Lesson 11 Magnetostatics in Free Space

Introduction

When a small test charge q travels with velocity \vec{u} in a magnetic field characterized by a magnetic flux density \vec{B} (Wb/m²), it will experience a magnetic force $\vec{F}_m = q\vec{u} \times \vec{B}$. If there is an electric field \vec{E} as well, the total electromagnetic force is governed by the Lorentz's force equation:

$$\vec{F} = q \left(\vec{E} + \vec{u} \times \vec{B} \right) \tag{11.1}$$

Historically, \vec{B} is defined by measuring \vec{F}_m and \vec{u} experimentally. However, we will start with two fundamental postulates of magnetostatics in free space to define \vec{B} , from which all experimental laws and the concept of magnetic "potential" can be derived.

11.1 Fundamental Postulates

■ Definition and physical meaning

By Helmholtz's theorem (Lesson 5), \vec{B} can be uniquely specified if its divergence and curl are given:

$$\nabla \cdot \vec{B} = 0 \tag{11.2}$$

$$\nabla \times \vec{B} = \mu_0 \vec{J} \tag{11.3}$$

where \vec{J} is the volume current density (A/m²), and μ_0 is the permeability of vacuum. Eq's (11.2), (11.3) indicate that: (1) there is no "flow source" of magnetic field, (2) \vec{J} acts as the "vortex source" of magnetic field, respectively.

Electromagnetics

Integral forms

By integrating both sides of eq (11.2) over a volume enclosed by surface *S* and applying the divergence theorem [eq. (5.24)], we derive:

$$\oint_{S} \vec{B} \cdot d\vec{s} = 0 \tag{11.4}$$

This means that the magnetic flux lines always close upon themselves, and there is no isolated "magnetic pole".

By integrating both sides of eq. (11.3) over a surface bounded by contour C and applying the Stokes' theorem [eq. (5.29)], we derive the Ampère's circuital law:

$$\oint_C \vec{B} \cdot d\vec{l} = \mu_0 I \tag{11.5}$$

As the Gauss's law in electrostatics, eq. (11.5) relates the magnetic source (I) and field \overline{B} .

11.2 Ampère's Circuital Law

■ Definition and applications

If the current distribution has certain symmetry, such that the tangential component of \overline{B} is constant over a contour C, eq. (11.5) becomes convenient in determining \overline{B} .

Example 11-1: Consider an infinitely long conducting wire with circular cross section of radius b, and carrying a steady current I(A) in the +z direction. Find \vec{B} inside and outside the conductor.

Ans: By cylindrical symmetry, $\Rightarrow \vec{B} = \begin{cases} \vec{a}_{\phi} B_{\phi 1}(r), & \text{if } r < b \\ \vec{a}_{\phi} B_{\phi 2}(r), & \text{if } r > b \end{cases}$. Choose a circle of radius r as

the integral path C (Fig. 11-1a).

Electromagnetics

(1) For
$$r < b$$
: $\oint_{C_1} \vec{B} \cdot d\vec{l} = 2\pi r B_{\phi 1}(r) = \mu_0 \left(\frac{r}{b}\right)^2 I$, $\Rightarrow B_{\phi 1}(r) = \frac{\mu_0 I}{2\pi b^2} r(\infty r).$

(2) For
$$r > b$$
: $\oint_{C_2} \vec{B} \cdot d\vec{l} = 2\pi r B_{\phi 2}(r) = \mu_0 I$, $\Rightarrow B_{\phi 2}(r) = \frac{\mu_0 I}{2\pi r} (\propto r^{-1}).$

This example shows that a conducting wire creates a "circulating" magnetic field outside the wire itself:

Fig. 11-1. (a) Cross-section of the conducting wire. (b) Magnitude of magnetic flux density (after DKC).

Example 11-2: Consider an infinitely long solenoid with air core, n turns per unit length, and carrying a steady current I. Find \vec{B} inside the solenoid.

Ans: Since (1) $\vec{B} = 0$ outside the solenoid, (2) \vec{B} is constant and in axial direction inside the solenoid, \Rightarrow choose a rectangular contour *C* (Fig. 11-2). $\oint_C \vec{B} \cdot d\vec{l} = BL = \mu_0 (nL)I$, \Rightarrow

Fig. 11-2. A current-carrying solenoid (after DKC).

