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Lesson 11 Magnetostatics in Free Space 

 

■ Introduction 

When a small test charge q  travels with velocity uv  in a magnetic field characterized by a 

magnetic flux density B
v

 (Wb/m2), it will experience a magnetic force BuqFm

vvv
×= . If there 

is an electric field E
v

 as well, the total electromagnetic force is governed by the Lorentz’s 

force equation: 

 ( )BuEqF
vvvv

×+=  (11.1)

Historically, B
v

 is defined by measuring mF
v

 and uv  experimentally. However, we will start 

with two fundamental postulates of magnetostatics in free space to define B
v

, from which all 

experimental laws and the concept of magnetic “potential” can be derived. 

 

 

11.1 Fundamental Postulates 

■ Definition and physical meaning 

By Helmholtz’s theorem (Lesson 5), B
v

 can be uniquely specified if its divergence and curl 

are given: 

 0=⋅∇ B
v

 (11.2)

 JB
rv

0μ=×∇  (11.3)

where J
v

 is the volume current density (A/m2), and 0μ  is the permeability of vacuum. Eq’s 

(11.2), (11.3) indicate that: (1) there is no “flow source” of magnetic field, (2) J
v

 acts as the 

“vortex source” of magnetic field, respectively. 
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■ Integral forms 

By integrating both sides of eq (11.2) over a volume enclosed by surface S  and applying 

the divergence theorem [eq. (5.24)], we derive: 

 0 
 

=⋅∫S
sdB vv

 (11.4)

This means that the magnetic flux lines always close upon themselves, and there is no 

isolated “magnetic pole”. 

 

By integrating both sides of eq. (11.3) over a surface bounded by contour C  and applying 

the Stokes’ theorem [eq. (5.29)], we derive the Ampère’s circuital law: 

 IldB
C 0 
 μ=⋅∫

vv
 (11.5)

As the Gauss’s law in electrostatics, eq. (11.5) relates the magnetic source ( I ) and field B
v

. 

 

 

11.2 Ampère’s Circuital Law 

■ Definition and applications 

If the current distribution has certain symmetry, such that the tangential component of B
v

 is 

constant over a contour C , eq. (11.5) becomes convenient in determining B
v

. 

 

Example 11-1: Consider an infinitely long conducting wire with circular cross section of 

radius b , and carrying a steady current )A(I  in the +z direction. Find B
v

 inside and 

outside the conductor. 

Ans: By cylindrical symmetry, ⇒ 
⎪⎩

⎪
⎨
⎧

>

<
=

brrBa
brrBa

B
 if ),(
 if ),(

2

1

φφ

φφ
v

v
r

. Choose a circle of radius r  as 

the integral path C  (Fig. 11-1a). 
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(1) For br < : ( ) I
b
rrrBldB

C

2

01 
2 

1
⎟
⎠
⎞

⎜
⎝
⎛==⋅∫ μπ φ

vv
, ⇒ ( ) ( )rr

b
IrB ∝=  

2 2
0

1 π
μ

φ . 

(2) For br > : ( ) IrrBldB
C 02 

2 
2

μπ φ ==⋅∫
vv

, ⇒ ( ) ( )10
2  

2
−∝= r

r
IrB
π
μ

φ . 

This example shows that a conducting wire creates a “circulating” magnetic field outside the 

wire itself: 

r
IaB
π
μ

φ 2
0vv

=         (11.6) 

 
Fig. 11-1. (a) Cross-section of the conducting wire. (b) Magnitude of magnetic flux density (after DKC). 

 

Example 11-2: Consider an infinitely long solenoid with air core, n  turns per unit length, 

and carrying a steady current I . Find B
v

 inside the solenoid. 

Ans: Since (1) 0=B
v

 outside the solenoid, (2) B
v

 is constant and in axial direction inside the 

solenoid, ⇒ choose a rectangular contour C (Fig. 11-2). ( )InLBLldB
C 0 
 μ==⋅∫

vv
, ⇒ 

nIB 0μ=          (11.7) 

 
Fig. 11-2. A current-carrying solenoid (after DKC). 
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11.3 Vector Magnetic Potential 

■ Definition and physical meaning 

From the null identity of eq. (5.35) and the fundamental postulate of eq. (11.2), magnetic flux 

density B
v

 is divergence-free and can be expressed as the curl of some vector potential field: 

AB
vv

×∇=         (11.8) 

The flux Φ  of B
v

 over a given area S  bounded by contour C  is: 

( ) ( ) ∫∫∫ ⋅=⋅×∇=⋅=Φ
CSS

ldAsdAsdB
   
   Wb 

vvvvvv
. 

