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Lesson 10 Steady Electric Currents 

 

10.1 Current Density 

■ Definition 

Consider a group of charged particles (each has charge q ) of number density N (m-3), 

moving across an elemental surface sanΔ
v  (m2) with velocity uv  (m/sec). Within a time 

interval tΔ , the amount of charge QΔ  passing through the surface is equal to the total 

charge within a differential parallelepiped of volume ( ) ( )satuv nΔ⋅Δ=Δ vv  (Fig. 10-1): 

( )sautvNqQ nΔ⋅Δ=Δ=Δ vvρ , 

where ρ  (C/m3) denotes the volume charge density. The corresponding electric current is: 

( )sau
t
QI nΔ⋅=
Δ
Δ

= vvρ . 

The current I  can be regarded as the “flux” of a volume current density J
v

, i.e., 

( )saJI nΔ⋅= vv
. By comparing the above two relations, we have: 

uJ vv
ρ=  (A/m2)       (10.1) 

 
Fig. 10-1. Schematic of derivation of current density. 

 

 

■ Convection currents 

Convection currents result from motion of charged particles (e.g. electrons, ions) in 

“vacuum” (e.g. cathode ray tube), involving with mass transport but without collision. 
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Example 10-1 (Optional): In vacuum-tube diodes, some of the electrons boiled away from the 

incandescent cathode are attracted to the anode due to the external electric field, resulting in a 

convection current flow. Find the relation between the steady-state current density J
v

 and 

the bias voltage 0V . Assume the electrons leaving the cathode have zero initial velocity. This 

is the “space-charge limited condition”, arising from the fact that a cloud of electrons (space 

charges) is formed near the hot cathode, repulsing most of the newly emitted electrons. 

 
Fig. 10-2. Schematic of vacuum-tube diode. 

Ans: Assume the linear dimension of cathode and anode is much larger than the length of 

tube d , planar symmetry leads to: (i) potential distribution is )(yV  (with boundary 

conditions: 0)0( =V , 0)( VdV = ), (ii) volume charge density is )(yρ (<0), (iii) charge 

velocity is )(yuau y
vv = , respectively. Under the space-charge limited condition: (i) 0)0( =u , 

(ii) the net electric field )(yEaE yy
vv

−=  at the cathode ( 0=y ) is zero: 0)0( =yE , ⇒ 

0)0( =′V . 

(1) In steady state, JaJ y
vv

−=  is constant. By eq. (10.1), )()( yuyJ ρ−= , ⇒ 
)(

)(
yu
Jy −=ρ . 

(2) By the energy conservation: )(
2
1)( 2 ymuyeV = , where m  is the mass of an electron. ⇒ 

m
yeVyu )(2)( = , 

)(2
)(

yeV
mJy −=ρ . 

(3) Since there is free charge density )(yρ  inside the tube, the potential )(yV  has to 

satisfy with Poisson’s equation [eq. (8.1)]: 
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)(2
)(

00
2

2

yeV
mJy

dy
Vd

εε
ρ

=−= . 

(4) It is unnecessary to solve this “nonlinear” ordinary differential equation to get )(yV  if 

only the relation of )( 0VJ  is of interest. Instead, we multiply both sides by 
dy
dV2 : 

)(2
22

0
2

2

yeV
m

dy
dVJ

dy
Vd

dy
dV

ε
= , 

then integrate with respect to y : 

( )∫∫ −=′′⋅′ dVV
e
mJdyyVyV 2/1

0 2
2)()(2
ε

, ⇒ c
e
ymVJ

dy
dV

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

)(4

0

2

ε
. 

By boundary conditions: 0)0( =V , 0)0( =′V , ⇒ 0=c , ⇒ 
4/1

0 2
)(2 ⎥⎦
⎤

⎢⎣
⎡=

e
ymVJ

dy
dV

ε
, 

dy
e
mJdVV

4/1

0

4/1

2
2 ⎟

⎠
⎞

⎜
⎝
⎛=−

ε
. 