11.3 Vector Magnetic Potential

■ Definition and physical meaning

From the null identity of eq. (5.35) and the fundamental postulate of eq. (11.2), magnetic flux density \vec{B} is divergence-free and can be expressed as the curl of some vector potential field:

$$\vec{B} = \nabla \times \vec{A} \tag{11.8}$$

The flux Φ of \overline{B} over a given area S bounded by contour C is:

$$\Phi(\mathbf{W}\mathbf{b}) = \int_{S} \vec{B} \cdot d\vec{s} = \int_{S} (\nabla \times \vec{A}) \cdot d\vec{s} = \oint_{C} \vec{A} \cdot d\vec{l} .$$

The line integral of \vec{A} over a contour *C* equals the total magnetic flux passing through the area bounded by *C* (physical meaning of \vec{A}).

Unlike scalar electric potential V, we need to specify the divergence of \overline{A} (in addition to the curl of \overline{A} , specified by eq. (11.8)) to uniquely define the vector magnetic potential \overline{A} . In magnetostatics, we choose the Coulomb's gauge:

$$\nabla \cdot \vec{A} = 0 \tag{11.9}$$

Substitute eq's (11.3), (11.8), (11.9) into the definition of vector Laplacian eq. (5.31):

$$abla^2 \vec{A} \equiv \nabla \left(\nabla \cdot \vec{A} \right) - \nabla \times \nabla \times \vec{A} = 0 - \nabla \times \vec{B} = -\mu_0 \vec{J} ,$$

i.e., the vector magnetic potential \vec{A} is satisfied with a vector Poisson's equation:

$$\nabla^2 \vec{A} = -\mu_0 \vec{J} \tag{11.10}$$

<Comment>

Coulomb's gauge is chosen to simplify eq. (11.10). We will choose different gauges in time-varying fields (Lesson 15).

Evaluation

Eq. (11.10) can be solved by the following procedures:

(1) By eq. (5.33), eq. (11.10) is equivalent to three scalar Poisson's equations:

$$\nabla^2 A_i = -\mu_0 J_i \ (i = x, y, z)$$

in Cartesian coordinates.

(2) The solution to the scalar Poisson's equation $\nabla^2 V = -\frac{\rho_v}{\varepsilon_0}$ [eq. (8.1)] is:

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{V'} \frac{\rho_v(\vec{r}')}{R(\vec{r},\vec{r}')} dv' \quad [\text{eq. (6.15)}].$$

(3) By analogy, the solution to the scalar Poisson's equation $\nabla^2 A_i = -\mu_0 J_i$ is:

$$A_{i}(\vec{r}) = \frac{\mu_{0}}{4\pi} \int_{V'} \frac{J_{i}(\vec{r}')}{R(\vec{r},\vec{r}')} dv'.$$

(4) Combining x-, y-, z-components, \Rightarrow

$$\bar{A}(\bar{r}) = \frac{\mu_0}{4\pi} \int_{V'} \frac{\bar{J}(\bar{r}')}{R(\bar{r},\bar{r}')} dv' \quad (Wb/m)$$
(11.11)

Example 11-3: Find the magnetic potential \vec{A} and magnetic flux density \vec{B} in the "bisecting plane z = 0" (not for the entire 3-D space) created by a straight current-carrying wire of length 2L and current I (Fig. 11-3a).

Ans: In cylindrical coordinates, an arbitrary observation point and a source point are located at $\vec{r} = (r, \phi, 0) = \vec{a}_r r$ ($\phi = 0 \sim 2\pi$), and $\vec{r}' = (0, \phi, z') = \vec{a}_z z'$ ($z' = -L \sim L$), respectively. \Rightarrow $R(\vec{r}, \vec{r}') = |\vec{r} - \vec{r}'| = \sqrt{r^2 + {z'}^2}$, $\vec{J}(\vec{r}') = \vec{a}_z \frac{I}{S}$ (S is the cross-sectional area of the wire),

$$dv' = Sdz'. \text{ By eq. (11.11), } \vec{A}(r,\phi,0) = \vec{a}_z \frac{\mu_0 I}{4\pi} \left(\int_{-L}^{L} \frac{dz'}{\sqrt{r^2 + z'^2}} \right) = \vec{a}_z \frac{\mu_0 I}{2\pi} \ln \left[\frac{1 + \sqrt{1 + (r/L)^2}}{(r/L)} \right].$$

By eq. (11.8),
$$\vec{B}(r,\phi,0) = \nabla \times (\vec{a}_z A_z) = \vec{a}_r \frac{\partial A_z}{\partial \phi} - \vec{a}_\phi \frac{\partial A_z}{\partial r} = \vec{a}_\phi \frac{\mu_0 I}{2\pi r \sqrt{1 + (r/L)^2}}$$
. Fig. 11-3b

compares the magnetic fields caused by an infinitely wire [dashed, eq. (11.6)] and a finite

wire (solid), respectively.