The line integral of A
v

 over a contour C  equals the total magnetic flux passing through the 

area bounded by C  (physical meaning of A
v

). 

 

Unlike scalar electric potential V , we need to specify the divergence of A
v

 (in addition to 

the curl of A
v

, specified by eq. (11.8)) to uniquely define the vector magnetic potential A
v

. 

In magnetostatics, we choose the Coulomb’s gauge: 

0=⋅∇ A
v

              (11.9) 

Substitute eq’s (11.3), (11.8), (11.9) into the definition of vector Laplacian eq. (5.31): 

( ) JBAAA
vvrvv

0
2 0 μ−=×∇−=×∇×∇−⋅∇∇≡∇ , 

i.e., the vector magnetic potential A
v

 is satisfied with a vector Poisson’s equation: 

JA
vv

0
2 μ−=∇         (11.10) 

 

<Comment> 

Coulomb’s gauge is chosen to simplify eq. (11.10). We will choose different gauges in 

time-varying fields (Lesson 15). 
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■ Evaluation  

Eq. (11.10) can be solved by the following procedures: 

(1) By eq. (5.33), eq. (11.10) is equivalent to three scalar Poisson’s equations: 

),,( 0
2 zyxiJA ii =−=∇ μ  

in Cartesian coordinates. 

(2) The solution to the scalar Poisson’s equation 
0

2

ε
ρvV −=∇  [eq. (8.1)] is: 

vd
rrR
rrV

V
v ′

′
′

= ∫ ′ 
0 ),(

)(
4

1)( vv

v
v ρ

πε
 [eq. (6.15)]. 

(3) By analogy, the solution to the scalar Poisson’s equation ii JA 0
2 μ−=∇  is: 

vd
rrR

rJrA
V

i
i ′

′
′

= ∫ ′ 
0

),(
)(

4
)( vv

v
v

π
μ . 

(4) Combining x-, y-, z-components, ⇒ 

vd
rrR

rJrA
V

′
′
′

= ∫ ′ 
0

),(
)(

4
)( vv

vv
vv

π
μ  (Wb/m)     (11.11) 

 

Example 11-3: Find the magnetic potential A
v

 and magnetic flux density B
v

 in the 

“bisecting plane 0=z ” (not for the entire 3-D space) created by a straight current-carrying 

wire of length L2  and current I  (Fig. 11-3a). 

Ans: In cylindrical coordinates, an arbitrary observation point and a source point are located 

at ( ) rarr r
vv == 0,,φ  ( πφ 2~0= ), and ( ) zazr z ′==′ vv ',,0 φ  ( LLz ~−=′ ), respectively.  ⇒ 

22),( zrrrrrR ′+=′−=′ vvvv , 
S
IarJ z

vvv =′)(  ( S  is the cross-sectional area of the wire), 

'' Sdzdv = . By eq. (11.11), 
( )

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ++
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

′+

′
= ∫− Lr

LrIa
zr

zdIarA z

L

Lz

2
0 

 22
0 11

ln
24

)0,,(
π

μ
π

μφ vvv
. 

By eq. (11.8), ( )
( )2

0

12
)0,,(

Lrr

Ia
r
AaAaAarB zz

rzz
+

=
∂
∂

−
∂
∂

=×∇=
π

μ
φ

φ φφ
rvvvv

. Fig. 11-3b 

compares the magnetic fields caused by an infinitely wire [dashed, eq. (11.6)] and a finite 
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wire (solid), respectively. 

 
Fig. 11-3. (a) Geometry of a section of straight wire of length 2L carrying current I. (b) 

Normalized magnitude of magnetic flux density in the bisecting plane. 

 

<Comment> 

1) Since eq. (11.11) is a vector integral, determining B
v

 by way of calculating A
v

 is less 

helpful in comparison with determining E
v

 by way of calculating scalar potential V . 

2) 
r
IarB
π
μφ φ 2

)0,,( 0vv
→  when Lr << , consistent with that derived in Example 11-1. 