(5) ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞

⎜
⎝
⎛= ∫∫ − dV

dy
e
mJdVV

 

0 

4/1

0

 

0 

4/1

2
20

ε
, ⇒ 

2

2/3
00 2

9
4

d
V

m
eJ ε

=        (10.2) 

 

<Comment> 

1) The nonlinear VI −  relation of vacuum-tube diode differs from the Ohm’s law ( VI ∝ ), 

which describes the “conduction” current in conductors. 

2) The VI −  relation of forward-biased semiconductor diodes exhibits a stronger 

nonlinearity: VeI α∝ . 
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■ Conduction (drift) currents 

As discussed in Lesson 7, the electrons of conductors only partially fill the conduction band 

(Fig. 7-1)  and can be easily released from parent nuclei as free electrons by thermal 

excitation at room temperatures. The velocities of individual free electrons are high in 

magnitude (~105 m/s at 300K) but random in direction, resulting in no net “drift” motion nor 

net current. 

 

In the presence of static electric field E
v

, the free electrons experience: (1) electric force 

Ee
v

−  ( 0>e ) to accelerate the electrons, (2) frictional force 
τ
dnum
v

−  due to collisions with 

immobile ions, where du
v  is the drift (average) velocity of electrons, nm  and τ  represent 

the effective mass of conduction electrons and mean scattering time between collisions 

(considering the influence of crystal lattice), respectively. In steady state, these two forces 

balance with each other (Drude model), ⇒ 

EE
m
eu e
n

d

vvv μτ
−=−= , 

where the electron mobility 
n

e m
eτμ =  (m2/V/sec) describes how easy an external electric 

field can influence the motion of electrons in the conductor. For typical conductors and 

strength of electric fields, du
v  is much slower (~mm/sec) than the speed of individual 

electrons. By eq. (10.1), the conduction current density is: 

EJ
vv

σ=  (A/m2)       (10.3) 

where eeμρσ −=  [(Ωm)-1] ( 0<eρ , 0>σ ) denotes the electric conductivity, eρ  means 

the charge density of the electrons. For semiconductors, both electrons and holes contribute 

to conduction currents, ⇒ 

hhee μρμρσ +−= . 
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10.2 Microscopic and Macroscopic Current Laws 

■ Ohm’s law 

Eq. (10.3) is the microscopic form of Ohm’s law. Consider a piece of (imperfect) conductor 

of arbitrary shape and homogeneous (finite) conductivity σ  (Fig. 10-3a). The potential 

difference between the two equipotential end faces 1A , 2A  is: ∫ ⋅=−=
L

ldEVVV
 2112  

vv
, 

where L is some path starting from 1A  and ending at 2A . The total current flowing through 

some surface A  between 1A  and 2A  is: ∫∫ ⋅=⋅=
AA

sdEσsdJI
  
  vvvv

. The resistance R  of 

the conductor is defined as: 

∫
∫

⋅

⋅
==

A

L

sdE

ldE

I
VR

 

 12

 

 
vv

vv

σ
,      (10.4) 

which is a constant independent of 12V  and I  (but depending on the geometry and material 

of the conductor). For a conductor of “uniform” cross-sectional area S  (Fig. 10-3b), eq. 

(10.4) gives 
ES
ELR
σ

= , ⇒ 

S
LR
σ

=         (10.5) 

 
Fig. 10-3. A conductor of (a) arbitrary shape (after Inans’ book), and (b) uniform 

cross-sectional area S and length L (after DKC). 

 

 

■ Electromotive force and Kirchhoff’s voltage law 

If conduction current density J
v

 is driven by a conservative electric field E
v

 (created by 
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charges) alone, ⇒ EJ
vv

σ= , ( ) 0  
  

=⋅=⋅ ∫∫ CC
ldJldE
vvvv

σ  [eq. (6.4)], ⇒ no steady “loop” 

current exists. Therefore, a non-conservative field produced by batteries, generators …etc. is 

required to drive charge carriers in a closed loop. 

 
Fig. 10-4. Electric fields inside an electric battery (after DKC). 