Fig. 11-3. (a) Geometry of a section of straight wire of length 2L carrying current *I*. (b) Normalized magnitude of magnetic flux density in the bisecting plane.

<Comment>

1) Since eq. (11.11) is a vector integral, determining \vec{B} by way of calculating \vec{A} is less helpful in comparison with determining \vec{E} by way of calculating scalar potential V.

2)
$$\bar{B}(r,\phi,0) \rightarrow \bar{a}_{\phi} \frac{\mu_0 I}{2\pi r}$$
 when $r \ll L$, consistent with that derived in Example 11-1.

11.4 Biot-Savart Law

■ Magnetic field created by current loops

For a closed current loop C' made by thin wire carrying a current I (typical magnetic source), the term $\vec{J}(\vec{r}')dv'$ in eq. (11.11) becomes $Id\vec{l}', \Rightarrow$

$$\vec{A}(\vec{r}) = \frac{\mu_0 I}{4\pi} \oint_C \frac{d\vec{l}'}{R(\vec{r},\vec{r}')}$$
(11.12)

The resulting magnetic flux density \overline{B} is governed by Biot-Savart law:

$$\vec{B} = \oint_C d\vec{B}, \ d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{dl' \times \vec{a}_R}{R^2},$$
(11.13)

where $\vec{a}_R(\vec{r}, \vec{r}') = \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|}$ is the unit vector in the direction from the source point \vec{r}' to the

observation point \vec{r} , $R(\vec{r},\vec{r}') = |\vec{r} - \vec{r}'|$, $d\vec{B}$ is the magnetic field contributed by a differential current segment.

Proof:

(1) By eq. (11.12),
$$\vec{B} = \nabla \times \vec{A} = \frac{\mu_0 I}{4\pi} \nabla \times \left[\oint_C \frac{d\vec{l}'}{R(\vec{r},\vec{r}')} \right] = \frac{\mu_0 I}{4\pi} \oint_C \nabla \times \left[\frac{d\vec{l}'}{R(\vec{r},\vec{r}')} \right].$$

- (2) By vector identify: $\nabla \times (R^{-1}d\vec{l}') = R^{-1}(\nabla \times d\vec{l}') + \nabla (R^{-1}) \times d\vec{l}'.$
- (3) $\nabla \times d\vec{l}' = 0$, for $\nabla \times$ is performed with respect to \vec{r} while $d\vec{l}'$ only changes with \vec{r}' (analogous to the fact: $\frac{d}{dy} f(x) = 0$).

(4)
$$R = \sqrt{\left(x - x'\right)^2 + \left(y - y'\right)^2 + \left(z - z'\right)^2}, \quad \nabla \left(R^{-1}\right) = \vec{a}_x \frac{\partial R^{-1}}{\partial x} + \vec{a}_y \frac{\partial R^{-1}}{\partial y} + \vec{a}_z \frac{\partial R^{-1}}{\partial z} = -\vec{a}_R R^{-2}. \Rightarrow$$

Eq. (11.13) is derived.

<Comment>

- 1) Eq. (11.13) allows for direct evaluation of \vec{B} from current distribution without first calculating \vec{A} . Its counterpart in electrostatics is the Coulomb's law [eq. (6.10)].
- 2) In non-Cartesian coordinates, pay attention to the "position-dependent" unit vectors (e.g. $\vec{a}_R \neq \vec{a}'_R$).

Example 11-4: Find the magnetic flux density \vec{B} "on the axis" of a circular loop (not for the entire 3-D space) of radius *b* and carrying a current *I* (Fig. 11-4a).

