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Lesson 13 Inductance, Magnetic Energy, Force, & Torque 

 

13.1 Inductance 

■ Physical meaning 

As shown in Fig. 13-1, a closed loop 1C  carrying a current 1I  will create a magnetic field 

1B
v

, causing a magnetic flux of ∫ ⋅=Φ
1 111 S

sdB vv
 over the loop itself. It will cause a flux 

linkage of 11111 Φ=Λ N  if 1C  has 1N  turns. If the loop current is changed to 11 rII =′  ( r  

is a constant), eq. (11.13) predicts that the resulting magnetic field will be 11 BrB
vv

=′  (i.e., the 

magnitude change proportionally while the spatial distribution remains intact) as long as the 

field exists in some linear medium (i.e., μ  is independent of current). As a result, the 

“self”-flux 11 111
1

Φ=⋅′=Φ′ ∫ rsdB
S

vv
 and the flux linkage 1111 Λ=Λ′ r  are proportional to the 

loop current. The constant ratio of self flux linkage to loop current is defined as the 

“self-inductance” of the loop: 

1

11
11 I

L
Λ

=  (H)       (13.1) 

 
Fig. 13-1. Definition of inductance (after DKC). 

In the presence of another loop 2C  of 2N  turns, the magnetic field 1B
v

 created by 1C  

will also pass through 2C , causing a mutual flux linkage of 12212 Φ=Λ N , where the mutual 

flux ∫ ⋅=Φ
2 112 S

sdB vv
 is proportional to current 1I . The “mutual inductance” between the 
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two loops is defined as: 

1

12
12 I

L
Λ

=  (H)       (13.2) 

In general, inductance depends on the geometry of the loops and the material where they lie 

within. 

 

<Comments> 

1) By eq’s (11.8), (11.12), 11 AB
vv

×∇= , ∫= '
1 

1110
1 4 C R

ldIN
A

v
v

π
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, ⇒ 

( ) ∫ ∫∫∫
⋅

=⋅=⋅×∇=
Φ

=
1 222   

21210
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1
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1
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12 4 C CCS R

ldldNNldA
I
NsdA

I
N

I
NL

vv
vvvv

π
μ . 

Similarly, ∫ ∫
⋅

=
2 1  

21210
21 4 C C R

ldldNNL
vv

π
μ , ⇒ 2112 LL = . 

2) In Lesson 14, we will see that a time-varying current 1I  will induce a voltage 

(electromotive force) in 2C  through 12L  (Faraday’s law of EM induction), justifying 

the name of “inductance”. 

 

 

■ Evaluation procedures 

1) (1) Assume a current I  for the loop. (2) Find B
v

 by Ampère’s circuital law [eq. (12.6)] 

or Biot-Savart law [eq. (11.13)]. (3) Find flux linkage Λ  by integration: ∫ ⋅=Λ
S

sdBN
 

vv
. 

(4) Find L  by eq’s (13.1), (13.2). 

2) (1) Assume a current I  for the loop. (2) Find H
v

 and B
v

 by previous methods. (3) 

Find the stored magnetic energy mW . (4) Find L  by 2

2
1 LIWm =  [see eq. (13.3)]. 

 

Example 13-1: Consider a hollow solenoid inductor with cross-sectional area S , and n  

turns per unit length (Fig. 13-2). Find the inductance per unit length. 

Ans: (1) Assume current I . (2) By eq. (11.7), there is a uniform magnetic flux density of 



Electromagnetics                    P13-3 

Edited by: Shang-Da Yang 

magnitude nIB 0μ=  along axial direction. (3) For a unit length ( 1=l ), the flux linkage is: 

( ) SnInn ⋅⋅=Φ⋅=Λ 0μ . 

(4) By eq. (13.1), SnL 0
2μ= . 

 
Fig. 13-2. Schematic of a solenoid (after DKC). 

 

Example 13-2: Consider two coils 1C , 2C  with 1N , 2N  turns and lengths 1l , 2l , 

respectively (Fig. 13-3). They are wound concentrically on a thin cylindrical core of radius 

a  ( 1l<< , 2l ) with permeability μ . Find the mutual inductance. 

Ans: (1) Assume 1C , 2C  have currents 1I , 2I , respectively. (2) By eq. (11.7), current 1I   

will produce a uniform magnetic flux density inside 1C  of magnitude 1
1

1
1 I

l
NB μ= . (3) The 

mutual flux linkage of 2C  due to 1C  is: SBNN ⋅⋅=Φ⋅=Λ 1212212 . (4) By eq. (13.2), ⇒ 

2

1

21
12 a

l
NNL πμ= . 

