Electromagnetics P14-1

Lesson 14 Maxwell’'s Equations

H Overview

The fundamental postulates of electrostatics and magnetostatics are summarized as:

VxE=0 (6.2)
V-D=p (7.8)
VxH=17J (12.4)
V-B=0 (11.2)

where E and D are independentof H and B.

In the presence of time-varying fields, eq’s (6.2) and (12.4) have to be modified to meet
Faraday’s law of electromagnetic induction and the equation of continuity [eq. (10.8)],
respectively. As a result, E and D are coupled with H and B, i.e. they must be solved
simultaneously. The solutionsof E, D, H, B behave like waves, justifying the existence

of electromagnetic waves.

14.1 Faraday’'s Law
B Modified fundamental postulate
M. Faraday experimentally observed that a current will be induced in a conducting loop if the
magnetic flux of the loop is changed. This fact can be mathematically described by
modifying eq. (6.2) as:

__®

VxE=-—, 14.1
o (14.1)

which is applicable in both free space and materials. The integral form of eq. (14.1) is:

§CE-d|‘=—jsaa—?-d§, (14.2)
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where S is the open surface bounded by contour C (the normal direction of S and the
sense of rotation of C satisfy the right hand rule). Eq’s (14.1), (14.2) imply that: (1) The
time-varying B serves as the “vortex source” of E. (2) The work done by the induced E
along a closed loop is nonzero, i.e., the induced E is non-conservative. As a result, there is

no well-defined potential value for any point in space (as opposed to the case of conservative
E due to charges). Instead, the magnitude and sign of the induced electromotive force (emf)
V=§E-di

are used to describe the “tendency” of driving current in a conducting loop.

B Stationary circuit in a time-varying magnetic field
If the observation surface S (and C) is stationary (time-independent), the order of

time-derivative and surface-integral can be exchanged:

B g4 E‘a-d§=iq>sm,
s ot dt Js dt

where @__ is the magnetic flux over the stationary surface S. By eq. (14.2), the induced

stat

“transformer emf” is:

= d
Y Ei)CE'dI :_aq)stat

If v, >0, the induced emf tends to drive a current flowing in the same sense of rotation with

(14.3)

contour C. The minus sign of eq. (14.3) means the induced emf tends to drive a current

flowing in such a sense as to oppose the change of flux (H. Lenz, 1833).

Example 14-1: Consider N circular conducting loops of radius b placed in the xy-plane
where a time-varying magnetic field I§=e‘1sz(r,t):azB0 cos(%}sina)t exists (Fig.

14-1ab). Find the induced emf.
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Fig. 14-1. (a) The geometry of a stationary conducting loop, and (b) the spatial amplitude of

magnetic flux density passing through it. (c) The resulting magnetic flux (dash-dot) and

transformer emf (solid).

2
Ans: ®(t) = ISB -ds = Job{az Bo(cos%jsin a)t} -(a,2zrdr) = %(% —1jB0 sinwt (dash-dot,

2
Fig. 14-1c). By eq. (14.3), = u:m%:wb (%—1}5060(405@) (solid, Fig.
T

14-1c).

<Comments>

1) Choosing ds =+a,2zrdr implies that the sense of contour C in eq. (14.3) is

counterclockwise, = v, >0 tends to drive a current in counterclockwise sense.

2) When the flux @ is increasing, = 4/ <0 tends to drive a current in clockwise sense,

causing B in the —z direction and reducing the total magnetic field (shaded region,

Fig. 14-1c).
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B Transformers

Fig. 14-2. A transformer (after DKC).

Consider a typical transformer shown in Fig. 14-2. The primary and secondary coils with N,

and N, turns are wound around a ferromagnetic core (grey region) of high permeability

u>> 1, such that a common magnetic flux @ passes through both coils with negligible

leakage. Current i,(t) flowing through the primary coil will create a magnetic field, which

will pass through the secondary coil and contribute to the mutual flux linkage. By eq. (12.10),
N,i, — N,i, = RO,

I . . .
where R =— s the reluctance of the core with length |, and cross-sectional area S .

