |f y(O) =0, Euler’s method gives y(x) =0, no error.

m If y(0) =y,, error increases with |y,|. So ...
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Perspective

m Euler’'s method is seldom used because of the fast

growth of the accumulated error.

B The forth-order Runge-
Kutta (RK4) method (see
Ch9) can give significantly
greater accuracy even with
a ridiculously large step
size h.
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