Electromagnetics P13-1

Lesson 13 Inductance, Magnetic Energy, Force, & Torque

13.1 Inductance
m Physical meaning

As shown in Fig. 13-1, a closed loop C, carrying a current 1, will create a magnetic field

B,, causing a magnetic flux of ®,, =.[S B,-ds over the loop itself. It will cause a flux

linkage of A, =N,®,, if C, has N, turns. If the loop current is changed to I/ =rl, (r
is a constant), eq. (11.13) predicts that the resulting magnetic field will be I§1' =rB, (ie.,the
magnitude change proportionally while the spatial distribution remains intact) as long as the

field exists in some linear medium (i.e., « is independent of current). As a result, the

“self’-flux @j, :L B,-ds =rd,, and the flux linkage A;, =rA,, are proportional to the

loop current. The constant ratio of self flux linkage to loop current is defined as the

“self-inductance” of the loop:

(13.1)

Fig. 13-1. Definition of inductance (after DKC).

In the presence of another loop C, of N, turns, the magnetic field B, created by C,

will also pass through C,, causing a mutual flux linkage of A, = N,®,,, where the mutual

flux @,, :L B,-ds is proportional to current I,. The “mutual inductance” between the
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two loops is defined as:

L =% (H) (13.2)

1

In general, inductance depends on the geometry of the loops and the material where they lie

within.
<Comments>
1) Byeq's (118), (11.12), B, = Vx A, A —*oNalig dh
4 &G R
_N®, N, Y oae Nop 72 = NN, dlﬁl-dlﬁ2
Ly === T ] (7 A) ds = T2f Al =S, § S0

2)

1)

2)

. _ NN, drl'drz _

Similarly, L,, = 1 §C2§Cl R = L,=L,.

In Lesson 14, we will see that a time-varying current I, will induce a voltage
(electromotive force) in C, through L, (Faraday’s law of EM induction), justifying

the name of “inductance”.

Evaluation procedures

(1) Assume a current | for the loop. (2) Find B by Ampeére’s circuital law [eq. (12.6)]
or Biot-Savart law [eq. (11.13)]. (3) Find flux linkage A by integration: A = sté-d§.
(4) Find L byeq’s(13.1), (13.2).

(1) Assume a current | for the loop. (2) Find H and B by previous methods. (3)

Find the stored magnetic energy W_.(4) Find L by W, :%LI Z [see eq. (13.3)].

Example 13-1: Consider a hollow solenoid inductor with cross-sectional area S, and n

turns per unit length (Fig. 13-2). Find the inductance per unit length.

Ans: (1) Assume current | . (2) By eq. (11.7), there is a uniform magnetic flux density of

Edited by: Shang-Da Yang



Electromagnetics P13-3

magnitude B = gynl along axial direction. (3) For a unit length (1 =1), the flux linkage is:

A=n-®=n-(gnl)-S.

(4)Byeq. (13.1), L=n"4S.

Fig. 13-2. Schematic of a solenoid (after DKC).

Example 13-2: Consider two coils C,, C, with N,, N, turns and lengths I, I,
respectively (Fig. 13-3). They are wound concentrically on a thin cylindrical core of radius
a (<<l 1,)with permeability .. Find the mutual inductance.

Ans: (1) Assume C,, C, have currents I, 1,, respectively. (2) By eq. (11.7), current 1,

will produce a uniform magnetic flux density inside C, of magnitude B, = y& I,.(3) The
1

mutual flux linkage of C, dueto C, is: A, =N, -®,=N,-B,-S.(4)Byeq. (13.2), =
N1N2

l,

L, =n

Fig. 13-3. Two coils wound on a common core (after DKC).
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13.2 Magnetic Energy

m Magnetic energy of assembling current loops

Consider a single closed loop C, with self-inductance L,. If the loop current i, increases
from zero to 1, slowly (such that the linear dimension of C, is much smaller than the

wavelength, i.e., “quasi-static” condition), a voltage (emf) of:

__do, | di

W T g

will be induced on the loop to oppose the change of current i, (Faraday’s law and Lenz’s

law). The work done to overcome the induced v, and enforce the change of i, is:
. b, o1
W, = jvllldt = LJO I, di; =3 LI,
which is stored as magnetic energy:

W, :%Lllf (13.3)

Insert a second closed loop C, with self-inductance L, and mutual inductance L,,. If we

maintain i, =1, while increase i, fromzeroto I, slowly, a voltage (emf) of:

db,  di

will be induced on C, in an attempt to change i, (away from 1,). The work done to

maintain i, =1, is:
I2 -
Wo, = [Voulydt = Lyl [ “dliy = Lyl 1,

Meanwhile, a voltage (emf) of:

do, _, di;

2 dt 2 dt

will be induced on C, to oppose the change of current i,. The work done to overcome the

induced v, and enforce the change of i, is:

1
W, =~ L1
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The total magnetic energy stored in the system of two current loops is:

1 1

W, :ELlIf + Ly 1,1, +EL2I22.