1) Ideal transformer (1 —> o): R—>0, N, =N,i,, =

LN, (14.4)
I2 Nl
. : - d do
By eq. (14.3), the induced emf on the ith coil is: v, = _EAi =—N, e =
YNy (14.5)
V2 N2

The effective load seen by the source connected to the primary coil is: (R,),, =V, /i,. By

eq’s (14.4), (14.5) andR, =v, /i,, =

(Ry).q :(&) R, (14.6)

EQ’s (14.4), (14.5), (14.6) indicate that a transformer can transform voltages, currents, and
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impedances.

2) Real transformer: The flux linkages of the primary and secondary coils are:

1/, . 1 .
A, =N, =E(Nf|1 “N,N,i,), A, =N,® =E(N1N2|l —NZi,).

By v, :%Ai (not —%Ai,forthe polarities of v, i. are defined in Fig. 14-2), =

di, _, di di, . di,

=2y, =L, 14.7
dt 12 dt V2 12 dt 2 dt ( )

v, =L

where L, =ﬂ_SN12 L, ='“TSN22 Ly, =”TSN1N2 are the self and mutual inductances. =

{v,, i.}are coupled and have to be solved simultaneously.

B Moving conductor in a static magnetic field

Consider a conducting bar moving with velocity G in a magnetic field B (Fig. 14-3). The

free charges inside the bar are driven by magnetic force: F, =quxB, resulting in

accumulation of positive and negative charges at the two ends until balanced by Coulombian

force at equilibrium.
® @2 & ©

—— U
© Ome 6
]++u‘xB
®© ©®© 6 ©

Fig. 14-3. A conductor moving in a magnetic field will induce motional emf.

For an observer moving with the conductor, the effect of magnetic force can be interpreted as

an (non-conservative) “impressed” electric field:

E =F /q=uxB,
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causing a voltage V,, =V, -V, = I21+(U>< B)-df (the plus sign of the integrand is because

UxB is an impressed electric field). If the moving conductor is part of a closed circuit C,

there is an induced motional emf:
V,=§_(axB).dl (14.8)

V. >0 tends to drive a current flowing in the same sense of rotation of the contour C.

Example 14-2: A metal bar slides over a pair of conducting rails in a uniform magnetic field
B =4a,B, with a constant velocity G (Fig. 14-4). Find (1) the open-circuit voltage V,, (2)
the dissipated power P, when loaded with resistance R.

Ans: (1) V, =V, -V, = [ (a,uxa,B,)-(a,dy)=-uBch.

(2) Choose 1'122'1" as contour C in eq. (14.8), ¥n :J'Zl:(axuxaz BO)-(aydy)z—uBoh(< 0),

= the emf drives a current =% =% in clockwise sense. = P, = 1°R =(uB,h)’ /R,

which is equal to the required mechanical power.

Fig. 14-4. DC generator made by a moving metal bar (after DKC).

B Moving circuit in a time-varying magnetic field

Consider a circuit (conducting loop) C moving with velocity G in a region where E and
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B coexist. A charge g on the circuit experiences a Lorentz’s force F = q(E + 0 % I§) [eq.

(11.1)]. For an observer moving with ¢, the force can be regarded as a result of an effective
electric field:
E'=E+0xB (14.9)

Perform contour integral for eq. (14.9) over C and substitute eq. (14.2) into it, we have:

§CE'-d|‘=—jsaa—?-d§+§c(0xé)-dl‘, (14.10)
where S is the moving surface bounded by C. By eq’s (14.3), (14.8), we know the right
hand side of eq. (14.10) is the summation of the transformer emf 4, and motional emf /..
This means that the total emf induced on the moving circuit C, which is defined as the work
done by the effective electric field E' over C, becomes:

rV'E§CE'.d|‘=rf/t+er, (14.11)
In the following, we will prove that the total emf is equal to the time derivative of the

“dynamic” magnetic flux @, over the moving surface S:

(14.12)