 
Fig. 13-3. Two coils wound on a common core (after DKC). 
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13.2 Magnetic Energy 

■ Magnetic energy of assembling current loops 

Consider a single closed loop 1C  with self-inductance 1L . If the loop current 1i  increases 

from zero to 1I  slowly (such that the linear dimension of 1C  is much smaller than the 

wavelength, i.e., “quasi-static” condition), a voltage (emf) of: 

dt
di

L
dt

d
v 1

1
11

1 =
Φ

−=  

will be induced on the loop to oppose the change of current 1i  (Faraday’s law and Lenz’s 

law). The work done to overcome the induced 1v  and enforce the change of 1i  is: 

2
11

 

0 111111 2
11 ILdiiLdtivW

I
=== ∫∫ , 

which is stored as magnetic energy: 

2
111 2

1 ILW =        (13.3) 

 

Insert a second closed loop 2C  with self-inductance 2L  and mutual inductance 21L . If we 

maintain 11 Ii =  while increase 2i  from zero to 2I  slowly, a voltage (emf) of: 

dt
diL

dt
dv 2

21
21

21 =
Φ

−=  

will be induced on 1C  in an attempt to change 1i  (away from 1I ). The work done to 

maintain 11 Ii =  is: 

2121

 

0 212112121
2 IILdiILdtIvW

I
=== ∫∫ . 

Meanwhile, a voltage (emf) of: 

dt
diL

dt
dv 2

2
22

2 =
Φ

−=  

will be induced on 2C  to oppose the change of current 2i . The work done to overcome the 

induced 2v  and enforce the change of 2i  is: 

2
2222 2

1 ILW = . 
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The total magnetic energy stored in the system of two current loops is: 

2
222121

2
112 2

1
2
1 ILIILILW ++= . 

 

The magnetic energy stored in a system of N  loops carrying currents 1I , 2I , …, NI  can 

be generalized to: 

∑∑
= =

=
N

j

N

k
kjjkm IILW

1 12
1 ,      (13.4) 

By eq’s (13.1), (13.2), the flux of loop kC  due to all the N  current loops is:  

∑
=

=Φ
N

j
jjkk IL

1
, ⇒ 

∑
=

Φ=
N

k
kkm IW

12
1        (13.5) 

 

Assume the magnetic flux density and vector potential created by a system of continuous 

current density distribution )(rJ vv  in a volume V ′  are B
v

 and A
v

, respectively. The system 

can be decomposed into N  elementary current loops kC  ( 1=k , 2, …, N ), each has a 

current kIΔ  and a “filamentary” cross-sectional area kaΔ . The magnetic flux of the kth loop 

is: 

∫∫ ⋅=⋅=Φ
kk C kSk ldAsdB

  
 

vvvv
, 

where kS  is the surface bounded by kC . By eq. (13.5), 

∑ ∫∑
==

⋅Δ=Φ=
N

k
C kk

N

k
kkm

k

ldAIIW
1

 
1 2

1
2
1 vv

. 

Since ( ) ( ) kkkkkkk vJldaJldaJldI Δ⋅=⋅Δ⋅=⋅Δ⋅=⋅Δ
vvvvvv

, where kkk ldav
v

⋅Δ=Δ  is the 

differential volume, ⇒ 

( )∫ ′
⋅=

Vm dvJAW
 2

1 vv
       (13.6) 
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<Comments> 

1) Compare eq’s (9.5) and (13.5), ∑
=

=
N

k
kke VQW

12
1

↔ ∑
=

Φ=
N

k
kkm IW

12
1 , ⇒ (1) charge Q↔ 

current I , (2) voltage V  ↔ flux Φ . 

2) Compare eq’s (9.6) and (13.6), ∫ ′
=

Ve VdvW
 2

1 ρ  ↔ ( )∫ ′
⋅=

Vm dvJAW
 2

1 vv
, ⇒ (1) charge 

density ρ  ↔ current density J
v

, (2) electric potential V  ↔ magnetic potential A
v

. 

 

 

■ Magnetic energy of magnetic fields 

In terms of real applications of electromagnetism (especially electromagnetic waves), sources 

are usually far away from the region of interest and only the resulting fields are given. It 

becomes more convenient to express the magnetic energy mW  by the magnetic field 

quantities B
v

 and H
v

 in the absence of the current distribution J
v

. 

(1) Substituting HJ
vv

×∇=  [eq. (12.4)] into eq. (13.6), ⇒ 

( )∫ ′
×∇⋅=

Vm dvHAW
 2

1 vv
, 

where V ′  is a volume containing all the source currents. 