The magnetic energy stored in a system of N loops carrying currents 1, |,, ..

be generalized to:

H

N N
_ZZLJKIilk’

j=1 k=1

l\)

By eq’s (13.1), (13.2), the flux of loop C, duetoall the N current loops is:

P13-5

. Iy can

(13.4)

(13.5)

Assume the magnetic flux density and vector potential created by a system of continuous

current density distribution J(F) inavolume V' are B and A, respectively. The system

can be decomposed into N elementary current loops C, (k=1, 2, ..., N), each has a

current Al, and a “filamentary” cross-sectional area Aa, . The magnetic flux of the kth loop

is:
®, = [B-ds=§ A-d,
where S, is the surface bounded by C, . By eq. (13.5),

1 1 -
Wm—EkZl:IKCDK—EkZ;AIJCkA-dIk.

Since Al, -dl, q ‘ Aak) di, = (Aak ‘dl U J-Av, , where Av, =Aa, - ‘dl‘ is the

differential volume, =

W :%J'V,(A- J)dv

(13.6)
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<Comments>
13 1Y
1) Compare eq’s (9.5) and (13.5), W, ZEZQka oW, =EZIk®k , = (1) charge Q<
k=1 k=1

current 1, (2) voltage V <> flux @.

, 1 1 (5
2) Compare eq’s (9.6) and (13.6), W, _Ej'vrdev > W, _EIV,(A-J)dv, = (1) charge

density p <> current density J, (2) electric potential V <> magnetic potential A.

m Magnetic energy of magnetic fields
In terms of real applications of electromagnetism (especially electromagnetic waves), sources
are usually far away from the region of interest and only the resulting fields are given. It
becomes more convenient to express the magnetic energy W_ by the magnetic field
quantities B and H in the absence of the current distribution J .
(1) Substituting J =V xH [eq. (12.4)] into eq. (13.6), =
1, - -
W, :EJ-V'A-(VX H )dv,
where V' is a volume containing all the source currents.
(2) By eq. (11.8) and the vector identity:
V-(Ax H): H -(VxA)—A-(Vx I:I): H -E—A-(Vx H), =
1 -~ 1 -

W =§jV,(H -B)dv—EjV,v.(Ax H Jdv.
(3) By divergence theorem [eq. (5.24)], IV’V.(AX H)dv = fs'(,&x H)- ds, where S’ is the
closed surface of V'. =

1 S = le ( 5) e
W, =1,-1,, where I, :EIV,(H Blv, I, :Eﬁ'(Ax A)-ds.
(4) One can choose S’ as a spherical surface centered at the origin with an infinite radius

R — oo, such that all the source currents are definitely enclosed. For an observation point (on
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S") far away from the source (at the origin), the magnitude of the vector potential ‘A‘ o« R,

and the field magnitude ‘H‘ xR?. =

1= §, (AxF)-ds = 2 ARA (R 47R x5 RE 50, Wy =1, =
1 - -
W, =J'V,Wmdv, W, =2 H-B (I/Im®) (13.7)

where V' has to cover everywhere with nonzero magnetic field, and w, represents the

magnetostatic energy density.

Example 13-3: A coaxial transmission line with solid inner conductor (u = y,) of radius a,
thin outer conductor of inner radius b, and filled with air in between. A uniform current |
flows in the inner conductor and returns in the outer conductor. Find the inductance per unit

length.

a,B,(r),ifr<a

Ans: By the result of Example 11-1: B :{ , Where

a,B,,(r),ifa<r<b

2 I‘, H¢2(r):a.

1| ol I
Bm(r):zﬂ‘;zr, B¢2(r):ﬁ.:> H¢1(r):27za

By eq. (13.7), = the magnetic energy density w, and stored energy W, inside the inner

conductor and in the region between the two conductors are:

| 2 |2
ml=E;l[°2a4r2, szzsﬂ;—zrz, dv =2ar-dr, =
Hol® (2 s fol ? fol? 01 Hol” | (b
mlz—AI r‘dr=—"—, W ,=—"—| =dr=—"—In —|.
4ma” J0 167 A Jar Ar a

