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Lesson 12 Magnetostatics in Materials 

 

12.1 Static Magnetic Field in the Presence of Magnetic Materials 

■ Concept of induced magnetic dipoles 

Any material has many microscopic magnetic dipoles (i.e., tiny current loops) arising from: 

(1) orbiting electrons, (2) electrons and nucleus of an atom spinning on their own axes. 

However, a material bulk made up of a large number of randomly oriented molecules 

typically has no macroscopic dipole moment in the absence of external magnetic field. 

 

As shown in Fig. 12-1a, consider an atom consisting of a nucleus of positive charge q  and 

an electron of negative charge e−  moving along a circular path of radius r  with a constant 

angular velocity 0ω  in counterclockwise sense (corresponding to a velocity 00 ωφrau vv = ). 

The Coulomb’s force experienced by the electron EeFe

vv
−=  ( 2

04 r
qaE r πε

vv
= ) provides the 

centrifugal force rma er
2
0ω

v  ( em  means the mass of electron) to support the orbiting motion. 

 

Fig. 12-1. Classic model to interpret diamagmetism. 

When a magnetic field BaB z
vv

=  is applied, the orbiting electron experiences an extra force 

BueFm

vvv
×−=  [eq. (11.1)], where ωφrau vv =  (Fig. 12-1b). The total force me FF

vv
+  

increases, providing a stronger centrifugal force rma er
2ωv  and a larger angular velocity 
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)( 0ωω > . Since the “loop current” equals 
π
ω

π 22
e

r
ueI ==  (in clockwise sense), the presence 

of B
v

 changes the magnetic dipole moment of each atom by an amount of 

( )2rIam z π⋅Δ−=Δ vv , where 
π
ωω

2
)( 0−

=Δ
eI . As a result, a net dipole moment emerges, 

contributing to a magnetic field in opposite direction with the applied one. This classical 

model can be used to interpret diamagnetism. 

 

As shown in Fig. 12-2a, consider a circular current loop on the xz-plane with a magnetic 

dipole moment mam y
vv = . When a magnetic field BaB z

vv
=  is applied, the positively charged 

particles located on the upper semicircle ( 0>x ) will experience a magnetic force mF
v

 in the 

yav−  direction, while those located on the lower semicircle ( 0<x ) will experience a 

magnetic force mF
v

 in the yav+  direction. The resulting torque will flip the current loop 

until the magnetic dipole moment is aligned with the applied magnetic field mam z
vv =  (Fig. 

12-2b). Since all the microscopic magnetic dipole moments are aligned with B
v

, a net 

moment emerges, contributing to a magnetic field in the same direction with the applied one. 

This model can be used to interpret paramagnetism. 

 
Fig. 12-1. Classic model to interpret paramagmetism. 

 

<Comment> 

Quantum mechanical model (spin) is required to properly interpret dia- and para-magnetism. 
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■ Magnetization vector and equivalent current densities 

To analyze the effect of induced dipoles, we define a (microscopic) magnetization vector M
v

 

as the volume density of magnetic dipole moment: 

v
m

M k

v Δ
≡ ∑

→Δ

v
v

0
lim                             (12.1) 

where kmv  denotes the k-th magnetic moment inside a differential volume νΔ . 

 

If the magnetization vector M
v

 is inhomogeneous (i.e., varies with position) somewhere, 

there must exist net magnetization current at that position. This phenomenon can be 

illustrated in two cases. 

 
Fig. 12-3. The model to deduce the magnetization surface current density. 

1) The magnetization vector M
v

 is discontinuous on the air-material interface, where there 

must exist net magnetization current (Fig. 12-3a). To quantitatively model this 

phenomenon, consider a differential volume dxdydzV =Δ  adjacent to the interface 

0=y  (whose unit normal vector is yn aa vv = ). As shown in Fig. 12-3b, assume the 

volume has a rectangular current loop with area dydzS =Δ  and current I  flowing in 

counterclockwise sense, corresponding to a magnetic dipole moment SIaM x Δ=Δ vv
 and a 

magnetization vector 
dx
Ia

V
MM x

v
v

v
=

Δ
Δ

= . Since the currents from neighboring volumes 

will cancel with each other except for the components flowing on the interface, there is a 

current I  flowing along zav  over a cross-length dx . The corresponding surface current 
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density is 
dx
IaJ zms

vv
= , which can be generalized to: 

nms aMJ vvv
×=  (A/m)      (12.2) 

for 
dx
Iaa

dx
IaaM zyxn

vvvvv
=×=×  in this particular case. 

