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Lesson 14 Maxwell’s Equations 

 

 Overview 

The fundamental postulates of electrostatics and magnetostatics are summarized as: 

 0=×∇ E
v

 (6.2)

 ρ=⋅∇ D
v

 (7.8)

 JH
vv

=×∇  (12.4)

 0=⋅∇ B
v

 (11.2)

where E
v

 and D
v

 are independent of H
v

 and B
v

. 

 

In the presence of time-varying fields, eq’s (6.2) and (12.4) have to be modified to meet 

Faraday’s law of electromagnetic induction and the equation of continuity [eq. (10.8)], 

respectively. As a result, E
v

 and D
v

 are coupled with H
v

 and B
v

, i.e. they must be solved 

simultaneously. The solutions of E
v

, D
v

, H
v

, B
v

 behave like waves, justifying the existence 

of electromagnetic waves. 

 

 

14.1 Faraday’s Law 

 Modified fundamental postulate 

M. Faraday experimentally observed that a current will be induced in a conducting loop if the 

magnetic flux of the loop is changed. This fact can be mathematically described by 

modifying eq. (6.2) as: 

t
BE
∂
∂

−=×∇
v

v
,        (14.1) 

which is applicable in both free space and materials. The integral form of eq. (14.1) is:  

∫∫ ⋅
∂
∂

−=⋅
SC

sd
t
BldE

  
 v

v
vv

,      (14.2) 
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where S  is the open surface bounded by contour C  (the normal direction of S  and the 

sense of rotation of C  satisfy the right hand rule). Eq’s (14.1), (14.2) imply that: (1) The 

time-varying B
v

 serves as the “vortex source” of E
v

. (2) The work done by the induced E
v

 

along a closed loop is nonzero, i.e., the induced E
v

 is non-conservative. As a result, there is 

no well-defined potential value for any point in space (as opposed to the case of conservative 

E
v

 due to charges). Instead, the magnitude and sign of the induced electromotive force (emf) 

∫ ⋅≡
C

ldE
 
 

vv
V  

are used to describe the “tendency” of driving current in a conducting loop. 

 

 

 Stationary circuit in a time-varying magnetic field 

If the observation surface S  (and C ) is stationary (time-independent), the order of 

time-derivative and surface-integral can be exchanged: 

statSS dt
dsdB

dt
dsd

t
B

Φ=⋅=⋅
∂
∂

∫∫   
 vvv

v

, 

where statΦ  is the magnetic flux over the stationary surface S . By eq. (14.2), the induced 

“transformer emf” is: 

statCt dt
dldE Φ−=⋅≡ ∫  

vv
V        (14.3) 

If 0>tV , the induced emf tends to drive a current flowing in the same sense of rotation with 

contour C . The minus sign of eq. (14.3) means the induced emf tends to drive a current 

flowing in such a sense as to oppose the change of flux (H. Lenz, 1833). 

 

Example 14-1: Consider N  circular conducting loops of radius b  placed in the xy-plane 

where a time-varying magnetic field t
b
rBatrBaB zzz ωπ sin

2
cos),( 0 ⎟

⎠
⎞

⎜
⎝
⎛== vvr

 exists (Fig. 

14-1ab). Find the induced emf. 
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Fig. 14-1. (a) The geometry of a stationary conducting loop, and (b) the spatial amplitude of 

magnetic flux density passing through it. (c) The resulting magnetic flux (dash-dot) and 

transformer emf (solid). 

Ans: ( ) tBbrdrat
b
rBasdBt

b

zzS
ωπ

π
πωπ sin1

2
82sin

2
cos )( 0

2 

0 0 
⎟
⎠
⎞

⎜
⎝
⎛ −=⋅⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=⋅=Φ ∫∫

vvvv
 (dash-dot, 

Fig. 14-1c). By eq. (14.3), ⇒ ( )tBNb
dt
dNt ωωπ

π
cos1

2
8

0

2

−⎟
⎠
⎞

⎜
⎝
⎛ −=

Φ
−=V  (solid, Fig. 

14-1c). 

 

<Comments> 

1) Choosing rdrasd z π2vv +=  implies that the sense of contour C  in eq. (14.3) is 

counterclockwise, ⇒ 0>tV  tends to drive a current in counterclockwise sense. 

