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Lesson 15 Wave Equations 

 

15.1 Wave Equations of Fields 

 Homogeneous (source-free) wave equations in time domain 

In a simple (linear, isotropic, homogeneous), charge-free ( 0=ρ ), nonconducting ( 0=σ , 

0=J
v

) medium, the four Maxwell’s equations reduce to: 
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Take curl for eq. (15.1) and employ eq. (15.3), 
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By eq’s (5.31) and (15.2), 
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Therefore, we arrive at a second-order partial differential equation for vector field E
v

: 
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Similarly, combining eq’s (15.1), (15.3), (15.4) leads to: 
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Since eq’s (15.5-6) are the same as the equations of lossless transmission lines [eq’s (2.3-5)], 

the solutions ),( trE vv
 ),( trH vv

 must behave properties of waves propagating with phase 

velocity: 

µε
1

=pu         (15.7) 

Instead of investigating how electromagnetic waves are generated from time-varying sources 

( )Jv,ρ , we are often concerned with how they propagate, where eq’s (15.5-7) are useful. 
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 Why time-harmonic (sinusoidal)? 

1) Any periodic (aperiodic) function can be expressed by superposition of discrete 

(continuous) sinusoidal functions using Fourier series (integral). 

2) Maxwell’s equations are linear differential equations. ⇒ (1) Sinusoidal sources ( )Jv,ρ  

will produce sinusoidal fields (E
v

,H
v

) of the same frequency in steady state. (2) Total 

field can be derived by superposition of individual sinusoidal responses. 

3) Easy to operate if “phasors” are used: ωj
t
→

∂
∂ , 

ωj
dt 1
→∫ . 

Scalar phasors ( )zV  and ( )zI  of voltages and currents are sufficient to describe 

steady-state response of transmission lines [eq. (4.1)]. However, we need to use vector 

phasors ),,( zyxE
v

 and ),,( zyxH
v

 to represent time-harmonic electromagnetic fields: 
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 Homogeneous (source-free) wave equations in frequency domain 

Replacing E
v

, H
v

 and 
t∂
∂  in eq’s (15.1-4) by corresponding vector phasors and ωj , we 

can get the time-harmonic Maxwell’s equations in simple, charge-free, nonconducting media: 
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 0=⋅∇ H
v

 (15.12)

Eq’s (15.9-12) can be combined to get the time-harmonic version of eq’s (15.5) and (15.6): 
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where 
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denotes the wavenumber (counterpart of “angular frequency” in space). The solutions to eq’s 

(15.13), (15.14) represent propagating waves [e.g. ( ) ( )jkzzEx −= exp ], which will be the 

subject of subsequent lessons. 

 

<Comment> 

Analogy can be found between the following pairs of equations: (15.13) ↔ (4.4), (15.14) ↔ 

(4.5), (15.15) ↔ (4.6). ⇒ Electromagnetic fields exhibit all “wave” properties of voltages 

and currents in transmission lines. 

 

 

 Electromagnetic fields in lossy medium 

If the simple medium is conducting ( )0≠σ , the presence of electric field E
v

 results in free 

conduction currents ( EJ
vv

σ= ). Eq. (15.11) is generalized to: 

EjEjEH c

vvvv
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where 

ω
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represents the complex permittivity. As a result, the wavenumber [eq. (15.15)] also becomes 

complex: 

( )ccc jk δµεωµεω tan1−==      (15.17) 

where 

ωε
σδ =ctan        (15.18) 

is called the loss tangent. If 1tan <<cδ , Rkc ∈≈ µεω , the medium behaves like a 

“dielectric”. If 1tan >>cδ , the imaginary part of ck  is not negligible and the medium 
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behaves like a “good conductor”. As will be elucidated in Lesson 16, { }ckIm  represents the 

power loss when wave propagates through the medium. Physically, the loss results from: (1) 

The inertia of bound charges prevents the polarization P
v

 from keeping in phase with the 

external time-varying field E
v

, causing frictional damping; (2) Ohmic losses due to collision 

among free charges and atoms [eq. (10.12)]. The power loss, according to eq. (15.18), 

depends on both frequency ω  and material properties ( )εσ , . 

 

 

Example 15-1: A moist ground has 010εε = , and =σ 10-2 (S/m). At a frequency of 1 KHz, 

cδtan ~104, it is like a good conductor. At a frequency of 10 GHz, cδtan ~10-3, it is like a 

dielectric. 