Consider an open-circuited battery, where some positive and negative charges are 

accumulated in electrodes 1 and 2 due to chemical reaction (Fig. 10-4). Inside the battery, an 

impressed field iE
v

 (not an electric field, but a “force”) produced by chemical reaction 

balances the electrostatic field insideE
v

 arising from the accumulated charges, preventing 

charges from further movement. The electromotive force (emf), defined as the line integral of 

iE
v

  from electrode 2 to electrode 1: 

∫ ⋅≡
1 

2 
ldEi
vv

V , 

describes the strength of the non-conservative source. By iEE
vv

−=inside  and eq. (6.4), we 

have: 0 
1 

2 

2 

1 outside

1 

2 inside

2 

1 outside 
=⋅−⋅=⋅+⋅=⋅ ∫∫∫∫∫ ldEldEldEldEldE iC

vvvvvvvvvv
, ⇒ 

21

2 

1 outside VVldE −=⋅= ∫
vv

V  (Volt)      (10.6) 

 

If the two terminals are connected by a uniform conducting wire of resistance 
S
LR
σ

= , the 

total field: 
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⎪⎩

⎪
⎨
⎧ =+

=+
battery  theoutside ,

battery  theinside ,0

outside

inside

E
EE

EE i
i v

vv
vv

 

drives a loop current I  of volume density J
v

 (where SIJ = ). In the conducting wire, 

outsideEJ
vv

σ= , 
S
ILldJldE

C σσ
=⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⋅= ∫∫  

2 

1 outside  
v

v
vv

V , ⇒ RI=V . For a closed path with 

multiple sources and resistors, we get the Kirchhoff’s voltage law: 

∑∑ =
k

kk
j

j IRV        (10.7) 

 

 

■ Equation of continuity and Kirchhoff’s current law 

Consider a net charge Q  confined in a volume V  bounded by a closed surface S . Based 

on the principle of conservation of charge (a fundamental postulate of physics), a net current 

I  flowing out of V  must result in decrease of the enclosed charge: 

dt
dQI −= , ⇒ ∫∫ −=⋅

VS
dv

dt
dsdJ

  
ρvv

. 

By the divergence theorem [eq. (5.24)] and assuming that the volume V  is stationary (does 

not moving with time), ⇒ ( ) ∫∫ ∂
∂

−=⋅∇
VV

dv
t

dvJ
  

ρv
, leading to the equation of continuity: 

t
J

∂
∂

−=⋅∇
ρv

        (10.8) 

 

For “steady currents”, 0=
∂
∂
t
ρ , eq. (10.8) is reduced to: 

0=⋅∇ J
v

        (10.9) 

This means there is no steady current source/sink, and the field lines of J
v

 always close 

upon themselves. The total current flowing out of a circuit junction enclosed by surface S  

becomes: 

( ) 0
  

=⋅∇=⋅= ∫∫∑ VS
j

j dvJsdJI
vvv

, ⇒ 
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0=∑
j

jI         (10.10) 

The Kirchhoff’s current law eq. (10.10) is the macroscopic form of eq. (10.8) in steady state. 

 

Example 10-2: Show the dynamics (time dependence) of free charge density ρ  inside a 

homogeneous conductor with constant electric conductivity σ  and permittivity ε . 

Ans: By eq’s (10.3), (10.8), 

( ) ( )
t

EEJ
∂
∂

−=⋅∇=⋅∇=⋅∇
ρσσ

vvv
. 

By eq’s (7.8), (7.12), 

( ) ( ) ρεε =⋅∇=⋅∇=⋅∇ EED
vvr

. 

⇒ 0=+
∂
∂ ρ

ε
σρ

t
, τρρ tet −= 0)( , where 

σ
ετ =         (10.11) 

represents the life time of free charges inside the conductor (for the initial charge density 0ρ  

will decay to its 1/e within a time interval of τ . For a good conductor like copper, ≈τ 10-19 

sec. Therefore, the dynamics is too fast to be considered. 