2) When the flux Φ  is increasing, ⇒ 0<tV  tends to drive a current in clockwise sense, 

causing B
v

 in the z−  direction and reducing the total magnetic field (shaded region, 

Fig. 14-1c). 
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 Transformers 

 
Fig. 14-2. A transformer (after DKC). 

Consider a typical transformer shown in Fig. 14-2. The primary and secondary coils with 1N  

and 2N  turns are wound around a ferromagnetic core (grey region) of high permeability 

0μμ >>  such that a common magnetic flux Φ  passes through both coils with negligible 

leakage. Current )(1 ti  flowing through the primary coil will create a magnetic field, which 

will pass through the secondary coil and contribute to the mutual flux linkage. By eq. (12.10), 

Φ=− RiNiN 2211 , 

where 
S
lR
μ

=  is the reluctance of the core with length l , and cross-sectional area S . 

1) Ideal transformer ( ∞→μ ): 0→R , 2211 iNiN = , ⇒ 

1

2

2

1

N
N

i
i
=         (14.4) 

By eq. (14.3), the induced emf on the ith coil is: 
dt
dN

dt
dv iii

Φ
−=Λ−= , ⇒ 

2

1

2

1

N
N

v
v

=         (14.5) 

The effective load seen by the source connected to the primary coil is: ( ) 111 / ivR eff ≡ . By 

eq’s (14.4), (14.5) and 22 / ivRL = , ⇒ 

( ) Leff R
N
NR

2

2

1
1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=        (14.6) 

Eq’s (14.4), (14.5), (14.6) indicate that a transformer can transform voltages, currents, and 
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impedances. 

2) Real transformer: The flux linkages of the primary and secondary coils are: 

( )2211
2

111
1 iNNiN
R

N −=Φ=Λ , ( )2
2
212122

1 iNiNN
R

N −=Φ=Λ . 

By ii dt
dv Λ=  (not idt

d
Λ− , for the polarities of iv , ii  are defined in Fig. 14-2), ⇒ 

dt
diL

dt
diLv 2

12
1

11 −= ,  
dt
diL

dt
diLv 2

2
1

122 −=       (14.7) 

where 2
11 N

l
SL μ

= , 2
22 N

l
SL μ

= , 2112 NN
l
SL μ

=  are the self and mutual inductances. ⇒ 

{ iv , ii } are coupled and have to be solved simultaneously. 

 

 

 Moving conductor in a static magnetic field 

Consider a conducting bar moving with velocity uv  in a magnetic field B
v

 (Fig. 14-3). The 

free charges inside the bar are driven by magnetic force: mF
v

Buq
vv ×= , resulting in 

accumulation of positive and negative charges at the two ends until balanced by Coulombian 

force at equilibrium. 

 
Fig. 14-3. A conductor moving in a magnetic field will induce motional emf. 

For an observer moving with the conductor, the effect of magnetic force can be interpreted as 

an (non-conservative) “impressed” electric field: 

BuqFE mm

vvvv
×=≡ , 
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causing a voltage ( )∫ ⋅×+=−=
1 

2 2112 ldBuVVV
vvv  (the plus sign of the integrand is because 

Bu
vv ×  is an impressed electric field). If the moving conductor is part of a closed circuit C , 

there is an induced motional emf: 

( )∫ ⋅×≡
Cm ldBu
 

 
vvvV        (14.8) 

0>mV  tends to drive a current flowing in the same sense of rotation of the contour C . 

 

Example 14-2: A metal bar slides over a pair of conducting rails in a uniform magnetic field 

0BaB z
vv

=  with a constant velocity uv  (Fig. 14-4). Find (1) the open-circuit voltage 0V , (2) 

the dissipated power eP  when loaded with resistance R . 

Ans: (1) ( ) ( ) huBdyaBauaVVV yzx 0

1 

2 0'2'10  −=⋅×=−= ∫
′

′

vvv
� . 

(2) Choose 1'122'1' as contour C  in eq. (14.8), Vm = ( ) ( ) ( )00

1 

2 0 <−=⋅×∫
′

′
huBdyaBaua yzx

vvv , 

⇒ the emf drives a current 
R

huB
R

m 0==
V

I  in clockwise sense. ⇒ ( ) RhuBRIPe /2
0

2 == , 

which is equal to the required mechanical power. 

 
Fig. 14-4. DC generator made by a moving metal bar (after DKC). 