 

 

Example 15-2: A microwave oven produces a sinusoidal electric field with amplitude 250 

(V/m) at 2.45 GHz. Find the averaged power density dissipated in a beef steak with 040εε = , 

and 0.35tan c =δ . 

Ans: By eq. (15.18), ( ) 9.135.0
36
1040 )10 2.45 (2tan
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π
πδωεσ c  (S/m). By eq. 

(10.12), the instantaneous power density is: ( ) 2
)()()( tEtJtEtp

vvv
σ=⋅= . The time-averaged 

value is: ≈2
02

1 Eσ 60 (kW/m3). 

 

 

15.2 (*)Wave Equations of Potentials 

 Fields & potentials 

In the presence of time-varying fields: 
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1) 0=⋅∇ B
v

 [eq. (11.2)] is the same as that in magnetostatics, ⇒ the relation between 

magnetic field and magnetic potential remains unchanged: AB
vv

×∇=  [eq. (11.8)]. 
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v
 [eq. (14.1)] is different from that in electrostatics, ⇒ the relation 

between electric field and electric potential is no longer VE −∇=
r

 [eq. (6.11)]. 

Substituting eq. (11.8) into eq. (14.1): 
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from which we can define an artificial scalar potential V  such that V
t
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∂
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This means that E
v

 can be decomposed into conservative and nonconservative 

components, contributed by charge distribution ( )V∇−  and time-varying current 
t
A
∂
∂

−
v

, 

respectively. 

 

 

 Nonhomogeneous (driven) wave equations of potentials A
v

, V  in time domain 

For simple media, 
t
DJH
∂
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 [eq. (14.12)] becomes: 

t
EJB
∂
∂

+=×∇
v

vv
µεµ . 

By eq’s (11.8) and (15.19): ( ) ( ) AAAB
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Since there is no physical restriction about A
v

⋅∇ , we choose Lorentz gauge: 

0=
∂
∂

+⋅∇
t
VA µε

v
       (15.20) 

such that A
v

 is decoupled with V : 
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For simple media, ρ=⋅∇ D
v

 [eq. (7.8)] becomes 
ε
ρ

=⋅∇ E
v

. Substitute into eq. (15.19): 
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<Comments> 

1) Given charge and current distributions ρ  and J
v

, we can solve for the potential 

distributions V  and A
v

 by eq’s (15.21), (15.22), then derive the fields E
v

 and B
v

 by 

eq’s (15.19), (11.8). 

2) In static cases: (1) Lorentz gauge 0=
∂
∂

+⋅∇
t
VA µε

v
 [eq. (15.20)] reduces to Coulomb’s 

gauge 0=⋅∇ A
v

 [eq. (11.9)]. (2) Nonhomogeneous wave equations of potentials [eq’s 

(15.21), (15.22)] reduce to Poisson’s equations [eq’s (11.9), (8.1)]. 

 

 

 Solutions to nonhomogeneous wave equations of potentials in time domain 

Consider a single point source at the origin (with spherical symmetry), the wave equation of 

electric potential 
ε
ρµε −=

∂
∂

−∇ 2

2
2

t
VV  [eq. (15.22)] becomes homogeneous: 
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except for the origin. Define ( ) ( )tRVRtRU ,, ⋅= , ⇒ 
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which is a standard wave equation as eq. (2.3). The general solution must be of the form: 

( ) )(, τftRU = , 
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where )(⋅f  is any function of variable puRt −=τ , representing a wave traveling in the 

Ra
v+  direction with velocity

µε
1

=pu . 

 

Since eq. (15.22) is linear, we can find the solution V∆  (impulse response) to a point charge 

at origin ( ) 'dvtρ  (impulse), then derive the solution V  to arbitrary charge distribution 

),( tr ′vρ  by superposition (integral). By eq. (6.13), the potential due to a “static” point charge 

vd ′ρ  at the origin is: ( )
R
vdRV

πε
ρ
4

′
=∆  (R  is the radius in spherical coordinates). As a result, 

the particular solution to eq. (15.22) due to a “time-varying” point charge vdt ′)(ρ  at origin 

should be: 
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such that the form of general solution ( ) )(),(, τftRVRtRU =∆⋅=  can be met. By 

superposition, the potential due to a charge distribution ),( tr ′vρ  over a volume V ′  is: 
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where rv  and r ′v  denote the position vectors of observation and source points, while 

rrR ′−=′ vv . 