Ans: (1) In cylindrical coordinates, an arbitrary on-axis observation point P and a source point on the loop C' are located at: $\vec{r} = (0,0,z) = \vec{a}_z z$ and $\vec{r}' = (b,\phi',0) = \vec{a}'_r b$, respectively. \Rightarrow The displacement vector from the source point to the observation point is: $\vec{r} - \vec{r}' = \vec{a}_R R$, where $R = \sqrt{z^2 + b^2}$, $\vec{a}_R = \frac{\vec{a}_z z - \vec{a}'_r b}{R}$.

(2) The differential displacement of the source point is: $d\vec{l}' = \vec{a}'_{\phi}bd\phi'$, \Rightarrow

$$d\vec{l}' \times \vec{a}_R = \left(\vec{a}_{\phi}'bd\phi'\right) \times \frac{\vec{a}_z z - \vec{a}_r'b}{R} = \frac{bd\phi'}{R} \left(\vec{a}_r'z + \vec{a}_zb\right)$$

(3) By eq. (11.13),

Fig. 11-4. (a) A circular loop of radius b carrying current I (after DKC). (b) Normalized magnitude of magnetic flux density on the *z*-axis.

11.5 Magnetic Dipole

A circular current-carrying loop forms a magnetic dipole (Fig. 11-5). The resulting \vec{A} and \vec{B} at any position $\vec{r} = \vec{a}_R R$ (not just on the loop axis) far away from the loop (R >> b) are:

$$\vec{A}(\vec{r}) \approx \frac{\mu_0 \vec{m} \times \vec{a}_R}{4\pi R^2}$$
(11.14)

$$\vec{B}(\vec{r}) \approx \frac{\mu_0 m}{4\pi R^3} \left[\vec{a}_R 2\cos\theta + \vec{a}_\theta \sin\theta \right]$$
(11.15)

where $\bar{m} = \bar{a}_z I \pi b^2$ represents the magnetic dipole moment. In general, any current loop forms a magnetic dipole, where the dipole moment \bar{m} has a magnitude equal to the product of current *I* and loop area *S*, and is in the direction of right thumb as the remaining four fingers follow the direction of current flow:

$$\vec{m} = \vec{a}_m IS \tag{11.16}$$

Fig. 11-5. Evaluation of far-fields generated by a magnetic dipole (after DKC).

<u>Proof</u>: (1) The geometry has ϕ – symmetry in spherical coordinates. It is sufficient to consider an observation point on the *yz*-plane ($\phi = \pi/2$) with position vector:

$$\vec{r} = (R, \theta, \pi/2) = R\vec{a}_R(\theta, \pi/2) = R(\vec{a}_v \sin \theta + \vec{a}_z \cos \theta).$$

An arbitrary source point on the current loop is located at:

$$\bar{r}' = (b, \pi/2, \phi') = b\bar{a}'_R(\pi/2, \phi') = b(\bar{a}_x \cos \phi' + \bar{a}_y \sin \phi'), \quad \phi' = 0 \sim 2\pi.$$

The displacement vector from the source point to the observation point is:

$$\vec{R}_{1} = \vec{r} - \vec{r}' = R\vec{a}_{R}(\theta, \pi/2) - b\vec{a}_{R}'(\pi/2, \phi'), \implies R_{1}^{2} = \vec{R}_{1} \cdot \vec{R}_{1} = R^{2} + b^{2} - 2Rb(\vec{a}_{R} \cdot \vec{a}_{R}'),$$

where $\vec{a}_R \cdot \vec{a}'_R = \cos \psi = (\vec{a}_y \sin \theta + \vec{a}_z \cos \theta) \cdot (\vec{a}_x \cos \phi' + \vec{a}_y \sin \phi') = \sin \theta \sin \phi', \Rightarrow$

$$R_1^{-1} = \left(R^2 + b^2 - 2Rb\sin\theta\sin\phi'\right)^{-1/2} \approx \frac{1}{R} \left(1 + \frac{b}{R}\sin\theta\sin\phi'\right), \text{ given } R \gg b.$$

The differential displacement of the source point is:

$$d\vec{l}' = \vec{a}'_{\phi}bd\phi' = bd\phi' \left(-\vec{a}_x \sin\phi' + \vec{a}_y \cos\phi'\right).$$