2) Consider two adjacent magnetic dipoles with magnetization vectors )(xMaM z
vv

=  and 

)( dxxMaz +v , where ( )
dz

xI
dzS
SxIxM )()(
=

⋅Δ
Δ

=  (Fig. 12-4). The net current passing 

through a surface bounded by contour C  (dashed) between the two magnetic dipoles is: 

( ) ( ) [ ]dzdxxMxMdxxIxI )()( +−=+− . 

The corresponding volume current density is: 

x
M

a
dx

dxxMxMa
dxdz

dxxIxIaJ z
yyym ∂
∂

−=
+−

=
+−

= vvvv )()()()( . 

which can be generalized to: 

MJ m

vv
×∇=  (A/m2)      (12.3) 

for 
x

Ma
M

x
aaa

MMM
zyx

aaa
M z

y

z

zyx

zyx

zyx

∂
∂

−=∂∂=∂∂∂∂∂∂=×∇ v

vvvvvv

v

00
00  in this particular case. 

Fig. 12-4. The model to deduce the magnetization volume current density. 

 

 

<Comment> 

1) Eq. (12.2) can be regarded as a special case of eq. (12.3) on the surface, where the curl of 
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the magnetization vector M
v

 is infinite. 

2) Equivalent magnetization current densities msJ
v

, mJ
v

 can be used in collaboration with 

eq. (11.11) to evaluate the vector potential (and then magnetic field) contributed by 

magnetized material. 

 

Example 12-1: A uniformly magnetized cylinder (permanent magnet) has radius b , length 

L , and 0MaM z
vv

=  (Fig. 12-5a). Find B
v

 along the z-axis. 

Ans: By eq’s (12.2), (12.3), there is uniform magnetization surface current density 

00 MaaMaJ rzms φ
vvvv

=×=  

on the side wall, and no magnetization current density elsewhere. Consider a circular ring of 

height zd ′  centered at ( )z′,0,0 , where there is a differential current zdMzdJdI ms ′=′= 0  

flowing along φav . By Example 11-4, the current ring contributes to a differential magnetic 

flux density: 

2/32
00 1

2

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ′−

+
′

=
b

zz
b

zdM
aBd z

μvv
 

at an observation point ( )zP ,0,0 . The total magnetic flux density becomes: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−

−
−

+
== ∫

=′

=′ 2222

00 

0 )(2 bLz

Lz

bz

zM
aBdB z

Lz

z

μvvv
. 

Fig. 12-5b shows the normalized magnitude of magnetic flux density B
v

 as a function of 

longitudinal position z . The two curves represent the results due to two cylinders of the 

same volume but different lengths and cross-sectional areas, respectively. It is evident that 

longer cylinders (with smaller cross section) can produce stronger axial magnetic field. 
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Fig. 12-5. (a) A uniformly magnetized cylinder (after DKC), and (b) the resulting )(zBz  

versus axial position z for two different cylinders of the same volume. 

 

 

■ Magnetic field intensity 

In the presence of magnetic materials, the total magnetic field would be determined by both 

free and magnetization currents. The fundamental postulate eq. (11.3) is thus modified as: 

( )mJJB
vvv

+=×∇ 0μ . 

By eq. (12.3), ( )MJB
vvv

×∇+=×∇ 00 μμ , ( ) JMB
vvv

00 μμ =×∇−×∇ , JMB vv
v

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×∇

0μ
, ⇒  

JH
vv

=×∇ ,           (12.4) 

MBH
v

v
v

−=
0μ

 (A/m)      (12.5) 

The term H
v

 in eq. (12.4) is defined as the magnetic field intensity, totally determined by the 

“free” currents. The integral form of eq. (12.4) gives the Ampere’s circuital law: 

IldH
C

=⋅∫  
vv

        (12.6) 

 

<Comment> 

1) The magnetic field induced by a magnetic dipole (current loop) is in the same direction as 

the dipole moment M
v

 (Fig. 12-6a). The total field ( )B
v

~  is the summation of fields 
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caused by free current ( )H
v

~  and magnetization ( )M
v

~ , ⇒ MHB
vvv

00 μμ += , i.e., 

MBH
v

v
v

−=
0μ

 [eq. (12.5)]. 

2) The electric field induced by an electric dipole (separated charges) is in opposite direction 

as the dipole moment P
v

 (Fig. 12-6b). Total field ( )E
v

~  is the summation of fields 

caused by free charge ( )D
v

~   and polarization ( )P
v

−~ ,  ⇒ PDE
vvv

−=0ε  , i.e., 

PED
vvv

+= 0ε  [eq. (7.9)]. 