 

Similarly, the vector potential due to a time-varying current density distribution ),( trJ ′v
v

 is: 
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Eq’s (15.23), (15.24) indicate that the potential of an observation point at time t  depends on 

the source value at an earlier time puRt '− . In other words, the time-varying 

electromagnetic potentials (thus fields) can propagate with finite speed pu . 
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<Comment> 

In circuit theory where the sources are assumed to be of low-frequencies, wavelength λ  is 

much longer than the linear dimension L  of the circuit, ⇒ the time retardation 

TuuLuRt pppd =<<<′= λ  ( fT 1= ) is negligible, ⇒ eq’s (15.23) and (15.24) reduce to 

eq’s (6.15) and (11.11), respectively. 

 

 

 Nonhomogeneous (driven) wave equations of potentials in frequency domain 

For time-harmonic (sinusoidal) waves, eq’s (15.22) and (15.21) can be replaced by: 

 
ε
ρ

−=+∇ VkV 22  (15.25)

 JAkA
vvv

µ−=+∇ 22  (15.26)

where V , ρ , A
v

, J
v

 are the corresponding scalar and vector phasors, and wavenumber k  

is given in eq. (15.15). Solutions to eq’s (15.25), (15.26) can be derived by taking Fourier 

transform for eq’s (15.23), (15.24), where the time retardation pd uRt ′=  in a sinusoidal 

wave is substituted by a phase lead of 'kRtd =⋅ω : 
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The Lorentz gauge eq. (15.20) becomes: 

0=+⋅∇ VjA ωµε
v

       (15.29) 

 

<Comment> 

The time retardation or phase lead becomes negligible if the low-frequency condition is 

satisfied: Ttd << , λ<<'R , 1'<<kR . 
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To determine electromagnetic fields due to time-harmonic charge and current distributions: 

1) Find the phasors of potentials )(rV v , )(rA vv  by eq’s (15.25), (15.26). 

2) Find the phasors of fields )(rE vv
, )(rB vv  by eq’s (15.19), (11.8). 

3) Find the instantaneous fields by { }tjerEtrE ω)(Re),( vvvv
= , { }tjerBtrB ω)(Re),( vvvv = . 

 

 

15.3 (*) Electromagnetic Spectrum 

The frequencies (left axis), wavelengths (right axis), and common names (middle column) of 

different electromagnetic bands are illustrated in Fig. 11.1, followed by brief descriptions 

about the corresponding applications. 

 
Fig. 15-1. Electromagnetic spectrum (after kingfish.coastal.edu). 
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1) Extremely low frequency (ELF): =f 3−30 Hz. Global communications with submerged 

submarines (e.g. US Seafarer system: 76 Hz, wavelength ≈λ 3900 km). 

2) Very low frequency (VLF): =f 3−30 kHz. submarine communications at shallow (≈20 

m) depth. 

3) Medium frequency (MF): =f 0.3−3 MHz. Amplitude modulation (AM) broadcast 

(0.53−1.61 MHz). Global maritime distress safety system (≈0.5 MHz). 

4) High frequency (HF, or shortwave): =f 3−30 MHz. Amateur radio (by ionosphere 

reflection). 

5) Very high frequency (VHF): =f 30−300 MHz. Frequency modulation (FM) broadcast 

(88−108 MHz). TV broadcast. 

6) Ultra high frequency (UHF): =f 300 MHz−3 GHz. TV broadcast. Cell phone (0.9, 1.8 

GHz). Cordless telephone (0.9, 2.4 GHz). GPS (1.6 GHz). Microwave oven (2.45 GHz). 

7) Super high frequency (SHF): =f 3−30 GHz. Radar. Wireless local area network. 

8) Terahertz: ≈f 1012 Hz. Safe medical imaging. High-altitude (e.g. aircraft-to-satellite) 

communications. Security screening (e.g. plastic explosive). 

9) Infrared (IR): =f 1013−1014 Hz, =λ 0.7−100 µm. Fiber communications ( ≈λ 1.55 µm). 

Spectroscopy. Night vision. Thermal imaging (black body, live human =λ 9.5 µm). 

Missile guidance ( =λ 3−5 µm, 8−13 µm). Astronomy (cool planet). 

10) Visible (VIS): ≈f 1015 Hz, =λ 0.4−0.7 µm. Lighting. Photography. 

11) Ultraviolet (UV): =λ 10−400 nm. Photolithography ( =λ 248 nm, 193 nm). Fluorescent 

lamp (mercury vapor discharges emit =λ 254 nm). 

12)  X-rays: ≈λ 0.1 Å−10 nm. Photon energy ~ keV. Crystallography. Medical diagnostics. 

13)  −γ rays: <λ 0.1 Å. Photon energy > MeV. Radiation therapy and diagnostics. 

 