(2) By eq. (11.11),
$$\vec{A}(\vec{r}) = \frac{\mu_0 I}{4\pi} \oint_C \frac{d\vec{l}'}{R_1} \approx \frac{\mu_0 I b}{4\pi R} \oint_C \left(1 + \frac{b}{R} \sin \theta \sin \phi'\right) \left(-\vec{a}_x \sin \phi' + \vec{a}_y \cos \phi'\right) d\phi'$$

$$\approx \frac{\mu_0 I b}{4\pi R} \left[-\vec{a}_x \int_0^{2\pi} \left(\sin \phi' + \frac{b}{R} \sin \theta \sin^2 \phi'\right) d\phi' + \vec{a}_y \int_0^{2\pi} \left(\cos \phi' + \frac{b}{R} \sin \theta \sin \phi' \cos \phi'\right) d\phi'\right]$$
$$= \frac{\mu_0 I b}{4\pi R} \left(-\vec{a}_x \frac{b}{R} \sin \theta \cdot \pi\right) = -\vec{a}_x \frac{\mu_0 I \pi b^2 \sin \theta}{4\pi R^2}.$$

Edited by: Shang-Da Yang

Since $\vec{m} = \vec{a}_z I \pi b^2$, $\vec{m} \times \vec{a}_R(\theta, \pi/2) = (\vec{a}_z I \pi b^2) \times (\vec{a}_y \sin \theta + \vec{a}_z \cos \theta) = -\vec{a}_x I \pi b^2 \sin \theta$, \Rightarrow $\vec{A}(\vec{r}) = \frac{\mu_0 \vec{m} \times \vec{a}_R}{4\pi R^2},$

as predicted by eq. (11.14). For a general observation point
$$(\phi \neq \pi/2)$$
, $-\bar{a}_x = \bar{a}_{\phi}(\theta, \pi/2)$ is
generalized to $\bar{a}_{\phi}(\theta, \phi)$, $\Rightarrow \bar{A}(\bar{r}) = \bar{a}_{\phi}A_{\phi}$, where $A_{\phi}(R, \theta) = \frac{\mu_0 m \sin \theta}{4\pi R^2}$.
(3) By eq. (11.8) and the curl formula in spherical coordinates

(3) By eq. (11.8) and the curl formula in spherical coordinates,

$$\bar{B}(\bar{r}) = \nabla \times \left(\bar{a}_{\phi}A_{\phi}\right) \approx \bar{a}_{R} \frac{1}{R\sin\theta} \frac{\partial}{\partial\theta} \left(A_{\phi}\sin\theta\right) - \bar{a}_{\theta} \frac{1}{R} \frac{\partial}{\partial R} \left(A_{\phi}R\right).$$
(i) $\frac{\partial}{\partial\theta} \left(A_{\phi}\sin\theta\right) = \frac{\mu_{0}m}{4\pi R^{2}} \frac{\partial}{\partial\theta} \left(\sin^{2}\theta\right) = \frac{\mu_{0}m}{4\pi R^{2}} \sin 2\theta$
(ii) $\frac{\partial}{\partial R} \left(A_{\phi}R\right) = \frac{\mu_{0}m\sin\theta}{4\pi} \frac{\partial}{\partial R} \left(\frac{1}{R}\right) = -\frac{\mu_{0}m\sin\theta}{4\pi R^{2}}$

$$\Rightarrow \ \bar{B}(\bar{r}) \approx \bar{a}_{R} \frac{1}{R\sin\theta} \frac{\mu_{0}m}{4\pi R^{2}} \sin 2\theta + \bar{a}_{\theta} \frac{1}{R} \frac{\mu_{0}m\sin\theta}{4\pi R^{2}} = \frac{\mu_{0}m}{4\pi R^{3}} \left[\bar{a}_{R}2\cos\theta + \bar{a}_{\theta}\sin\theta\right],$$

as predicted by eq. (11.15).

<Comment>

Resemblance between eq's (11.14), (6.18) and eq's (11.15), (6.16) implies that the "far-field" patterns established by electric and magnetic dipoles are similar if the electric dipole moment is replaced by the magnetic dipole moment $(\vec{p} \rightarrow \vec{m})$ and permittivity is replaced by the inverse of permeability ($\varepsilon_0 \rightarrow \frac{1}{\mu_0}$).

Fig. 11-6. (a) E-field lines far away from an electric dipole. (b) M-field lines far away from a magnetic dipole. (c) Close-up view of (a). (d) Close-up view of (b) (after Inans).