 

 

 Moving circuit in a time-varying magnetic field 

Consider a circuit (conducting loop) C  moving with velocity uv  in a region where E
v

 and 
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B
v

 coexist. A charge q  on the circuit experiences a Lorentz’s force ( )BuEqF
vvvv

×+=  [eq. 

(11.1)]. For an observer moving with q , the force can be regarded as a result of an effective 

electric field: 

BuEE
vvvv

×+=′         (14.9) 

Perform contour integral for eq. (14.9) over C  and substitute eq. (14.2) into it, we have: 

( )∫∫∫ ⋅×+⋅
∂
∂

−=⋅′
CSC

ldBusd
t
BldE

   
 

vvvv
v

vv
,     (14.10) 

where S  is the moving surface bounded by C . By eq’s (14.3), (14.8), we know the right 

hand side of eq. (14.10) is the summation of the transformer emf tV  and motional emf mV . 

This means that the total emf induced on the moving circuit C , which is defined as the work 

done by the effective electric field E′
v

 over C , becomes: 

mtC
ldE VVV +=⋅′≡′ ∫  
vv

,       (14.11) 

In the following, we will prove that the total emf is equal to the time derivative of the 

“dynamic” magnetic flux dynmΦ  over the moving surface S : 

dynmS dt
dsdB

dt
d

Φ−=⋅−=′ ∫  
vv

V      (14.12) 

 
Fig. 14-5. A moving circuit in a magnetic field (after DKC). 

Proof: Consider a circuit C  moving from 1C  (dashed, Fig. 14-5) at time t  to 2C  (solid) 

at time tt Δ+  in a time-varying magnetic field ),( trB vv  (denoted by )(tB
v

 for simplicity). 

(1) ⎥⎦
⎤

⎢⎣
⎡ ⋅−⋅Δ+

Δ
=⋅=Φ ∫∫∫ →Δ 12  1 20 

)()(1lim 
SStSdynm sdtBsdttB

t
sdB

dt
d

dt
d vvvvvv

, where the direction of 
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2sdv  is essentially the same as that of 1sdv  at the corresponding position (Fig. 14-5). By 

first-order Taylor series approximation: t
t
tBtBttB Δ

∂
∂

+≈Δ+
)()()(

v
vv

, ⇒ 

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

∂
∂

+⋅
Δ

≈⎥⎦
⎤

⎢⎣
⎡ ⋅Δ+

Δ ∫∫∫ →Δ→Δ 222  2 20 20

)()(1lim)(1lim
SStSt

sdt
t
tBsdtB

t
sdttB

t
v

v
vvvv

 

∫∫∫∫ ⋅
∂

∂
+⋅

Δ
=⎥

⎦

⎤
⎢
⎣

⎡
⋅

∂
∂

+⋅
Δ

=
→Δ→Δ SStSSt

sd
t
tBsdtB

t
sd

t
tBsdtB

t   20 2 20

)()(1lim)()(1lim
222

v
v

vvv
v

vv
, ⇒ 

⎥⎦
⎤

⎢⎣
⎡ ⋅−⋅

Δ
+⋅

∂
∂

≈⋅ ∫∫∫∫ →Δ 12  1 20  
)()(1lim)( 

SStSS
sdtBsdtB

t
sd

t
tBsdB

dt
d vvvvv

v
vv

. 

(2) By eq. (11.4), ( ) 0)()()( 
312  3 1 2  

=⋅+⋅−⋅=⋅=⋅∇ ∫∫∫∫∫ SSSSV
sdtBsdtBsdtBsdBdvB vvvvvvvvv

. A 

differential element on the side surface 3S  is represented by tuldsd Δ×= vvv
3  (Fig. 14-5), ⇒ 

( ) ( )BultduldBtsdB
vvvvvvvv

×⋅Δ=×⋅Δ=⋅ 3 . ⇒ 

( ) ( )∫∫∫ ×⋅Δ→×⋅Δ=⋅
CSS

BuldtBuldtsdtB
   3

33

)(
vvvvvvvv

 in the limit of 0→Δt . ⇒ 

( )∫∫∫∫ ⋅×Δ−→⋅−=⋅−⋅
CSSS

ldButsdtBsdtBsdtB
  3 1 2

312

)()()(
vvvvvvvvv

. 

Combine (1) and (2), ⇒ eq. (14.12) is proved. 

 

<Comment> 

Note the surface S  is moving (time-dependent), ⇒ ∫∫ ⋅
∂
∂

≠⋅
SS

sd
t
BsdB

dt
d

  
 v

v
vv

. 