Fig. 14-5. A moving circuit in a magnetic field (after DKC).
Proof: Consider a circuit C moving from C, (dashed, Fig. 14-5) at time t to C, (solid)
attime t+ At in atime-varying magnetic field B(r,t) (denoted by B(t) for simplicity).

d deo o 17 o e .
(1) < Do = [, B8 :imﬁﬁszB(t+At)-dsz—J.SlB(t)-ds] where the direction of
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ds, is essentially the same as that of ds, at the corresponding position (Fig. 14-5). By

first-order Taylor series approximation: B(t + At) ~ B(t) + aE(;Et) At

lmAitUSZE(t+At)-d§}~I|H1A—th B(t)-ds, + [ (65(0 ]d }

Ll s o B | L s e L[ OB
=Ilm{ELZB(t).dsz+.fsz%.dsz}=I|m— 2B(t).ds,zjt.fs%.ds,:

At—0 At—0 At YS

drg o 1BO 1T am ac [ By e
S Beoss[ 0 as +HTOEUSZB(t)~d52—LlB(t)'dsl]

(2) By eq. (11.4), IV(V-B)ﬂv:iﬁsé-d§=LZB(t)-d§2—J‘Slé(t)-d§1+J‘SBB(t)-d§3=0. A
differential element on the side surface S, is represented by ds, = dl xtAt (Fig. 14-5), =
I§-d§3=At|§~(dfo)=Atdr-(le§).:>
j B(t) - ds, _Atj dr - —>At§ d -(GxB) inthe limit of At—0.=>
Lz B(t)-ds, —jsl B(t)-ds, = —j53 B(t)- ds, > —At§_ (GxB)-dr.

Combine (1) and (2), = eq. (14.12) is proved.

<Comment>

Note the surface S is moving (time-dependent), = ij B-d§¢j @-ds.
dtJs s ot

Example 14-3: The motional emf in Example 14-2 can also be derived by eq. (14.12):

—B,hu . Since ds is chosen in the +z-

dynm dynm =

—'[Bds—Bhut = V,=- 9%
dt

direction, V, <0 implies the emf tends to drive a current in clockwise sense.

Example 14-4: A rectangular (hxw) conducting loop is situated in a time-varying magnetic
field B:ayBosin wt and rotates with angular velocity @ about the x-axis (Fig. 14-6).
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Find the induced emf.

Ans: (Method 1) At time t, the unit normal vector &, of the loop makes an angle « = wt

n

with respect to a,. = The dynamic flux due to time-varying magnetic field and moving

y
circuit is:

Dy = ISB .ds =(a,B, sin et )- (a,hw) = B,hw-sin ot - cos a(t).
By eq. (14.3), the transformer emf is: 1 = _%(Dstat , Where the static flux @, is the flux

assuming the loop is stationary (« is constant):

d .. =Bhw-sinawt-cosa .
As a result,
d
Vv, = _aq)stat =-B,hwe-cosat -cosa,

where the angle « is not differentiated. One can also arrive at the same result by:
:—J' = ds - —(a,Bywcos et )- (a,hw) = —Byhwa - cos wt -cos a .

By eq. (14.8), the motional emf is:

Vo = j;14321 (UX Q) dr

jﬂan% j (ayBosina;t)](axolx)Jr IEK—EHga))x(éyBosina)t)](axdx)
=B,hwo-sinat -sina .

Byeg. (14.11) and o =wt, =
V'=9,+v, =-B,hwa-cos2amt .

(Method 2) By eq. (14.12),

v=—So

ot Pom = —B,hwae - cos 2at

B,hw - sin 2at

where @, .. =B,hw-sinwt-cosat =———— (theangle « =t is differentiated).

dynm
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Fig. 14-6. AC generator made by a rotating a metal loop in time-varying M-field (after DKC).

<Comments>

1) Faraday’s law [eq. (14.1)] couples (1) electric field with magnetic field, (2) space with

time, which enables electromagnetic waves.

2) EQ’s (14.1), (14.2) are always valid, while eq’s (14.3), (14.8), and (14.10) are useful only

in the presence of conducting loop.

