Electromagnetics P11-1

Lesson 11 Magnetostatics in Free Space

m Introduction

When a small test charge q travels with velocity U in a magnetic field characterized by a
magnetic flux density B (Wb/m?), it will experience a magnetic force F, =qu x B . If there

is an electric field E as well, the total electromagnetic force is governed by the Lorentz’s
force equation:

F= q(E + 0 x |_5>) (11.1)

Historically, B is defined by measuring F_ and G experimentally. However, we will start

m

with two fundamental postulates of magnetostatics in free space to define B, from which all

experimental laws and the concept of magnetic “potential” can be derived.

11.1 Fundamental Postulates

m Definition and physical meaning

By Helmholtz’s theorem (Lesson 5), B can be uniquely specified if its divergence and curl
are given:

V.-B=0 (11.2)

VxB=pu,J (11.3)
where J is the volume current density (A/m?), and U, is the permeability of vacuum. EqQ’s

(11.2), (11.3) indicate that: (1) there is no “flow source” of magnetic field, (2) J acts as the

“vortex source” of magnetic field, respectively.
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m Integral forms
By integrating both sides of eq (11.2) over a volume enclosed by surface S and applying
the divergence theorem [eq. (5.24)], we derive:

§SI§ ds=0 (11.4)

This means that the magnetic flux lines always close upon themselves, and there is no

isolated “magnetic pole”.

By integrating both sides of eq. (11.3) over a surface bounded by contour C and applying
the Stokes’ theorem [eq. (5.29)], we derive the Ampere’s circuital law:
§CE‘3 Adl = g, (11.5)

As the Gauss’s law in electrostatics, eq. (11.5) relates the magnetic source (1) and field B.

11.2 Ampere’s Circuital Law
m Definition and applications
If the current distribution has certain symmetry, such that the tangential component of B is

constant over a contour C, eq. (11.5) becomes convenient in determining B .

Example 11-1: Consider an infinitely long conducting wire with circular cross section of
radius b, and carrying a steady current I(A) in the +z direction. Find B inside and

outside the conductor.

~ laB,(r),ifr<b
{ 4 ¢l( ) . Choose a circle of radius r as

Ans: By cylindrical symmetry, = B = .
yoy Slbah 8,B,,(r), if r>b

the integral path C (Fig. 11-1a).
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2
(1) For r<b: §C1§-dT:27er¢l(r):yo(%j I, = B¢1(r)=;ﬂﬁz r(ecr).

(2) For r>b: §Cl§-df =2mB,,(r)= | , = B¢2(I‘)=’u—°|(oc r).

This example shows that a conducting wire creates a “circulating” magnetic field outside the

wire itself:
5 _ - Mol
B=a &% (11.6)
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Fig. 11-1. (a) Cross-section of the conducting wire. (b) Magnitude of magnetic flux density (after DKC).

Example 11-2: Consider an infinitely long solenoid with air core, n turns per unit length,
and carrying a steady current | . Find B inside the solenoid.

Ans: Since (1) B =0 outside the solenoid, (2) B is constant and in axial direction inside the

solenoid, = choose a rectangular contour C (Fig. 11-2). §CB -dl =BL = g, (nL)I , =

(11.7)

Fig. 11-2. A current-carrying solenoid (after DKC).
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11.3 Vector Magnetic Potential

m Definition and physical meaning

From the null identity of eq. (5.35) and the fundamental postulate of eq. (11.2), magnetic flux

density B is divergence-free and can be expressed as the curl of some vector potential field:
B=VxA (11.8)

The flux @ of B overagivenarea S bounded by contour C is:

®(Wh)=[ B-ds=[ (VxA)ds=§ Adl.

The line integral of A over a contour C equals the total magnetic flux passing through the

area bounded by C (physical meaning of A).

Unlike scalar electric potential V , we need to specify the divergence of A (in addition to
the curl of A, specified by eq. (11.8)) to uniquely define the vector magnetic potential A.
In magnetostatics, we choose the Coulomb’s gauge:

V-A=0 (11.9)

Substitute eq’s (11.3), (11.8), (11.9) into the definition of vector Laplacian eq. (5.31):

VPA=V(V-A)-VxVxA=0-VxB =7,

i.e., the vector magnetic potential A is satisfied with a vector Poisson’s equation:

VA =—u,J (11.10)

<Comment>
Coulomb’s gauge is chosen to simplify eq. (11.10). We will choose different gauges in

time-varying fields (Lesson 15).
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m Evaluation
Eqg. (11.10) can be solved by the following procedures:

(1) By eq. (5.33), eq. (11.10) is equivalent to three scalar Poisson’s equations:
VIA =11, (i =x,Y,2)
in Cartesian coordinates.