 
Fig. 12-6. Comparison between (a) magnetic, and (b) electric dipoles. 

 

For linear, homogeneous, and isotropic magnetic materials, the magnetization vector is 

proportional to the applied magnetic field: 

HM m

vv
χ= ,       (12.7) 

where mχ  is a dimensionless quantity independent of the magnitude (linear), position 

(homogeneous), and direction (isotropic) of H
v

. Eq. (12.5) becomes ( )MHB
vvv

+= 0μ  

( ) ( )HHH mm

vvv
χμχμ +=+= 100 , ⇒ 

HB
vv

μ= ,        (12.8) 

where the permeability of the medium μ  is defined as: 

( )mχμμ += 10       (12.9) 
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<Comment> 

The strategy is using a single constant μ  to replace the tedious induced magnetic dipoles, 

magnetization vector, and equivalent current densities in determining total magnetic field. 

 

Example 12-2: Consider a wound-coil inductor. (1) H
v

 is related to the surface density of 

free current on the coil. (2) M
v

 is related to the surface density of magnetization current (the 

direction is shown by assuming paramagnetic). (3) 0μB
v

 corresponds to the surface density 

of total current or uncompensated free current. 

 
Fig. 12-7. Physical meanings of magnetic flux density B

v
, magnetization vector M

v
, and 

magnetic field intensity H
v

 illustrated in the example of a wound-coil inductor (after C. C. Su). 

 

Example 12-3: A steady current 0I  flows in N  turns of wire wound around a 

ferromagnetic toroidal core of permeability μ  (magnetic source). The toroid has a large 

mean radius 0r , a small cross-sectional radius ( )0ra << , and a narrow air gap of length gl  

(Fig. 12-8a). Find B
v

, H
v

 in the core and air gap, respectively. 

Ans: Assume the flux has no leakage and nor fringing effect in the air gap, ⇒ total flux (thus 

magnetic flux density B
v

) is constant throughout the magnetic loop, i.e., 

BaBB gf φ
vvv

== . 

By eq’s (12.6), (12.8), ⇒ 
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0
0

NIlBlB
gf =+

μμ
, where gf lrl −= 02π . ⇒ 

0

0

μμ gf ll
NI

B
+

= , 
μ

f
f

B
H

v
v

= , 
0μ
g

g

B
H

v
v

= . 

Fig. 12-8. (a) Magnetic toroid with air gap. (b) The corresponding equivalent circuit (after DKC). 

 

<Comment> 

1) gf BB = , but gf HH << , for a small fH  can induce a strong M
v

 in the ferromagnetic 

material ( )0μμ >> , providing a majority of magnetic flux in the ferromagnetic core. 

2) Total flux ( ) ( )SlSl
NIBS

gf 0

0

μμ +
==Φ , which can be defined as: 

gf

m

RR +
≡Φ

V , 

where 2aS π=  is the cross-sectional area, 0NIm =V  is the magnetomotive force (mmf), 

S
l

R i
i μ
=  ( )gfi ,=  is the reluctance ( fR is the “internal” reluctance of the magnetic 

source, gR  is the load reluctance). This is analogous to 

R
VI =   

in electric circuits (Fig. 12-8b). For a closed path with multiple magnetic sources and 

reluctances: 

∑∑ Φ=
k

kk
j

jj RIN       (12.10) 

3) B−H curve of ferromagnetic material is usually nonlinear and depends on the “history” of 
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magnetization, ⇒ μ  changes with H  and its history (hysteresis), modification is 

required in finding B  (DKC p225). 

4) Due to very limited contrast of μ  among different magnetic materials, confinement of 

magnetic field is usually much worse than that of current density, ⇒ flux leakage and 

fringing effect are normally non-negligible, making the model of magnetic circuit less 

accurate. 

 

 

12.2 General Boundary Conditions for M-fields 

■ Derivation 

As in electrostatics, we apply integral forms of the two fundamental postulates on differential 

contour and thin pill box ( )0→Δh  across the interface of two magnetic media to derive the 

boundary conditions (BCs) for tangential and normal components of magnetic field. 

1) Tangential BC: By eq. (12.6),  

wJwHwHwHwHldH snttabcda
Δ=Δ⋅−Δ⋅=Δ−⋅+Δ⋅=⋅∫ 2121 

)(     vvvvvv
, 

where ( )2,1=iH it  means the iH
v

 component in the ab -direction, snJ  is the surface 

current density component in the right thumb-direction thumbav  when the four fingers 

follow the direction of the path. ⇒ 

sntt JHH =− 21 . 