(2) By eq. (11.8) and the vector identity: 

( ) ( ) ( ) ( )HABHHAAHHA
vvvvvvvvvv

×∇⋅−⋅=×∇⋅−×∇⋅=×⋅∇ , ⇒ 

( ) ( )∫∫ ′′
×⋅∇−⋅=

VVm dvHAdvBHW
  2

1
2
1 vvvv

. 

(3) By divergence theorem [eq. (5.24)], ( ) ( )∫∫ ′′
⋅×=×⋅∇

SV
sdHAdvHA

  

vvvvv
, where S ′  is the 

closed surface of V ′ . ⇒ 

21 IIWm −= , where ( )∫ ′
⋅=

V
dvBHI

 1 2
1 vv

, ( )∫ ′
⋅×=

S
sdHAI

 2 2
1 vvv

. 

(4) One can choose S ′  as a spherical surface centered at the origin with an infinite radius 

∞→R , such that all the source currents are definitely enclosed. For an observation point (on 
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S ′ ) far away from the source (at the origin), the magnitude of the vector potential 1−∝ RA
v

, 

and the field magnitude 2−∝ RH
v

. ⇒ 

( ) 01114)()(
2
1

2
1 2

2
2

 2 →∝⋅⋅∝⋅≈⋅×= ∫ ′ R
R

RR
RRHRAsdHAI

S
π

vvvvv
, 1IWm = . ⇒ 

∫ ′
=

V mm dvwW
 

, BHwm

vv
⋅=

2
1  (J/m3)     (13.7) 

where V ′  has to cover everywhere with nonzero magnetic field, and mw  represents the 

magnetostatic energy density. 

 

Example 13-3: A coaxial transmission line with solid inner conductor ( 0μμ = ) of radius a , 

thin outer conductor of inner radius b , and filled with air in between. A uniform current I  

flows in the inner conductor and returns in the outer conductor. Find the inductance per unit 

length. 

Ans: By the result of Example 11-1: 
⎪⎩

⎪
⎨
⎧

<<

<
=

brarBa
arrBa

B
 if ),(
 if ),(

2

1

φφ

φφ
v

v
v

, where 

( ) r
a
I

rB 2
0

1 2π
μ

φ = , ( )
r
I

rB
π
μ

φ 2
0

2 = . ⇒ ( ) r
a
IrH 21 2πφ = , ( )

r
IrH
πφ 22 = . 

By eq. (13.7), ⇒ the magnetic energy density mw  and stored energy mW  inside the inner 

conductor and in the region between the two conductors are: 

2
42

2
0

1 8
r

a
I

wm π
μ

= , 22

2
0

2 8 r
I

wm π
μ

= , drrdv ⋅= π2 , ⇒ 

π
μ

π
μ

164

2
0 

0 

3
4

2
0

1
Idrr

a
IW

a

m == ∫ , ⎟
⎠
⎞

⎜
⎝
⎛== ∫ a

bIdr
r

IW
b

am ln
4

1
4

2
0 

 

2
0

2 π
μ

π
μ . 

By eq. (13.3), the inductance is: 

⎟
⎠
⎞

⎜
⎝
⎛+=

+
=

a
b

I
WW

L mm ln
28

)(2 00
2

21

π
μ

π
μ

. 

 

<Comments> 

1) The same result can be obtained by a more tedious way: (1) The flux linkage due to a 
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“loop” bounded by the outer conductor ( br =′ ) and a thin cylindrical shell of radius 

drrrr +<′<  inside the inner conductor ( ar <<0 ) is derived by: 

( ) ∫∫ ′⋅′+′⋅′=Φ
b

a

a

r
rdrBrdrBrd

 

 2

 

 1 1)(1)( φφ , ⇒ ( ) )(2
2 rd

a
rdrrd Φ⋅=Λ

π
π . 

(2) The total flux linkage is: ∫
=

=
Λ=Λ

ar

r
rd

 

0 
)( . (3) By eq. (13.1), IL Λ= . 

2) 
π
μ
8

0  and ⎟
⎠
⎞

⎜
⎝
⎛

a
bln

2
0

π
μ  represent the internal and external inductance per unit length. In 

high-frequency cases, current only flows near the conducting surface (skin effect), and 

internal inductance approaches zero. 

 

 

13.3 Magnetic Forces and Torques 

■ Forces on current-carrying conductors 

Consider an elemental current-carrying wire of cross-sectional area S , which is represented 

by a differential displacement vector ld
v

 (Fig. 13-4). In the presence of an external magnetic 

field B
v

, free charges within the wire of volume charge density ρ  (C/m3) move with 

velocity uv  (in the same direction of ld
v

). By eq. (11.1), the magnetic force exerted on the 

element is: 

( )BuldSFd m

vvvv
×= ρ . 