14.2 Maxwell’s Equations

B Modified Ampére’s circuital law
If we take divergence for VxH =J [eq. (12.4)] and employ the equation of continuity

v.5=-P [eq. (108)], =
ot
_ - dp
V-(VxH)=v.J=-2%,
ot
The above equation is in violation of the vector identity V-(Vx A):O [eq. (5.35)] if the

charge density o is time-varying (%);ﬁO). Mathematically, one can maintain the
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consistency by demanding:

By V-D=p [eq. (7.8)], = v-(VxH):v-h%(v-ﬁ):v-[h%?],
VXH=j+aa—? (14.13)

The term a@—? is called the displacement current density:

) (AIm?) (14.14)

Jo
In other words, a time-varying electric field is equivalent to a current source, which can

produce a magnetic field in the absence of a free current J .

B Maxwell’s equations
Eq’s (6.2), (7.8), (12.4), (11.2) are now modified as coupled differential equations when the

fields are time-varying (J. Maxwell, 1864):

VxE= —%—?, Faraday’s law of EM induction (14.1)

V-D=p, Gauss’s law (7.8)
- - oD o NI

VxH=1J +E’ Modified Ampeére’s circuital law (14.13)

V-B =0, Inexistence of magnetic charge (11.2)

One can use these four equations along with equation of continuity V-J = —2—’? [eq. (10.8)]

and Lorentz’s force equation Ifzq(E+U>< B) [eq. (11.1)] to describe all macroscopic

electromagnetic phenomena.

<Comment>

The four Maxwell’s equations are consistent but not independent. E.g. EQ’s (7.8), (11.2) can
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be derived by eq’s (14.1), (14.13), and (10.8).

By taking the surface integral of eq’s (14.1) and (14.13) over an open surface S bounded by
a contour C, and volume integral of eq’s (7.8) and (11.2) over a volume V bounded by a

closed surface S, we get integral forms of the four Maxwell’s equations:

§E dl = —j 2= ds (14.2)
§D-ds=Q (7.10)
§H dI_I+'[—ds (14.15)
§B-ds=0 (11.4)

Example 14-5: Consider a parallel-plate capacitor driven by a sinusoidal voltage

v, (t)=V,sinet (Fig. 14-7). Find the displacement current i,(t) flowing through the

capacitor, and the magnetic field intensity H everywhere.

Ans: (1) Borrow the result derived in electrostatics, =

E(t) = Vcd(t) D)= E(t)= YV

By eq. (14.14), =
0=, DO 4 —( gj—v t)=C 3 v, (t) = CV,wcos at,
which is equal to the conduction current i_(t).
(2) By eq. (14.15) and cylindrical symmetry, =
§CH -dl =27rH,,(r,t) =i (t) =i (t) .

In either case (surrounding the conducting wire or the capacitor),

H=a, Vs
2
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+ e

Fig. 14-7. Displacement current in a parallel-plate capacitor (after DKC).

<Comments>

1) Since i (t)=i,(t), = the “total” current across the circuit is continuous.

2) H=a %a)cos wt , = the magnitude of magnetic field is proportional to the frequency

Y omr

of the driving source.

B Boundary conditions
As in electromagneto-statics, boundary conditions of electromagneto-dynamics are derived
by applying the integral form of Maxwell’s equations to: (1) a closed path for curl equations,

(2) a pillbox for divergence equations across the boundary (Fig. 7-8), then letting the

thickness Ah approach zero. Since the contributions from the modified terms, —L%-dé

ineg. (14.2) and L%-dé in eq. (14.15), are zero as Ah — 0, boundary conditions are the

same as those in electromagneto-statics:

E, =Ey (7.14)
4, (0,-D,)=p, (7.15)
a,x(H, —H,)=7, (12.11)
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B, =B, (12.12)

where a,, is the unit normal vector pointing from medium-2 to medium-1.

<Comment>

In time-varying case, eq. (7.14) is equivalent to eq. (12.12), and eq. (7.15) is equivalent to eq.

(12.11). (DKC p330)
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