 

 

11.4 Biot-Savart Law 

■ Magnetic field created by current loops 

For a closed current loop C′  made by thin wire carrying a current I  (typical magnetic 

source), the term vdrJ ′′)(v
v

 in eq. (11.11) becomes lId ′
v

, ⇒ 

∫ ′
′

=
' 

0

),(4
)(

C rrR
ldIrA vv

v
vv

π
μ        (11.12) 

The resulting magnetic flux density B
v

 is governed by Biot-Savart law: 

∫= ' C
BdB
vv

, 2
0

4 R
aldIBd R
vv

v ×′
=

π
μ ,     (11.13) 

where 
rr
rrrraR ′−
′−

=′ vv

vv
vvv ),(  is the unit vector in the direction from the source point r ′v  to the 
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observation point rv , rrrrR vvvv ′−=′),( , Bd
v

 is the magnetic field contributed by a 

differential current segment. 

Proof: 

(1) By eq. (11.12), ∫∫ ⎥
⎦

⎤
⎢
⎣

⎡
′
′

×∇=⎥
⎦

⎤
⎢
⎣

⎡
′
′

×∇=×∇=
''  

0
 

0

),(4),(4 CC rrR
ldI

rrR
ldIAB vv

v

vv

v
vv

π
μ

π
μ . 

(2) By vector identify: ( ) ( ) ( ) ldRldRldR ′×∇+′×∇=′×∇ −−−
vvv 111 . 

(3) 0=′×∇ ld
v

, for ∇× is performed with respect to rv  while ld ′
v

 only changes with r ′v  

(analogous to the fact: 0)( =xf
dy
d ). 

(4) ( ) ( ) ( )222 zzyyxxR ′−+′−+′−= , ( ) 2
111

1 −
−−−

− −=
∂
∂

+
∂
∂

+
∂
∂

=∇ Ra
z

Ra
y

Ra
x

RaR Rzyx
vvvv . ⇒ 

Eq. (11.13) is derived. 

 

<Comment> 

1) Eq. (11.13) allows for direct evaluation of B
v

 from current distribution without first 

calculating A
v

. Its counterpart in electrostatics is the Coulomb’s law [eq. (6.10)]. 

2) In non-Cartesian coordinates, pay attention to the “position-dependent” unit vectors (e.g. 

RR aa ′≠ vv ). 

 

Example 11-4: Find the magnetic flux density B
v

 “on the axis” of a circular loop (not for the 

entire 3-D space) of radius b  and carrying a current I  (Fig. 11-4a). 

Ans: (1) In cylindrical coordinates, an arbitrary on-axis observation point P  and a source 

point on the loop C′  are located at: ( ) zazr z
vv == ,0,0  and ( ) babr r′==′ vv 0,',φ , respectively. 

⇒ The displacement vector from the source point to the observation point is: Rarr R
vvv =′− , 

where 22 bzR += , 
R

bazaa rz
R

′−
=

vv
v . 

(2) The differential displacement of the source point is: φφ ′′=′ bdald vv
, ⇒ 
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( ) ( )baza
R

bd
R

bazabdaald zr
rz

R
vv

vv
vvv

+′
′

=
′−

×′′=×′
φφφ  

(3) By eq. (11.13), 

( )[ ] 2/320
2 

0 

2 

0 3
0

 2
0 1

2
)(

44
),0,0(

−

′
+=⎥⎦

⎤
⎢⎣
⎡ ′+′′′=

×′
= ∫∫∫ bz

b
Iadabdaz

R
Ib

R
aldIzB zzrC

R μφφφ
π
μ

π
μ ππ vvv

vv
v

. 

  
Fig. 11-4. (a) A circular loop of radius b carrying current I (after DKC). (b) Normalized 

magnitude of magnetic flux density on the z-axis. 

 

 

11.5 Magnetic Dipole 

A circular current-carrying loop forms a magnetic dipole (Fig. 11-5). The resulting A
v

 and 

B
v

 at any position rv = Rav R (not just on the loop axis) far away from the loop ( bR >> ) are: 

2
0

4
)(

R
amrA R

π
μ vv

vv ×
≈        (11.14) 

[ ]θθ
π
μ

θ sincos2
4

)( 3
0 aa
R
mrB R

vvvv +≈       (11.15) 

where 2bIam z π
vv =  represents the magnetic dipole moment. In general, any current loop 

forms a magnetic dipole, where the dipole moment mv  has a magnitude equal to the product 

of current I  and loop area S , and is in the direction of right thumb as the remaining four 

fingers follow the direction of current flow: 

ISam m
vv =        (11.16) 
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Fig. 11-5. Evaluation of far-fields generated by a magnetic dipole (after DKC). 