 

 

■ Joule’s law 

In the presence of an electric field E
v

, free electrons in a conductor have a drift (average) 

velocity du
v . Collisions among free electrons and immobile atoms transfer energy from the 

electric field to thermal vibration. Quantitatively, the work done by E
v

 in moving an amount 

of charge Q  for a differential “drift” displacement dl
v

Δ  is: dlEQw
vv

Δ⋅=Δ , corresponding 

to a power dissipation of: dt
uEQ

t
wp vv

⋅=
Δ
Δ

=
→Δ 0

lim . For a conductor of free charge density ρ  

where an electric field E
v

 exists, the power dissipation in a differential volume dv  
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( dvQ ρ= ) becomes: ( ) ( ) ( )dvJEdvuEuEdvp dd

vvvvvv
⋅=⋅=⋅=Δ ρρ . This means that JE

vv
⋅  

(W/m3) represents the (ohmic) power density, and the total power dissipated in a volume V  

with inhomogeneous )(rE vv
 and )(rvσ  is described by the Joule’s law: 

( )∫ ⋅=
V

dvJEP
 

vv
 (W)       (10.12) 

 

If we apply a voltage difference 12V  across a homogeneous conductor of uniform 

cross-sectional area S  and length L  (Fig. 10-3b), ⇒ 

( ) ( ) IVlIdESdlJEdvJEP
LLV 12   
 =⋅=⋅=⋅= ∫∫∫

vvvvvv
. 

 

 

10.3 Boundary Conditions 

■ Derivation 

As in electrostatics, we can derive the boundary conditions for (conduction) current density 

J
v

 across an interface between two media with different conductivities 1σ , 2σ  by: 

1) Deduce the divergence and curl relations of J
v

: (i) For steady currents, 0=⋅∇ J
v

 [eq. 

(10.9)]. (ii) By eq’s (10.3) and (6.2), ( ) 0=×∇=×∇ σJE
vv

. 

2) Transform the equations into their integral forms: (i) 0 
 

=⋅∫S sdJ vv
. (ii) 0 

 
=⋅∫C ldJ v

v

σ
. 

3) Apply the integral relations to a differential (i) pillbox, and (ii) rectangular loop across the 

interface, respectively. We can arrive at (i) normal, and (ii) tangential components of 

boundary conditions: 

nn JJ 21 =         (10.13) 

2

2

1

1

σσ
tt JJ

=        (10.14) 

 

Example 10-3: Represent the surface charge density sρ  on the interface between two lossy 
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media with permittivities 1ε , 2ε  and conductivities 1σ , 2σ  by either of the two normal 

components of D
v

. 

 
Fig. 10-5. Interface between two lossy media. 

Ans: Use the normal boundary conditions of E
v

 and J
v

: (1) By eq’s (7.12), (7.15), ⇒ 

nnnns EEDD 221121 εερ −=−= , 

where inD , inE  ( =i 1, 2) denote the projections of iD
v

, iE
v

 along 2na
v , respectively. (2) By 

eq’s (10.3) and (10.13), ⇒ nn JJ 21 = , nn EE 2211 σσ = , ⇒ nn EE 2
1

2
1 σ

σ
= , or nn EE 1

2

1
2 σ

σ
= . ⇒ 

nns DD 1
12

21
2

21

12 11 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

εσ
εσ

εσ
εσρ      (10.15) 

Eq. (10.15) means that 0=sρ  only if (1) 
2

2

1

1

ε
σ

ε
σ

= , which is rare in reality; (2) 021 ==σσ  

(both media are lossless, no free charge exists), where eq. (10.15) fails. For air-conductor 

interface (Fig. 7-1), ∞→2σ , ns D1=ρ , consistent with eq. (7.4). 

 

Example 10-4: Find J
v

, E
v

 in the two lossy media between two parallel conducting plates 

biased by a dc voltage 0V  (Fig. 10-6). Also find the surface charge densities on the two 

conducting plates and on the interface between the two lossy media, respectively. 
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Fig. 10-6. Parallel-plate capacitor filled with two lossy media stacked in series. 

Ans: (1) By planar symmetry and eq. (10.13), there is a constant current density J
v

= − Jay
v  

between the plates. By eq. (10.3), ⇒ iy
i

i EaJE v
v

v
−==

σ
, where iE =

i

J
σ

. Since ∑
=

=
2,1

0
i

iidEV  

∑
=

=
2,1i i

idJ
σ

, ⇒ ( ) ( )2211

0

σσ dd
VJ
+

= . 

(2) 
2112

02
1 dd

VE
σσ

σ
+

= , 
2112

01
2 dd

V
E

σσ
σ
+

= . 