In general, 

( ) sn JHHa
vvvv =−× 212       (12.11) 

where 2nav  is the unit normal vector directed from medium 2 to medium 1. 
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Fig. 12-9. Differential contour used to derive tangential BC of static magnetic fields (after DKC). 

 

<Comment> 

Note that the projections of 1H
v

 and 2H
v

 on the interface are generally not in parallel. 

Fig. 12-10 illustrates a special example when the projections of 1H
v

 and 2H
v

 on the 

interface (xy-plane) are perpendicular with each other. 

 
Fig. 12-10. Surface current density and boundary magnetic fields. 

 

2) Normal BC: BC: By eq. (11.4), ( )( ) 0 2221 
=Δ⋅−⋅=⋅∫ SaBaBsdB nnS

vvvvvv
, ⇒ 

nn BB 21 =         (12.12) 

 

<Comment> 

1) Only “free” surface current sJ
v

 counts in eq. (12.11). If none of the two interfacing 

media is perfect conductor, 0=sJ
v

, ⇒ tt HH 21 = . 

2) Eq’s (12.11), (12.12) remain valid even the fields are time-varying (Lesson 14). 
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12.3 Behavior of Magnetic Materials (*) 

■ Categorization 

1) Diamagnetic materials ( )0μμ < : As shown in Fig. 12-1, an external magnetic field can 

change the angular velocities of orbiting electrons, resulting in a net magnetic dipole 

moment in opposite direction of the applied field (Lenz’s law). By eq’s (12.7), (12.9), ⇒ 

0<mχ , 0μμ < . Diamagnetism is present in all materials, but is usually very weak 

( )510~ −−mχ  and masked in paramagnetic/ferromagnetic materials. It disappears when 

the external field is withdrawn. 

2) Paramagnetic materials ( )0μμ > : As shown in Fig. 12-2, an external magnetic field 

tends to align the dipole moments of orbiting and spinning electrons such that the net 

magnetic dipole moment is in the same direction of the applied field. ⇒ 0>mχ , 0μμ > . 

Paramagnetism is usually very weak ( )510~ −
mχ , reduced by thermal vibration 

(randomizing the dipole moments), and disappears when the external field is withdrawn.  

3) Ferromagnetic material ( )0μμ >> : This type of materials consists of many domains with 

linear dimensions in the range between 1 μm and 1 mm. Each domain has fully aligned 

dipole moments due to strong coupling forces among spinning electrons (by quantum 

theory). Domain walls of ~100 atoms thick exist between adjacent domains. The domains 

are disorganized (material is demagnetized) if the temperature is above a critical value 

(curie temperature) when thermal energy exceeds the coupling energy. When an external 

magnetic field is applied, the domains with dipole moments aligned with the applied field 

will expand, largely increasing the total magnetic flux (iron has 4000~mχ ). However, 

the relation between the total magnetic flux (~B-field) and the applied field (~H-field) is 

much more involved than a simple linear function like eq. (12.8). 
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Fig. 12-11. Domains of a ferromagnetic material (after DKC). 

 

 

■ Hysteresis curve of ferromagnetic materials 

1) Reversible magnetization: If the external magnetic field is weak (up to 1P  in Fig. 12-12), 

domain wall movement is reversible. ⇒ The B−H curve is a function, i.e., one H-value 

corresponds to a unique B-value. 

2) Hystersis: If the external magnetic field is stronger (say 2P  in Fig. 12-12), the B−H 

curve is not a function. For example, when the H-value is decreased from 2H ( 0> ) to 

2H ′ ( 0< ), the B-value will change along the upper branch of the broken lines connecting 

2P  and 2P′ . When the H-value is increased from 2H ′ ( 0< ) to 2H ( 0> ), the B-value will 

change along the lower branch of the broken lines. In other words, one H-value may 

correspond to two B-values, depending on the “history” of the external field. 

3) Saturation: If the external magnetic field is very strong (say 3P  in Fig. 12-12), all the 

domains are aligned, and further increasing external field does not increase the flux 

density. 

 
Fig. 12-12. Hysteresis of a ferromagnetic material (after DKC). 
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<Comment> 

1) The hysterisis behavior of B−H curve makes that μ  depends on: (1) magnitude of H
v

, 

(2) history of the material’s magnetization (same H
v

 may correspond to different B
v

’s), 

seriously complicating the analysis of magnetic circuit. 

2) Applications in generators, motors, transformers prefer tall, narrow hysteresis loop, while 

permanent magnets prefer fat hysteresis loop. 

3) The area of hysteresis loop is the energy loss per unit volume per cycle in the form of heat 

in overcoming the friction of domain rotation (DKC, Problem P.6-29). 