 

Example 14-3: The motional emf in Example 14-2 can also be derived by eq. (14.12): 

hutBsdB
Sdynm 0 
 =⋅=Φ ∫

vv
, ⇒ huB

dt
dV dynm 00 −=Φ−= . Since sdv  is chosen in the +z- 

direction, 00 <V  implies the emf tends to drive a current in clockwise sense. 

 

Example 14-4: A rectangular ( wh× ) conducting loop is situated in a time-varying magnetic 

field tBaB y ωsin0
vv

=  and rotates with angular velocity ω  about the x-axis (Fig. 14-6). 
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Find the induced emf. 

Ans: (Method 1) At time t , the unit normal vector nav  of the loop makes an angle tωα =  

with respect to yav . ⇒ The dynamic flux due to time-varying magnetic field and moving 

circuit is: 

( ) ( ) )(cossinsin 00 
tthwBhwatBasdB nySdynm αωω ⋅⋅=⋅=⋅=Φ ∫

vvvv
. 

By eq. (14.3), the transformer emf is: statt dt
d
Φ−=V , where the static flux statΦ  is the flux 

assuming the loop is stationary (α  is constant): 

αω cossin0 ⋅⋅=Φ thwBstat . 

As a result, 

αωω coscos0 ⋅⋅−=Φ−= thwB
dt
d

stattV , 

where the angle α  is not differentiated. One can also arrive at the same result by: 

( ) ( ) αωωωω coscoscos 00 
⋅⋅−=⋅−=⋅

∂
∂

−= ∫ thwBhwatBasd
t
B

nySt
vvv

v

V . 

By eq. (14.8), the motional emf is: 

( )∫ ⋅×=
43211 

 ldBum

vvvV  

( ) ( ) ( ) ( )∫∫ ⋅⎥
⎦

⎤
⎢
⎣

⎡
×⎟
⎠
⎞

⎜
⎝
⎛−+⋅⎥

⎦

⎤
⎢
⎣

⎡
×⎟
⎠
⎞

⎜
⎝
⎛=

3 

4 0

1 

2 0 sin
2

sin
2

dxatBawadxatBawa xynxyn
vvvvvv ωωωω  

αωω sinsin0 ⋅⋅= thwB . 

By eq. (14.11) and tωα = , ⇒ 

thwBmt ωω 2cos0 ⋅−=+=′ VVV . 

(Method 2) By eq. (14.12), 

thwB
dt
d

dynm ωω 2cos0 ⋅−=Φ−=′V , 

where 
2

2sincossin 0
0

thwBtthwBdynm
ωωω ⋅

=⋅⋅=Φ  (the angle tωα =  is differentiated). 
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Fig. 14-6. AC generator made by a rotating a metal loop in time-varying M-field (after DKC). 

 

<Comments> 

1) Faraday’s law [eq. (14.1)] couples (1) electric field with magnetic field, (2) space with 

time, which enables electromagnetic waves. 

2) Eq’s (14.1), (14.2) are always valid, while eq’s (14.3), (14.8), and (14.10) are useful only 

in the presence of conducting loop. 

 

 

14.2 Maxwell’s Equations 

 Modified Ampère’s circuital law 

If we take divergence for JH
vv

=×∇  [eq. (12.4)] and employ the equation of continuity 

t
J

∂
∂

−=⋅∇
ρv

 [eq. (10.8)], ⇒ 

( )
t

JH
∂
∂

−=⋅∇=×∇⋅∇
ρvv

. 

The above equation is in violation of the vector identity ( ) 0=×∇⋅∇ A
v

 [eq. (5.35)] if the 

charge density ρ  is time-varying ( 0≠
∂
∂

t
ρ ). Mathematically, one can maintain the 
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consistency by demanding: 

( )
t

JH
∂
∂

+⋅∇=×∇⋅∇
ρvv

. 

By ρ=⋅∇ D
v

 [eq. (7.8)], ⇒ ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⋅∇=⋅∇
∂
∂

+⋅∇=×∇⋅∇
t
DJD

t
JH

v
vvvv

, 

t
DJH
∂
∂

+=×∇
v

vv
       (14.13) 

The term 
t
D
∂
∂
v

 is called the displacement current density: 

t
DJD ∂
∂

=
v

v
 (A/m2)       (14.14) 

In other words, a time-varying electric field is equivalent to a current source, which can 

produce a magnetic field in the absence of a free current J
v

. 