(3) By eq. (7.15), 
2112

021
1111 dd

VEDs σσ
σεερ
+

=== ; 
2112

012
2222 dd

VEDs σσ
σεερ
+

−=−=−= . 

(4) By eq. (10.15), the surface charge density between the two lossy media is: 

( )
2112

02112
11

12

21 )(1
dd
VEsi σσ

σεσεε
εσ
εσρ

+
−

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= . 

 

<Comment> 

1) 21 ss ρρ ≠ , but 021 =++ siss ρρρ . By Gauss’s law, there is no electric field outside the 

parallel-plate capacitor. 

2) In this example, static charge and steady current (i.e., static magnetic field) coexist, 

causing “electromagnetostatic” field. However, the magnetic field is a consequence and 

does not enter into the calculation of the electric field. 
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10.4 Evaluation of Resistance 

■ Resistance of single imperfect conductor 

The resistance R  of a piece of homogeneous lossy medium of finite conductivity σ  can 

be evaluated by: (1) Assume a potential difference 0V  for the two “selected” end faces. (2) 

Find the potential distribution )(rV v  by solving boundary-value problem. (3) Find E
v

 by 

VE −∇=
v

. (4) Find the total current by ∫∫ ⋅=⋅=
SS

sdEσsdJI
  
  vvvv

. (5) By eq. (10.4), 
I
VR 0= . 

 

Example 10-5: Consider a quarter-circular washer of rectangular cross section (Fig. 10-7) and 

finite conductivity σ . Find the resistance if the two electrodes are located at 0=φ  and 

2πφ = . 

 
Fig. 10-7. A quarter-circular conducting washer of rectangular cross section (after DKC). 

Ans: Assume: (1) 0)0( ==φV , 0)2( VV == πφ , (2) the current flow and electric field are 

only in φa
v -direction, ⇒ )(),,( φφ VzrV = . Laplace’s equation [eq. (8.2)] in cylindrical 

coordinates is simplified as: 0)( =′′ φV , ⇒ 21)( ccV += φφ . By the two boundary conditions, 

⇒ φ
π

φ 02)( VV = , ⇒ 
r

VaVE 12 0

πφ
vv

−=−∇= ⎟
⎠
⎞

⎜
⎝
⎛∝
r
1 , 

r
VaEJ 12 0

π
σσ φ

vvv
−== , ∫ ⋅=

S
sdJI

 
 vv

 

⎟
⎠
⎞

⎜
⎝
⎛=⋅= ∫ a
bhVhdr

r
Vb

a
ln22 0 

 
0

π
σ

π
σ , ( )abh

R
ln2σ
π

= . 

 

 

■ Resistance between two perfect conductors 

The resistance R  between two perfect conductors immersed in some homogeneous lossy 
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medium with permittivity ε  and conductivity σ  can be derived by evaluating the 

corresponding capacitance C  and applying the relation: 

σ
ε

=RC         (10.16) 

 
Fig. 10-8. Evaluation of resistance by RC constant (after DKC). 

Proof: By definitions, 
I
Q

V
Q

I
VRC =⋅= . By eq’s (7.10), (10.3), (7.12), ⇒ 

σ
ε

=
⋅

⋅
=
∫
∫
S

S

sdJ

sdD

I
Q

 

 

 

 
vv

vv

, 

as long as ε  and σ  have the same spatial dependence. 

 

Example 10-6: Find the leakage resistance between the inner conductor (of radius a ) and 

outer conductor (of inner radius b ) of a coaxial cable of length L  (Fig. 9-4), where a lossy 

dielectric medium of conductivity σ  is filled between the conductors. 

Ans: By eq. (9.4), ( )ab
LC

ln
2πε

= . By eq. (10.16), ( )
L
ab

C
R

πσσ
ε

2
ln

== . 

 

 

<Comment> 

Since the range of dielectric constant of available materials is very limited (1-100), electric 

flux usually cannot be well confined within a dielectric slab. The fringing flux around the 

edges of conductors makes the computation of capacitance less accurate. In contrast, 

conductivity of available materials differ a lot (10-17−107 S/m), and fringing effect is normally 

negligible. 