Since lduuld
vvvv = , uJ vv

ρ=  [eq. (10.1)], ⇒ ( )BldJSBlduSFd m

vvvvvv
×=×= ρ , 

 ( )BldIFd m

vvv
×= ,       (13.8) 

where JSI =  denotes the current in the element. 
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Fig. 13-4. Magnetic force experienced by an elemental current-carrying wire. 

For a closed loop C , eq. (13.8) becomes: 

∫ ×=
Cm BldIF
 
  

vvv
       (13.9) 

If B
v

 is created by another closed loop 2C  carrying a current 2I , the force exerted on the 

loop 1C  carrying a current 1I  is: 

∫ ×=
1 211121  

C
BldIF
vvv

, where ∫
×

=
2

21

 2
21

220
21 4 C

R

R
aldI

B
vv

v

π
μ

 [eq. (11.13)]. ⇒ 

( )
12  2

21

2121210
21

1 24
F

R
aldldII

F
C C

R
vvvv

v
−=

××
= ∫ ∫π
μ

    (13.10) 

Eq. (13.10) is the Ampère’s law of force between two current-carrying loops, which is the 

counterpart of Coulomb’s law of force between two electric charges [eq. (6.8)]. 

 

Example 13-4: Consider two infinitely long, parallel wires separated by a distance d , and 

carrying currents 1I , 2I  in the same direction (Fig. 13-5). Find the force per unit length 

between them. 

Ans: By the result of Example 11-1, the magnetic field on wire 2 due to wire 1 is: 

d
IaB x π

μ
2

10
12

vv
−= . 

By eq. (13.9), the force exerted on wire 2 is: 

( )
d
IIa

d
IadzaIBldIF yxz π

μ
π
μ

22
210

1 

0 
10

2

1 

0 122212
vvvvvv

−=⎟
⎠
⎞

⎜
⎝
⎛−×=×= ∫∫ , 

which is a force of attraction. 
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Fig. 13-5. Two parallel current-carrying wires (after DKC). 

 

 

■ Torques on current-carrying conductors 

Example 13-5: Consider a circular loop of radius b  and carrying a clockwise current I  in 

a “uniform” magnetic filed ||BBB
vvv

+= ⊥ , where ⊥⊥ −= BaB z
vv

 and |||| BaB y
vv

=  are 

perpendicular and parallel to the plane of the loop (xy-plane). Find the force and torque 

exerted on the loop. 

 
Fig. 13-6. Circular current-carrying loop in a uniform magnetic field (after DKC). 

By eq. (13.8), the forces exerted on a differential current element φφbdald vv
−=  on the loop 

due to ⊥B
v

 and ||B
v

are: 

( ) ( ) φφφ dIbBaBabdaIFd rz ⊥⊥⊥ =−×−= vvvv
; 

( ) ( ) ( ) ( ) φφφφφφφ dIbBaaaadIbBBabdaIFd zyyxy sincossin ||||||||
vvvvvvv

=×−=×−= . 

In either case, the net force is zero (i.e. the loop will not move), because: 

0 
2 

0 

2 

0 
=⎟

⎠
⎞⎜

⎝
⎛== ∫∫ ⊥⊥⊥

ππ
φdaIbBFdF r

vvv
, 
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0sin 
2 

0 ||

2 

0 |||| =⎟
⎠
⎞⎜

⎝
⎛ ⋅== ∫∫

ππ
φφ dIbBaFdF z

vvv
. 

The corresponding torques are: 

( ) 0
2 

0 

22 

0 
=⎟

⎠
⎞⎜

⎝
⎛ ×−=−×= ∫∫ ⊥⊥⊥

ππ

rrr aaBIbbaFdT vvvvv
, 

( ) ( )[ ] ( )∫∫∫ −=−×=−×=
π

φ

ππ
φφφφ

2 

0 ||
22 

0 ||
22 

0 |||| sinsin daBIbdaaBIbbaFdT rzr
vvvvvv

 

( ) ||||
22 

0 

2 

0 

2
||

2 cossinsin mBaBbIadadaBIb xxyx
vvvv ==⎥⎦

⎤
⎢⎣
⎡ ⋅⋅−⋅ ∫∫ πφφφφφ

ππ
, 

where 2bIm π=  is the magnitude of magnetic dipole moment mv . ⇒ 

yzx BmaTTTT )(|||| −==+= ⊥
vvvvv

. 

In general, the torque is determined by: 

BmT
vvv

×=        (13.11) 