 

 

 Maxwell’s equations 

Eq’s (6.2), (7.8), (12.4), (11.2) are now modified as coupled differential equations when the 

fields are time-varying (J. Maxwell, 1864): 

 
t
BE
∂
∂

−=×∇
v

v
, Faraday’s law of EM induction (14.1)

 ρ=⋅∇ D
v

, Gauss’s law (7.8)

 
t
DJH
∂
∂

+=×∇
v

vv
, Modified Ampère’s circuital law (14.13)

 0=⋅∇ B
v

, Inexistence of magnetic charge (11.2)

One can use these four equations along with equation of continuity 
t

J
∂
∂

−=⋅∇
ρv

 [eq. (10.8)] 

and Lorentz’s force equation ( )BuEqF
vvvv

×+=  [eq. (11.1)] to describe all macroscopic 

electromagnetic phenomena. 

 

<Comment> 

The four Maxwell’s equations are consistent but not independent. E.g. Eq’s (7.8), (11.2) can 
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be derived by eq’s (14.1), (14.13), and (10.8). 

 

By taking the surface integral of eq’s (14.1) and (14.13) over an open surface S  bounded by 

a contour C , and volume integral of eq’s (7.8) and (11.2) over a volume V  bounded by a 

closed surface S , we get integral forms of the four Maxwell’s equations: 

 ∫∫ ⋅
∂
∂

−=⋅
SC

sd
t
BldE

  
 v

v
vv

 (14.2)

 QsdD
S

=⋅∫ 
vv

 (7.10)

 ∫∫ ⋅
∂
∂

+=⋅
SC

sd
t
DIldH

  
 v

v
vv

 (14.15)

 0
 

=⋅∫S
sdB vv

 (11.4)

 

Example 14-5: Consider a parallel-plate capacitor driven by a sinusoidal voltage 

( ) tVtvc ωsin0=  (Fig. 14-7). Find the displacement current ( )tid  flowing through the 

capacitor, and the magnetic field intensity H
v

 everywhere. 

Ans: (1) Borrow the result derived in electrostatics, ⇒ 

( )
d

tv
tE c )(
= , ( ) ( )

d
tvtEtD c )(εε == . 

By eq. (14.14), ⇒ 

tCVtv
dt
dCtv

dt
d

d
Ssd

t
tDti ccSd ωωε cos)()()()( 0 

==⎟
⎠
⎞

⎜
⎝
⎛=⋅

∂
∂

= ∫
v

v

, 

which is equal to the conduction current )(tic . 

(2) By eq. (14.15) and cylindrical symmetry, ⇒ 

( ) )(),(2 
 

tititrrHldH dcC
===⋅∫ φπ

vv
. 

In either case (surrounding the conducting wire or the capacitor), 

t
r

CVaH ωω
πφ cos

2
0vv

= . 
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Fig. 14-7. Displacement current in a parallel-plate capacitor (after DKC). 

 

<Comments> 

1) Since ( ) )(titi dc = , ⇒ the “total” current across the circuit is continuous. 

2) t
r

CVaH ωω
πφ cos

2
0vv

= , ⇒ the magnitude of magnetic field is proportional to the frequency 

of the driving source. 

 

 

 Boundary conditions 

As in electromagneto-statics, boundary conditions of electromagneto-dynamics are derived 

by applying the integral form of Maxwell’s equations to: (1) a closed path for curl equations, 

(2) a pillbox for divergence equations across the boundary (Fig. 7-8), then letting the 

thickness hΔ  approach zero. Since the contributions from the modified terms, ∫ ⋅
∂
∂

−
S

sd
t
B

 

v
v

 

in eq. (14.2) and ∫ ⋅
∂
∂

S
sd

t
D

 

v
v

 in eq. (14.15), are zero as 0→Δh , boundary conditions are the 

same as those in electromagneto-statics: 

 tt EE 21 =  (7.14)

 ( ) sn DDa ρ=−⋅ 212

vvv  (7.15)

 ( ) sn JHHa
vvvv =−× 212  (12.11)
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 nn BB 21 =  (12.12)

where 21av  is the unit normal vector pointing from medium-2 to medium-1. 

 

<Comment> 

In time-varying case, eq. (7.14) is equivalent to eq. (12.12), and eq. (7.15) is equivalent to eq. 

(12.11). (DKC p330) 