Proof: (1) The geometry has −φ symmetry in spherical coordinates. It is sufficient to 

consider an observation point on the yz-plane ( 2πφ = ) with position vector: 

( ) ( )θθπθπθ cossin)2,(2,, zyR aaRaRRr vvvv +=== . 

An arbitrary source point on the current loop is located at: 

( ) ( )φφφπφπ ′+′=′′==′ sincos),2(',2, yxR aababbr vvvv , πφ 2~0=′ . 

The displacement vector from the source point to the observation point is: 

),2()2,(1 φππθ ′′−=′−= RR abaRrrR vvvvr
, ⇒ ( )RR aaRbbRRRR ′⋅−+=⋅= vvvv

222
11

2
1 , 

where ( ) ( ) 'sinsinsincoscossincos φθφφθθψ =′+′⋅+==′⋅ yxzyRR aaaaaa vvvvvv , ⇒ 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ′+≈′−+=

−− φθφθ sinsin11sinsin2 2/1221
1 R

b
R

RbbRR , given bR >> . 

The differential displacement of the source point is: 

( )φφφφφ ′+′−′=′′=′ cossin yx aabdbdald vvvv
. 

(2) By eq. (11.11), ( ) ( )∫∫ ′′+′−⎟
⎠
⎞

⎜
⎝
⎛ ′+≈

′
=

''  

0

 
1

0 cossinsinsin1
44 C yxC

daa
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b

R
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R
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rA φφφφθ
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μ
π

μ vv
v
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⎥
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⎤
⎢
⎣

⎡ ′⎟
⎠
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⎜
⎝
⎛ ′′+′+′⎟

⎠
⎞

⎜
⎝
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π π
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π
μ 2 
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20 cossinsincossinsinsin
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d
R
bad
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R
Ib

yx
vv  

2

2
00

4
sin

sin
4 R

bI
a

R
ba

R
Ib

xx π
θπμ

πθ
π

μ vv −=⎟
⎠
⎞

⎜
⎝
⎛ ⋅−= . 
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Since 2bIam z π
vv = , ( ) ( ) θπθθππθ sincossin)2,( 22 bIaaabIaam xzyzR

vvvvvr
−=+×=× , ⇒ 

2
0

4
)(

R
am

rA R

π
μ vv

vv ×
= , 

as predicted by eq. (11.14). For a general observation point ( 2πφ ≠ ), ( )2,πθφaax
vv =−  is 

generalized to ( )φθφ ,av , ⇒ φφ AarA vvv =)( , where 2
0

4
sin),(
R

mRA
π

θμθφ = . 

(3) By eq. (11.8) and the curl formula in spherical coordinates, 

( ) ( ) ( )RA
RR

aA
R

aAarB R φθφφφ θ
θθ ∂

∂
−

∂
∂

≈×∇=
1sin

sin
1)( vvvvv . 

 (i) ( ) ( ) θ
π
μθ

θπ
μθ

θ φ 2sin
4

sin
4

sin 2
02

2
0

R
m

R
mA =

∂
∂

=
∂
∂   

 (ii) ( ) 2
00

4
sin1

4
sin

R
m

RR
mRA

R π
θμ

π
θμ

φ −=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
∂
∂   

⇒ [ ]θθ
π
μ

π
θμ

θ
π
μ

θ θθ sincos2
44

sin12sin
4sin

1)( 3
0

2
0

2
0 aa

R
m

R
m

R
a

R
m

R
arB RR

vvvvvv +=+≈ , 

as predicted by eq. (11.15). 

 

<Comment> 

Resemblance between eq’s (11.14), (6.18) and eq’s (11.15), (6.16) implies that the “far-field” 

patterns established by electric and magnetic dipoles are similar if the electric dipole moment 

is replaced by the magnetic dipole moment ( mp vv → ) and permittivity is replaced by the 

inverse of permeability (
0

0
1
μ

ε → ). 
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Fig. 11-6. (a) E-field lines far away from an electric dipole. (b) M-field lines far away 

from a magnetic dipole. (c) Close-up view of (a). (d) Close-up view of (b) (after Inans). 

 