(2) The solution to the scalar Poisson’s equation V?V S [eq. (8.1)] is:
)
o 1 P ()
V(r)= =2 dv' [eq. (6.15
()= 1 ooy e (615

(3) By analogy, the solution to the scalar Poisson’s equation V?A =—g,J, is:

Staf Oy,
AO= ] re ™

(4) Combining x-, y-, z-components, =

jv ﬂdv (Wb/m) (11.11)

——-r

Example 11-3: Find the magnetic potential A and magnetic flux density B in the
“bisecting plane z =0" (not for the entire 3-D space) created by a straight current-carrying
wire of length 2L and current | (Fig. 11-3a).

Ans: In cylindrical coordinates, an arbitrary observation point and a source point are located

at r=(r,p0)=a,r (¢4=0~2x),and r'=(0,4,2')=a,2" (z'=-L~ L), respectively. =

= | . . ]
R(F,F)=|F—F|=vr*+2%, J(r'):azg (S is the cross-sectional area of the wire),

e R R,

dv'=Sdz'. By eq. (11.11), A(r,¢,0)=4a,

By eq. (11.8), B(r,4,0)=Vx(a,A)=a, 2;2 a, aaArZ 27zr\/1ﬂil(r/L)2 . Fig. 11-3b

compares the magnetic fields caused by an infinitely wire [dashed, eqg. (11.6)] and a finite
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wire (solid), respectively.

@ £ ®
o—z=L
dz' source pt. (0.¢.2") A
e

r
| AN

I 4~ observation pt.
(rg, z=0)

~N

finite wire infinite wire

normalized B-field, B, /(«!/27)
- w

0 R 2 ' 3 4
—z=— normalized distance from the wire, /L.

Fig. 11-3. (a) Geometry of a section of straight wire of length 2L carrying current 1. (b)

Normalized magnitude of magnetic flux density in the bisecting plane.

<Comment>
1) Since eq. (11.11) is a vector integral, determining B by way of calculating A is less

helpful in comparison with determining E by way of calculating scalar potential V .

2) B(r,4,0) > a¢;i| when r << L, consistent with that derived in Example 11-1.
ar

11.4 Biot-Savart Law
m Magnetic field created by current loops
For a closed current loop C' made by thin wire carrying a current | (typical magnetic

source), the term  J(F")dv’ in eq. (11.11) becomes Idl’, =

7o Mol dl’
A== §C, RET) (11.12)

The resulting magnetic flux density B is governed by Biot-Savart law:

5§ dg, d5= ol A X% (11.13)
c 47 R
where a.(r,r’) = |E_ L| is the unit vector in the direction from the source point r' to the
F—r
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differential current segment.

Proof:

= ~ il di’ y7N dli’
1) Byeq. (11.12), B=VxA=—"-V , = Y .
(1) By eq. (11.12) A=l xﬁc R(m} V| R T

(2) By vector identify: V x (R‘ldr')z R‘l(v x dr')+ V(R‘l)x dl’.
(3) Vxdl'=0, for Vx is performed with respect to ¥ while dlI’ only changes with F’

(analogous to the fact: di f(x)=0).
y

(4) R= \/(x— XY +(y-yY+(z-27, V(R‘l)z a,

Eq. (11.13) is derived.

<Comment>
1) Eq. (11.13) allows for direct evaluation of B from current distribution without first
calculating A. Its counterpart in electrostatics is the Coulomb’s law [eq. (6.10)].

2) In non-Cartesian coordinates, pay attention to the “position-dependent” unit vectors (e.g.

Example 11-4: Find the magnetic flux density B “on the axis” of a circular loop (not for the
entire 3-D space) of radius b and carrying a current | (Fig. 11-4a).

Ans: (1) In cylindrical coordinates, an arbitrary on-axis observation point P and a source
point on the loop C' are located at: F =(0,0,z)=a,z and ' =(b,¢',0)=a’b, respectively.

= The displacement vector from the source point to the observation point is: r—r'=ayR,

. az-ab
where R=+/2*+b*, 8, =—"+"—".