By eq. (13.3), the inductance is:

L — 2(\le ijZ) =ﬂ+ﬂ|n(2]
| 87 2rx

a

<Comments>

1) The same result can be obtained by a more tedious way: (1) The flux linkage due to a
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“loop” bounded by the outer conductor (r'=b) and a thin cylindrical shell of radius

r<r’'<r+dr inside the inner conductor (0 <r < a) is derived by:

do(r)= [ "B, (r)-1dr'+ [ B,,(r)-1dr', = dA(r)= zﬂ”;dr da(r).

2

(2) The total flux linkage is: A = j::dA(r). (3)Byeq. (13.1), L=A/I.

2) gl—o and él—oln(gj represent the internal and external inductance per unit length. In
7T T a

high-frequency cases, current only flows near the conducting surface (skin effect), and

internal inductance approaches zero.

13.3 Magnetic Forces and Torques
m Forces on current-carrying conductors

Consider an elemental current-carrying wire of cross-sectional area S, which is represented

by a differential displacement vector dI (Fig. 13-4). In the presence of an external magnetic

field B, free charges within the wire of volume charge density p (C/m® move with
velocity @ (in the same direction of dI ). By eq. (11.1), the magnetic force exerted on the

element is:
dF,, = pS[df|(a x B).
Since |dffa =[aldl, J=pu [eq. (10.1)], = dF, = pS[aldl x B = Js(dI xB),
dF, = I(dl xB), (13.8)

where | =JS denotes the current in the element.
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Fig. 13-4. Magnetic force experienced by an elemental current-carrying wire.

For a closed loop C, eq. (13.8) becomes:

= |§§C dl xB (13.9)
If B is created by another closed loop C, carrying a current 1,, the force exerted on the

loop C, carryingacurrent |, is:

dl, xa
P = 1§, dl, < By, where B, = “0'2§ 2~ "R eq. (11.13)]. =
Az R,

~ 11 dl X d| x a ~
:“0 - §C1§C2 R2 RZl) _F12 (13-10)
21

Eq. (13.10) is the Ampere’s law of force between two current-carrying loops, which is the

counterpart of Coulomb’s law of force between two electric charges [eq. (6.8)].

Example 13-4: Consider two infinitely long, parallel wires separated by a distance d, and
carrying currents 1, I, in the same direction (Fig. 13-5). Find the force per unit length
between them.

Ans: By the result of Example 11-1, the magnetic field on wire 2 due to wire 1 is:

5 /Uoll
B —
12 27zd

By eq. (13.9), the force exerted on wire 2 is:

_ 1~ 1, _ | _ 11
Fo=1,] di,xB, = Izjo(azdz)x(—ax ‘Z%lj =—ay”2°—ﬂ1dz,

which is a force of attraction.
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Fig. 13-5. Two parallel current-carrying wires (after DKC).

m Torques on current-carrying conductors

Example 13-5: Consider a circular loop of radius b and carrying a clockwise current | in

a “uniform” magnetic filed B=B, +B, , where B, =-a

z

B, and B, =a,B, are

perpendicular and parallel to the plane of the loop (xy-plane). Find the force and torque

exerted on the loop.

X X x BL x 4
I
X X
X X
/
X X X X

Fig. 13-6. Circular current-carrying loop in a uniform magnetic field (after DKC).

By eq. (13.8), the forces exerted on a differential current element dl = —a,bdg on the loop

dueto B, and Bjare:

dF, = 1(-a,bdg)x(-a,B, )=a,1bB, dg;
dF, = I(~a,bdg)x(a,B,)= IbBdg(a, sin g —a, cos¢)x(a, ) = a,1bB, sin gdg
In either case, the net force is zero (i.e. the loop will not move), because:
_ 2r = 2z
Fo=| dF = IbBLUO ard¢j =0,

0
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The corresponding torques are:

T, = OZ”dlfL x(-a,b)= _IszL(J.OZHar xﬁr) =0,
T, =] "dF x(-ab)=1b°B,[ “[a,x(-a,)lsingdg = Ib°B, [ " (~a, )sin gy

Ib’B, .[axj'oz”ginz ¢d¢—ay.[02”sin¢-cos¢-d¢} = ﬁx(|7zb2)B” =a,mB,,

where m = lzb® is the magnitude of magnetic dipole moment m.=

T=mxB (13.11)
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