R

(2) The differential displacement of the source point is: dl ' = a;bdg’, =
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) B2=ab _bdg'

di"xa, = (abdg’ -

a'z+ab)
(3) By eq. (11.13),

di'xa, _ ulb
R® 47R®

3/2

[zjoz”a; (¢’)d¢'+bazj'02”d¢’} - az‘;—(g[u(z/b)z} |

§(00,2) = ‘4‘3[' f.

(@) N o

£(0, 0, 2)

o
™

o
<))

o
»

normalized B-field, B, /(u,//2b)

[=]

R
normalized on-axis distance, z/b
Fig. 11-4. (a) A circular loop of radius b carrying current | (after DKC). (b) Normalized

magnitude of magnetic flux density on the z-axis.

11.5 Magnetic Dipole

A circular current-carrying loop forms a magnetic dipole (Fig. 11-5). The resulting A and

B atany position r=agR (not just on the loop axis) far away from the loop (R >>b) are:

RUN”
A(T 11.14
(r) AR (11.14)
_ Mo .
B(r) ~ 47:R3 [a,2cos6 +a,sin 0] (11.15)

where m=a, lzb® represents the magnetic dipole moment. In general, any current loop
forms a magnetic dipole, where the dipole moment m has a magnitude equal to the product
of current 1 and loop area S, and is in the direction of right thumb as the remaining four
fingers follow the direction of current flow:

m=a_IS (11.16)
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Fig. 11-5. Evaluation of far-fields generated by a magnetic dipole (after DKC).

Proof: (1) The geometry has ¢—symmetry in spherical coordinates. It is sufficient to

consider an observation point on the yz-plane (¢ = z/2) with position vector:
r=(R,0,7/2)=Ra;(0,7/2) = R(a,sin 6 +a, cos ).
An arbitrary source point on the current loop is located at:
r'=(b,7/2,¢')=bay(z/2,¢) =b(a, cos¢' +a,sing’), ¢'=0~2x.
The displacement vector from the source point to the observation point is:
R, =F—F =Ra,(0,7/2)-ba,(z/2,4), = R?=R,-R, =R?+b?-2Rb(a, -a;),
where @, -a; =cosy = (ay sing +a, cosd)-(a, cosg’ + a, sin ¢')=sindsing', =

R = (R2 +b? — 2Rbsin @sin ¢')_1/2 z%(ﬂ%sin @sin ¢’j ,given R>>bh.

The differential displacement of the source point is:

dI" = ajbdg’ = bdg'(- &, sin ¢ + a, cos¢').

Aw _IUOI drlNIUOIb b H H ’ = o ', = ' ’
(2) By eq. (11'11)’A(r)_E§C‘R_l~ = ifc, 1+Esm osing’ |- a, sing +48, Cos¢ g

~1u0|b = 2z : ' b H H Y i A 2z ! b H H ! 4 4
~ {—axjo (S|n¢ +Esmesm ¢jd¢ +ayjo (cos¢ +Esmz95|n¢ cos¢’ |d¢

4R
2 -

_ #olb —aXBsine-ﬂ :—ax—'uolﬂb smH.
47R R A7R?
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Since m=a,lab?*, Mxa,(d,7/2)= ( )x(aysin9+azcos@):—axlﬂbzsine,:>

HoMx ag

Alr) = 4R

as predicted by eq. (11.14). For a general observation point (¢ # z/2), —a, =4, (9, 7r/2) is

generalizedto &,(6,¢), = A(F) =a,A,, where AARﬂ):%il?e

(3) By eq. (11.8) and the curl formula in spherical coordinates,

B(r)=Vx(a,A,)~4a R;ﬂg:@(A sin @) 59%8%(A¢R).
(i) —(A sin ) = -~ 7zR2 aae(sn n2g)= -+ 47zR oM sin 26
(i) = (AR)= #4700 °'2f['”98%(3]=——“ i
= B(F)~a, HoM 26+ 3 a, 1 smsing _ oM ~laz2cos0+a,sin g,

Rsin @ 47R? R 47R? 47R3

as predicted by eq. (11.15).

<Comment>
Resemblance between eq’s (11.14), (6.18) and eq’s (11.15), (6.16) implies that the *“far-field”
patterns established by electric and magnetic dipoles are similar if the electric dipole moment

is replaced by the magnetic dipole moment (p — m) and permittivity is replaced by the

. - 1
inverse of permeability (&, > —).
Ho
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© (d)
Fig. 11-6. (a) E-field lines far away from an electric dipole. (b) M-field lines far away

from a magnetic dipole. (c) Close-up view of (a). (d) Close-up view of (b) (after Inans).
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